
1DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Chih Chieh Chou, Jaemin Jung, A. L. Narasimha Reddy, Paul Gratz,
and Doug Voigt

Virtualize and Share Non-Volatile
Memory in User Space

May 23, 2019

2DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Outline

• Introduction
• Motivation and Goal
• Architecture
• Conclusions
• Acknowledgements

3DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction
• The non-volatile memory has becomes promising

storage device because of some amazing
properties
– Byte-addressability
– Non-volatility
– Low latency
– Low power in idle (except for NVDIMM)

HPE 8GB NVDIMM single Rank x4
DDR4-2133 Module

4DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction

• Unlike DRAM and disk, how to deploy NVM (put in
which layer of memory hierarchy) does not have an
agreement so far

cache

DRAM

Disk
NVM

1. Use DRAM as cache of NVM (w/o non-volatility)
2. Use NVM as cache of disk (w/o byte-addressability)
Can we do more?

cache

DRAM

Disk

NVM

cache

DRAM

Disk

NVM

cache

DRAM

Disk

5DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Challenge

• Directly attach to memory bus as DIMM under
cache are “not persistent” after power cycling

• Need write ordering! (sol: logs and transactions)

cache

NVM

A’ B’ C’

cache

NVM

cache

NVM
A B C

B’

BA’ C’ BA’ C’

System crashes

6DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Motivations
• Several prior work focusing on building a specific

file system tailed for NVM
• Scmfs (SC’11), NOVA (FAST’16, MSST’17), Strata

(SOSP’17)
– Limit users to use their file systems
– No concurrency
– System calls are too expensive and will squander the low

latency provided by NVM
• Handling almost everything in user space provides much better

performance
• Intel SPDK (https://spdk.io): user space, polling-based, NVMe

driver
– ULL SSD: Intel Optane SSD/Samsung Z-NAND

https://spdk.io/

7DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Motivations

• SNIA NVM Programming Model/Intel
PMDK(https://pmem.io/pmdk/)
– Use mmap interface to access NVM

• Virtualize and share NVM (between processes), like
virtual memory (mmap)
– Virtual NVM capacity more than physical available

capacity
• Leveraging storage device as data final destination

• Leveraging DRAM as cache
– Performance: better latency; avoid log searching
– Write lifetime issue of PCM: reduce write to NVM

8DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Our Goals

• User space
– library

• Transactional interface
– Log

• mmap-like access form
• Virtualization and sharing of NVM

– Leverage storage device

• DRAM cache

9DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Methodology

• Leveraging the existing mmap function
• Integrate DRAM, NVM, and SSD to provide virtual

NVM
– Treat (DRAM + NVM + SSD) as a huge NVM pool
– Its performance is very close to that of NVM (or DRAM)

10DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Methodology

• User space library: vNVML
– Access NVM only through vNVML
– Support concurrently (processes) access
– Allocate (virtual) NVM regardless of actual NVM size

Storage

DRAM NVM

vNVML

App1 App2

NVM

vNVML

App1 App2

11DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Example

ptr = nv_allocate(filepath, filesize, mode);
tid = nv_txbegin(); // TX starts
x = *ptr; // read
y = *(ptr + sizeof(x)); // read
x = 1;
y = 2;
nv_write(tid, ptr, &x, sizeof(x)); //write
nv_write(tid, ptr+sizeof(x), &y, sizeof(y)); //write
nv_commit(tid); //TX commits

12DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Components

StorageFile

Log
buffer CacheMeta

data

Virtual address space

StorageNVM

SHM object

mmapping
DAX shared mapping

File

• Limitations/challenge:
• 1. File system must support mmap
• 2. Virtual addressed cannot be stored in NVM

13DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Components

StorageFile

Log
buffer CacheMeta

data

Process 1 virtual address space

StorageNVM

SHM objectFile

Log
buffer CacheMeta

data

Process 2 virtual address space

SHM objectFile

File

14DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Data access flow

StorageFile A
NVM

File A Mapping
NVM
log

NVM
Cache

Meta
data

1. write
3. read

2. commit

4. write back to SSD private
mmap

15DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

R/W flows

NVM

NVM

DRAMRead
cache

Log buffer

Write
cache

Storage

R W
• DRAM as read only cache
• Limitation: Read committed

TX
• NVM as log buffer and
• Write only cache
• Two background threads

– Update the logs to write cache
– Update the write cache to

storage

1

1 2

16DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Log structure

tid
5

open lists
Committed list

: log object

P P P P

tid
37

tid
2

tid
15

tid
7

tid
N

P

PP P

P

P

: page object (log page)

tid
4

tid
1

tid
33

1. Committed
2. Abort tid

37
P

Limitation: write first should commit first (only when
writing the same object)

17DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NVM Cache Management

Dirty list

Clean list

Free list

log content adoption - after commit

writeback - when over 30% pages are dirtycache hit

cache miss

cache hit

18DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Shared files

NVMDRAM Log buffer

W

File A

Shared
mmap

Storage

R

msync

Committed list

tid
N1

tid
N2

tid
N3

“digested”
by background thread

tid
N4

Limitations:
1. write first should commit first (only when writing the same object)
2. All writes of a TX must write to the same shared file

19DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Recovery after crashing

A

B

C

A

B

C

A

B

C

(a) (b) (c)

• Dirty pages: check dirty bits
• Logs of committed list: leverage 8-byte atomicity (pointer) of cpu
• Insert: (a) => (b) => (c)
• Delete: (c) => (b) => (a)

20DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Experiment methodology

• YCSB + MongoDB + Library
– YCSB generates read/write traffic

(workload) to MongoDB
• Fixed size record: 64KB
• Run 100K records for each experiments

– MongoDB accesses the NVM through
library

– Baseline: MongoDB generates files
directly to NVM, and disables
journaling/msync

• Platform setting:
– 12GB DRAM, 12GB emulated NVM
– CPU: 4 cores
– 4 MongoDB instances run concurrently

YCSB

MongoDB

vNVML

Storage

DRAM NVM

21DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Evaluation

• Assume NVM size is fixed, how to partition the log
buffer size and cache size?

• How does vNVML perform compared to other
libraries?

22DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed cache size

• NVM cache size is 4GB, record number is the size
of data set in the MongoDB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000 (0.6GB)
(2.4GB for 4)

record =
15000 (0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for 4)

record =
25000 (1.5GB)
(6.0GB for 4)

record =
30000 (1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=95/5

Log :2G Log: 1G Log: 512M Log: 128M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=95/5

Log :2G Log: 1G Log: 512M Log: 128M

23DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed cache size

• NVM cache size is 4GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=50/50

Log :2G Log: 1G Log: 512M Log: 128M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=50/50

Log :2G Log: 1G Log: 512M Log: 128M

24DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed cache size

• NVM cache size is 4GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB

for 4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=30/70

Log :2G Log: 1G Log: 512M Log: 128M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=30/70

Log :2G Log: 1G Log: 512M Log: 128M

25DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed cache size

• NVM cache size is 4GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=5/95

Log :2G Log: 1G Log: 512M Log: 128M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=5/95

Log :2G Log: 1G Log: 512M Log: 128M

26DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed log buffer
size

• NVM log buffer size is 2GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=95/5

Cache :8G Cache :4G Cache :2G Cache :1G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=95/5

Cache :8G Cache :4G Cache :2G Cache :1G

27DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed log buffer
size

• NVM log buffer size is 2GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=50/50

Cache :8G Cache :4G Cache :2G Cache :1G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=50/50

Cache :8G Cache :4G Cache :2G Cache :1G

28DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed log buffer
size

• NVM log buffer size is 2GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=30/70

Cache :8G Cache :4G Cache :2G Cache :1G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=30/70

Cache :8G Cache :4G Cache :2G Cache :1G

29DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of fixed log buffer
size

• NVM log buffer size is 2GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=5/95

Cache :8G Cache :4G Cache :2G Cache :1G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=5/95

Cache :8G Cache :4G Cache :2G Cache :1G

30DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of read only case

• NVM log buffer size is 128MB, cache size is 4GB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Uniform, W/R=0/100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=0/100

31DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results of docker container
using bind mount

• NVM log buffer size is 2GB
• Baseline: access library from normal processes

with the same setting

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

record =
10000

(0.6GB)
(2.4GB for

4)

record =
15000

(0.9GB)
(3.6GB for

4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for

4)

record =
30000

(1.8GB)
(7.2GB for

4)

N
or

m
al

ize
d

th
ro

ug
hp

ut

Zipfian, W/R=30/70

Cache :8G Cache :4G Cache :2G Cache :1G

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

record =
10000

(0.6GB)
(2.4GB for 4)

record =
15000

(0.9GB)
(3.6GB for 4)

record =
20000

(1.22GB)
(4.88GB for

4)

record =
25000

(1.5GB)
(6.0GB for 4)

record =
30000

(1.8GB)
(7.2GB for 4)

N
or

m
ai

lze
d

th
ro

ug
hp

ut

Zipfian, W/R=95/5

Cache :8G Cache :4G Cache :2G Cache :1G

32DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Comparison of other
libraries

• We use a microbenchmark to compare three
libraries: vNVML, PMDK, and SoftWrAP (MSST’15)

• We allocate a 2GB array in NVM, and write certain
amount of data to each 4K page until we have
written all pages in the 2GB NVM array

33DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Results

X-axis stands for the written data of each page; Y-axis is total execution time

Write 2GB NVM array once Write 2GB NVM array 16 times

34DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Conclusions

• The log buffer size does not affect the performance
a lot (less than 10%) when we shrink the size of log
buffer from 2GB to 128MB

• The vNVML can provide over 90% throughput
compared to that of baseline if the NVM cache
system can handle the write traffic well

• The performance between accessed vNVML from
normal processes and from docker container has
no much difference

35DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Acknowledgements

• Thank the generous support from Hewlett Packard
Enterprise and National Science Foundation
through IUCRC (Industry–University Cooperative
Research Centers) Program

36DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Thank You

	Slide Number 1
	Outline
	Introduction
	Introduction
	Challenge
	Motivations
	Motivations
	Our Goals
	Methodology
	Methodology
	Example
	Components
	Components
	Data access flow
	R/W flows
	Log structure
	NVM Cache Management
	Shared files
	Recovery after crashing
	Experiment methodology
	Evaluation
	Results of fixed cache size
	Results of fixed cache size
	Results of fixed cache size
	Results of fixed cache size
	Results of fixed log buffer size
	Results of fixed log buffer size
	Results of fixed log buffer size
	Results of fixed log buffer size
	Results of read only case
	Results of docker container using bind mount
	Comparison of other libraries
	Results
	Conclusions
	Acknowledgements
	Slide Number 36

