
vPFS+: Managing I/O Performance for Diverse
HPC Applications

Ming Zhao
Arizona State University

Yiqi Xu
VMware Inc.

Abstract—High-performance computing (HPC) systems are
increasingly shared by a variety of data- and metadata-intensive
parallel applications. However, existing parallel file systems
employed for HPC storage management are unable to differ-
entiate the I/O requests from concurrent applications and meet
their different performance requirements. Previous work, vPFS,
provided a solution to this problem by virtualizing a parallel file
system and enabling proportional-share bandwidth allocation to
the applications; but it cannot handle the increasingly diverse
applications in today’s HPC environments, including those that
have different sizes of I/Os and those that are metadata-intensive.
This paper presents vPFS+ which builds upon the virtualization
framework provided by vPFS but addresses its limitations in
supporting diverse HPC applications. First, a new proportional-
share I/O scheduler, SFQ(D)+, is created to allow applications
with various I/O sizes and issue rates to share the storage
with good application-level fairness and system-level utilization.
Second, vPFS+ extends the scheduling to also include metadata
I/Os and provides performance isolation to metadata-intensive
applications. vPFS+ is prototyped on PVFS2, a widely used open-
source parallel file system, and evaluated using a comprehensive
set of representative HPC benchmarks and applications (IOR,
NPB BTIO, WRF, and multi-md-test). The results confirm that
the new SFQ(D)+ scheduler can provide significantly better
performance isolation to applications with small, bursty I/Os
than the traditional SFQ(D) scheduler (3.35 times better) and
the native PVFS2 (8.25 times better) while still making efficient
use of the storage. The results also show that vPFS+ can deliver
near-perfect proportional sharing (>95% of the target sharing
ratio) to metadata-intensive applications.

Index Terms—I/O scheduling, parallel storage, performance
management

I. INTRODUCTION

High-performance computing (HPC) systems remain to be
indispensable for solving challenging computational problems
in many disciplines. Such systems deliver high performance
to applications through parallel computing on large numbers
of processors and parallel I/Os on large numbers of storage
devices. Applications are becoming increasingly data intensive
in HPC systems. On one hand, the emergence of “big data” is
fostering a rapidly growing number of data-driven applications
which rely on the processing and analysis of large volumes of
data. On the other hand, as applications employ more proces-
sors to solve larger and/or harder problems, they are forced to
checkpoint more frequently in order to cope with the reduced
mean time to failures. The implication of the proliferation of
data-intensive applications is that I/O performance now plays
a growing, crucial role to HPC systems.

At the same time, HPC applications are increasingly de-
ployed onto shared computing and storage infrastructures.
Similar to the motivations for cloud computing, consolidation
brings significant economical benefits to both HPC users
and providers. For data-intensive HPC applications, hosting
popular data sets (e.g., human genome, weather data, digital
sky survey, Large Hadron Collider experiment data) on shared
infrastructure also allows these massive volumes of data to be
conveniently and efficiently shared by different applications.
Consequently, today’s HPC systems are typically not for
dedicated use by particular applications anymore; they are,
instead, shared by applications with diverse resource demands
and performance requirements.

It is the combination of the above two concurrent trends
that makes resource management, particularly the management
of shared storage resources, an important and challenging
problem to HPC systems. Although the processors of an
HPC system are relatively easy to partition in a space-sharing
manner, the storage bandwidth is difficult to allocate because
it has to be time-shared by applications with varying I/O
demands. Without proper isolation of competing I/Os, an
application’s performance may degrade in unpredictable ways
when under contention.

To address the need of I/O performance management in
HPC systems, previous work studied vPFS, a virtualization-
based approach to parallel file system I/O scheduling [30]. It
employs user-space proxies to transparently interpose parallel
file system I/Os and schedule them on a per-application basis.
It then adopts a proportional-share scheduler, SFQ(D) [14],
to schedule the reads and writes from competing applications
and allow them to share the HPC system’s total I/O bandwidth
in a fair and work-conserving manner. However, vPFS has
two key limitations—it cannot provide good performance
isolation to applications with small I/Os and applications that
are metadata-intensive. These limitations seriously hinder the
support of the increasingly diverse applications. For example,
many applications that access the HPC storage via the POSIX
interface require large numbers of small I/Os, and many
others that work with small files are inherently metadata-
intensive [19].

This paper presents vPFS+, a new solution to provide
I/O performance management to diverse HPC applications. It
builds upon the virtualization framework provided by vPFS,
and addresses the aforementioned limitations. First, vPFS+
employs a new proportional-share I/O scheduler, SFQ(D)+,

which allows applications with various I/O sizes and issue
rates to share the parallel storage with good application-
level fairness and system-level utilization. It recognizes the
limitation of the traditional SFQ(D) scheduler by considering
the different costs of dispatched I/Os when they are processed
by the underlying storage. It further employs a new backfill I/O
scheduling technique to promote the dispatching of small I/Os
and improve the storage utilization. Second, vPFS+ extends
the scheduling to also cover metadata I/Os and optimizes it
according to the characteristics of these operations. As a result,
vPFS+ is able to achieve fair sharing of the entire parallel
storage system’s total data and metadata services for diverse
HPC applications.

The vPFS+ approach can be applied to different parallel file
systems and transparently deployed on existing HPC systems.
A prototype is implemented on PVFS2 [8], an open-source
parallel file system which is used both in production HPC sys-
tems and as a flexible research platform [1], [7], [21], [32]. It
is evaluated using a comprehensive set of representative HPC
benchmarks and applications, including the IOR [17] bench-
mark, BTIO from the NAS Parallel Benchmark suite [29], a
real-world scientific application WRF [28], and a metadata
benchmark multi-md-test from PVFS2 [8]. The results show
that the new SFQ(D+) scheduler can provide significantly
better performance isolation for applications with small, bursty
I/Os (when it is under intensive I/O contention) than the
traditional SFQ(D) scheduler (3.35 times better) and the native
PVFS2 (8.25 times better) while still making efficient use of
the storage (13.81 times better total throughput than a non-
work-conserving scheduler). The results also show that the
new SFQ(D)+ scheduler can achieve near-perfect proportional
sharing for competing metadata-intensive applications (> 95%
of the target sharing ratio). Finally, the overhead of vPFS+ is
small.

The rest of this paper is organized as follows: Section II in-
troduces background and motivations; Section III describes the
SFQ(D)+ scheduler; Section IV discusses metadata schedul-
ing; Section V presents the evaluation; Section VI examines
the related work; and Section VII concludes this paper.

II. BACKGROUND AND MOTIVATIONS

A. Parallel File System based HPC Storage

In a typical HPC system, applications run on the compute
nodes and access their data stored on the storage nodes through
a parallel file system. A parallel file system (e.g., Lustre [18],
GPFS [23], PVFS2 [8], PanFS [27]) consists of clients, data
servers, and metadata servers. The clients run on the compute
nodes (or I/O nodes that perform I/Os on behalf of the compute
nodes) and provide the interface (through POSIX or MPI-IO)
to the parallel file system. Metadata servers are responsible for
managing file naming, data location, and file locking. Data
access typically has to first go through a metadata server
to obtain the appropriate permission and the location on the
corresponding data servers for the requested data. To avoid
the metadata server from becoming a bottleneck, parallel file
systems can distribute metadata management across several

metadata servers. Finally, data servers run on the storage nodes
and are responsible for performing reads and writes on the
locally stored data. Each data request issued by a client is
usually striped across multiple data servers to achieve high
performance by serving the striped requests in parallel on their
storage nodes.

In current HPC systems, the storage infrastructure is con-
sidered opaque by applications: it is shared by all the compute
nodes and it serves applications’ I/O demands in a best-effort
manner. Although it is straightforward to partition the com-
pute nodes (and their processors) among multiple concurrent
applications, the parallel file system storage has to serve the
concurrent I/O requests from all the applications that are
running in the system, which often have distinct I/O access
patterns and performance requirements. However, the parallel
file system based storage is not designed to recognize the
different I/O demands from applications—it sees only generic
I/O requests arriving from the compute nodes. Neither is the
storage system designed to satisfy the different performance
requirements from applications—it is engineered to meet the
maximum throughput target for the entire HPC system.

HPC applications in fact differ greatly in their data access
patterns and storage bandwidth requirements. For example,
mpiBLAST loads a large amount of genome data when it
starts but not much I/O afterwards; WRF [28] generates many
small I/Os for its input, output, and checkpoint data throughout
the run; and S3D produce a large volume of restart files
periodically in order to tolerate failures during its execution.
Applications also have different priorities, e.g., due to different
levels of urgency or business value, which should be reflected
on the scheduling of their I/Os. For example, the execution
of WRF for the forecast of an impending hurricane should
be given the highest priority, but it may not be necessary to
dedicate the entire system to WRF, as the obtainable speedup
often does not scale to the system size. Therefore, applications
with different storage demands and performance requirements
are multiplexed on the shared storage system, which will
become increasingly more common with the continued scale-
up of HPC systems. Hence, per-application allocation of
shared parallel storage service is key to delivering application-
desired performance, which is generally lacking in existing
HPC systems.

B. Virtualization-based Parallel I/O Scheduling

To address the need of I/O performance management
in HPC systems, the previous work, vPFS [30], studied
virtualization-based parallel I/O scheduling. The general strat-
egy taken by vPFS is based on the virtualization princi-
ples, where an indirection layer exposes the parallel file
system interfaces already in use by the storage system for
I/O accesses. This strategy allows applications to time-share
the I/O resources without modifications, while parallel I/O
schedulers are placed upon the indirection layer to provide I/O
performance management. To create this virtualization, vPFS
employs I/O proxies between the shared native parallel file
system clients and servers, which differentiate per-application

Fig. 1: Architecture of virtualization-based parallel file system
(PFS) I/O scheduling

I/Os and enforce their resource allocation. This proxy-based
virtualization approach can be applied transparently to existing
HPC system deployments with a small performance overhead.
It can support different parallel file system protocols as long
as the proxy understands the protocols and handles the I/Os
accordingly.

Specifically in vPFS, the proxies are spawned on every
parallel file system server to broker the applications’ I/Os
across the system, where the requests issued by a parallel
file system client are first processed and queued by a proxy
and later forwarded to the native parallel file system server
according to the scheduling policy (Figure 1). To differen-
tiate the I/Os from different applications, a proxy can use
their source network addresses to identify their ownership,
because HPC systems commonly partition compute nodes
across concurrent applications so each node executes a single
application’s processes. In the case when multiple applications
are run on the same compute node, each application’s I/Os
can be directed to a specific port of the proxy so that its I/Os
can be uniquely identified using the source network address
and port number combination. Each proxy employs a classic
scheduler, SFQ(D) [14], to provide proportional sharing of
the service available from its local data server. vPFS then
provides several efficient global coordination schemes for the
distributed schedulers to cooperate on global I/O scheduling
and allow applications to share the system’s total I/O service
with good fairness and efficiency.

Based on this design, vPFS achieved good results in pro-
viding performance isolation among applications with large,
intensive I/Os, e.g., it can provide near-perfect proportional
bandwidth sharing (within 4% of the target sharing ratio) for
two checkpointing applications [30]. However, it still has two
important limitations. First, vPFS cannot handle applications
with diverse I/O sizes. For example, the execution of WRF
often generates a large number of small I/Os (on average 32KB
in size), which are much smaller than the large checkpointing
I/Os from other applications. When these applications run
together, the application with small I/Os will be impacted
severely as vPFS cannot handle such interference well. Sec-
ond, vPFS does not support the scheduling of metadata I/Os,

which are increasingly important to the performance of mod-
ern HPC applications. In fact, a recent I/O behavior analysis
of multiple production HPC systems shows that 40% of the
studied applications spend more time in metadata operations
than reading/writing data [19]. Hence, the lack of support for
metadata I/O scheduling will compromise the performance
isolation even if the data I/Os can be well handled by vPFS.

To address the above limitations, this paper presents vPFS+
which includes 1) a new I/O scheduler, SFQ(+), to support
applications with diverse I/O sizes, and 2) the new ability to
schedule metadata I/Os and provide performance isolation to
metadata-intensive applications. The rest of the paper presents
the design, implementation, and evaluation of vPFS+ in these
two aspects.

III. SFQ(D)+
A. Limitation of Classic SFQ Schedulers

Proportional sharing of parallel storage bandwidth is impor-
tant to HPC applications because their performance targets are
often specified in terms of turnaround times which depend on
the shares of CPU cycles and I/O bandwidths that the applica-
tions can get from the system. It is relatively straightforward
to allocate CPU shares based on cores and time slices, but it
is non-trivial to allocate I/O bandwidth shares. Proportional-
share I/O schedulers can provide this key missing control knob
in HPC resource management. Proportional resource sharing is
defined as when the total demand is greater than the available
resource, each application should get a share of the resource
proportionally to its assigned weight. In an HPC system, the
weights can be set based on the high-level policies, such
as application priorities, and the proportional-share scheduler
would enforce such policies among the applications that share
the parallel file system’s I/O bandwidth. For example, if two
applications are assigned weights 4 and 1, then their shares
of the system’s I/O bandwidth should be 80% and 20%,
respectively, whenever their combined demand exceeds the
total available bandwidth. Because only the relative values of
the weights matter to the bandwidth allocation, in the paper,
the weight assignment to the applications is specified in terms
of the ratio among the weights.

SFQ is a classic proportional-share scheduler which is com-
putationally efficient and work conserving with theoretically
provable fairness [10]. Because the proposed new scheduler
is based on SFQ, a brief summary of the classic scheduler
is provided here. In essence, SFQ schedules the backlogged
requests from different applications using a priority queue,
where each request’s priority is positively affected by its
application’s weight and negatively affected by its cost (often
estimated based on the size of the request). The scheduler can
dispatch only one outstanding request, and it decides which
one to dispatch based on the virtual start time and finish time
of the requests in its queue. A new request’s start time is
generally assigned based on the same application’s previous
request’s finish time, and its finish time equals to its start
time plus its cost. Therefore, when the scheduler dispatches
the queued requests according to the increasing order of their

start times, each competing application is able to get a fair
share of service on the shared resource. When applications
are assigned different weights (e.g., based on their priorities),
these weights are used to adjust the finish times—the cost of
a request reduces proportionally to its application’s weight—
so that the applications receive service proportionally to their
weights.

The scheduler is work-conserving in that when an applica-
tion does not have enough requests to use up its allocated
share, the scheduler does not wait for the application and
instead immediately dispatches the next request in the queue
with the smallest start time. When this application’s next
request comes, its start time is set to the current global virtual
time—which is always advanced by the scheduler based on
the start time of its last dispatched request—instead of the
application’s previous request’s finish time, so the service that
it did not use due to previous idleness is forfeited.

SFQ(D) [14] is an extension of SFQ designed for pro-
portional sharing of storage resources which are commonly
able to handle multiple outstanding requests concurrently. The
level of concurrency that the shared storage resource supports
is captured by the parameter D in SFQ(D). The scheduler
follows the original SFQ algorithm when assigning timestamps
and dispatching queued requests according to the increasing
order of their start times, but it allows up to D outstanding
I/Os to be serviced concurrently by the underlying storage in
order to take advantage of the available concurrency of the
resource.

The choice of D has implications on both fairness and
resource utilization in a real system. Theoretical bound of
fairness comes from the assumption that all applications have
backlogged requests in the scheduler. However, it is not the
case in reality. On one hand, a larger D allows more concurrent
I/Os and a higher utilization of the storage, but it may hurt
fairness because it allows a more aggressive workload to
dispatch more I/Os while a less aggressive one to lose more
share due to the work-conserving nature of the scheduler. As
the dispatched I/Os are out of the control of the scheduler, they
may also overload the storage and cause significant delays to
the following I/Os from other workloads. On the other hand, a
smaller D gives the scheduler a tighter control on the amount
of I/O service that a more aggressive workload can steal from
others, and allows the less aggressive workloads to establish
backlogged I/Os for the scheduler to choose from when it is
ready to dispatch more. It can thus improve fairness among
the competing workloads but may lead to underutilization of
the storage.

Therefore, it is important to strike a balance between
fairness and utilization with an optimal D under mixed I/O
workloads, which is a challenging problem addressed by this
paper. The inherent limitation of SFQ(D) is that D does not
capture the impact from the size of each I/O. Every dispatched
I/O occupies one out of the D slots, regardless of the size
of the I/O, although a larger I/O generates a higher load
on the storage than a smaller one. This limitation becomes
pronounced when applying SFQ(D) to an HPC parallel storage

Algorithm 1: Dispatching Algorithm of SFQ(D)+
Scheduler with Backfilling

Procedure Dispatch()
// This function is invoked upon

the arrival of a new request or
the completion of a dispatched
request

Output: The I/O requests to be dispatched
IOs to dispatch

1 foreach request r in the scheduler queue do
// The queue is sorted in the

ascending order of the
requests’ start times

// Lsum is the total slot cost
of dispatched requests

// r.L is the slot cost of r
2 if r.L + Lsum ≤ D then
3 IOs to dispatch.add(r)
4 Lsum ← Lsum + r.L
5 end
6 end
7 return IOs to dispatch

system, which has been traditionally oriented to service large,
sequential I/Os (e.g., from checkpointing) but is also seeing
increasingly more small, random I/Os (e.g., from visualiza-
tion) [7], [19]. The proposed new scheduler addresses this
limitation of SFQ(D) and provides fair scheduling of both large
and small parallel I/Os as explained in the rest of this section.

B. Variable Cost I/O Depth Allocation

The proposed new SFQ(D)+ scheduler recognizes the dif-
ferent costs of outstanding requests in the underlying storage
by allocating different number of slots of the total I/O depth to
them based on their slot cost L . Once D is chosen, I/Os of dif-
ferent sizes use different numbers of slots, represented by the
values of L , out of the total D slots that the storage supports,
and the total slot costs from all outstanding I/Os should not
exceed D . The use of the variable slot costs in the algorithm
is described in pseudo code in Algorithm 1. This enhancement
to the original SFQ(D) algorithm can effectively protect small,
low issue rate workloads and provide better fairness when they
are contended by large, intensive workloads. Small I/Os are
less affected by large I/Os when they are dispatched together.
Low issue rate I/Os also wait less for the outstanding large
I/Os to complete. SFQ(D)+ takes control of the contention
among the outstanding I/Os in the underlying storage before
they are dispatched and get out of the hands of the scheduler.
I/Os are differentiated not only by their relative order in the
scheduler’s queue, per the original SFQ(D) algorithm, but also
by their variable slot cost L in the shared storage.

A key question to the application of SFQ(D)+ is how to
determine the variable slot cost L of the requests in terms of
their use of the underlying storage’s I/O depth. It is addressed

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

T
h
ro

u
gh

p
u
t

(M
B

/s
)

Number of Outstanding I/Os

32MB
8MB

2MB
512K

128K
32K

8K
2K

512B

Fig. 2: Throughput models profiled for a data server for
different I/O sizes. Large I/Os ((512KB or larger) saturate the
storage with less than 5 concurrency I/Os, while small I/Os
saturate it with 10 to 15 I/Os.

by profiling the latencies of I/Os of various sizes on the
storage. Because I/Os of the same size often require the
same amount of processing and incur similar latencies in the
storage, they can be considered to have the same slot cost
and their latency can be used to estimate the value of L . This
methodology is consistent with the common use of I/O size as
the estimate of I/O cost for assigning finish tags in classic SFQ.
Note that for storage where read and write requests (of the
same size) incur different costs (e.g., flash storage), different
L values can be used to further differentiate reads and writes.

In order to apply this new SFQ(D)+ algorithm to scheduling
a shared storage resource, there are two key parameters that
need to be determined: first, the D parameter which represents
the number of outstanding I/Os that the storage can handle;
and second, the L parameter which represents the slot cost of
an outstanding I/O. Although in principle these two parameters
need to be determined for each type of I/Os serviced by the
storage, a single D value and a single L value are sufficient to
differentiate the large and small I/Os for a parallel file system,
which can be determined by profiling the storage as discussed
below.

First, the throughput model that captures the relationship be-
tween the I/O throughput and the number of outstanding I/Os
is built to determine the D parameter of the storage system.
The traditional SFQ(D) algorithm [14] also requires profiling
to determine D , but it does not consider the dependence of
this parameter to the I/O sizes. In SFQ(D)+, the profiling
focuses on building a throughput model for small I/Os that the
storage serves, so that the cost of large I/Os can be expressed
as multiple depth slots where each slot represents the cost
of processing a small I/O. In such a throughput model, the
throughput generally increases with the growth of the number
of outstanding I/Os, and flattens out when the storage becomes
saturated. The number of outstanding I/Os that saturates the
storage determines the D parameter for this particular I/O size.

For example, the throughput model of the data server used

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15 20 25 30

L
at

en
cy

 (
m

s)

Outstanding I/Os

32MB
8MB

2MB
512K

128K
32K

8K
2K

512B

 0
 100
 200
 300
 400

 10 11 12 13 14 15

(a) Latency models.

 0

 20

 40

 60

 80

 100

 120

512B 2KB 8KB 32KB 128KB 512KB 2MB 8MB 32MB

L
at

en
cy

 M
od

el
 S

lo
p
e

Latency Model’s I/O Size (si)

(b) The slopes of the latency models from Figure 3a.

Fig. 3: Latency models profiled for a data server for different
I/O sizes.

for this paper’s experimental evaluation is shown in Figure 2.
To confirm that I/Os with different sizes can lead to different
values of the D parameter, the figure shows the throughput
model for different I/O sizes, although in practice only the
throughput model for small I/Os is required to determine D
for SFQ(D)+. The model was created by issuing random I/O
requests directly to the storage while changing the number
of outstanding I/Os. The results demonstrate that the storage
saturates at different points for different I/O sizes. D is
1 for I/Os larger than 512KB, and between 10 to 15 for
I/Os smaller than 512KB. But as discussed above, SFQ(D)+
requires only the D for the small I/Os, and we set it to 14 in
our experimental evaluation (Section V).

Second, the latency model that captures the relationship
between the I/O latency and the number of outstanding I/Os
is built to determine the L parameter of the storage system.
In general, a large I/O spends the majority of its time on data
transfer which grows with the I/O size, whereas a small I/O
spends the majority of its time on request processing which is
relatively independent of the I/O size. Therefore, by comparing
the latency model of different I/O sizes, it is possible to
determine the I/O size that differentiates large I/Os from small

ones and determine the slot cost of large I/Os with respect to
small ones.

Figure 3 shows the latency models for different I/O sizes
from the same profiling experiment discussed above. The
results confirm that the latency models of small I/Os are
similar, whereas the models of large I/Os are quite different.
To make this observation clearer, Figure 3b plots the slopes of
all the latency models from Figure 3a. It further confirms that
the latency slope does not change much for I/O sizes less than
128KB, but it grows proportionally for larger I/O sizes. These
latency profiling results show that 128KB is an appropriate
value from differentiating small I/Os from large ones, where
all I/Os smaller than 128KB can be considered small I/Os and
have the same unit slot cost L = 1. Moreover, the results
also help determine the slot cost of large I/Os. For example,
if the typical large I/Os that the storage serves are 2MB, then
the ratio between the latency of 2MB I/Os vs. the latency of
small I/Os decides the slot cost of large I/Os, which is in this
case 5. It means that when the scheduler dispatches an I/O
smaller than 128KB, it uses only one of the D slots that the
underlying storage has; but to dispatch an I/O of 2MB, it has
to use 5 out of the D slots. Note that although small I/Os
may come with different sizes, large I/Os are often of fixed
size determined by the basic block size that the parallel file
system is configured with. For example, in PVFS2 the parallel
I/Os to data servers are often issued in 256KB data chunks.

As discussed above, the two key parameters, D and L ,
of SFQ(D)+ can be determined using simple profiling exper-
iments which need to be done only once as the throughput
and latency models do not change for a given HPC storage
stack. The above examples assume that reads and writes have
similar I/O costs, but the general approach can also support
storage devices such as SSDs that have asymmetric read/write
performance by profiling the slot costs L of reads and
writes separately. In this way, SFQ(D)+ is able to understand
the actual capacity of the underlying storage for processing
different I/Os and the actual costs of these I/Os, in order to
achieve fair sharing of the storage for I/Os with diverse sizes.

C. Backfill I/O Dispatching

A side effect of variable I/O slot costs is that the request
with the highest priority in the scheduler’s queue may not
be able to be dispatched immediately even when there are
remaining depth slots available but less than the slot cost of
the request. The request can be dispatched only when the other
outstanding I/Os complete and the number of available slots is
restored beyond its slot cost. When there are unoccupied depth
slots, the underlying storage is also underutilized. To make
efficient use of the storage resources and increase the overall
system throughput, SFQ(D)+ employs a new optimization to
dispatch I/Os with backfilling so that small I/Os can enter
the storage before the large I/Os queued ahead of them when
there are idle depth slots available. The use of backfilling in
the algorithm is described in Algorithm 1. This optimization
matches the work-conserving nature of the SFQ family of
schedulers. At the same time, it further promotes the dispatch

of small I/Os and is consistent with the SFQ(D)+ algorithm’s
principle of protecting small I/Os which are vulnerable to the
contention from large I/Os.

Backfilling [15] was originally designed to utilize system
capacity in a batch job scheduler. As jobs are scheduled
based on their order in the queue, the system capacity may
not be fully utilized when the remaining capacity is not
sufficient to run the job that is currently at the head of the
queue. Backfilling allows smaller jobs in the queue that fit the
remaining capacity to be scheduled immediately. Akin to the
backfilling of jobs, the proposed backfilling for I/O scheduling
allows small I/Os to be dispatched before the large ones that
are queued ahead of them in order to fully utilize all the slots
of the underlying storage’s I/O depth.

Specifically, whenever there are free slots available but
they do not fit the I/O that is currently at the head of the
queue, the SFQ(D)+ scheduler searches its queue for a small,
fitting I/O to dispatch instead of waiting for enough free slots
to become available for dispatching the large request at the
head of the queue. Note that when searching for backfill
candidates, the algorithm still follows the start-time order
of the requests in the queue and stops when the available
free slots are used up or there is no queued request that fits
the remaining slots. Therefore, while promoting small I/Os,
the scheduler still maintains fairness among small I/Os from
different applications. Moreover, to prevent small I/Os from
starving the large I/O at the head of the queue, backfilling
stops as soon as the total slot cost of the promoted small I/Os
equals to or exceeds the cost of the large I/O. In this way,
it guarantees that, in the worst case, the large I/O will be
dispatched as soon as all the promoted small I/Os complete.

Overall the proposed backfill I/O dispatching complements
the variable I/O slot cost in SFQ(D)+ and helps applications
with small I/Os mitigate the impact from large, intensive
applications in two key aspects. First, when the depth of the
underlying storage is fully utilized, only the completion of a
large outstanding I/O can warrant the entrance of a similar
large I/O, therefore avoiding the dispatch of too many large
I/Os to hurt the small I/Os. Second, when large I/Os cannot be
dispatched due to the lack of sufficient slots, small I/Os queued
by the scheduler can be dispatched out of order. Therefore,
the combination of these two techniques in the proposed
new SFQ(D)+ scheduler provides the necessary support for
achieving fair scheduling in modern, HPC storage systems
which face mixed workloads with diverse I/O sizes.

IV. METADATA I/O SCHEDULING

The above discussion on the SFQ(D)+ scheduler focused
on the scheduling of data I/Os on a parallel file system.
As the datasets of modern HPC workloads grow, they are
also increasingly metadata-intensive [1], [3], [5], [7], [16],
[19], [21], which warrants considerations for the metadata I/O
performance as well. In fact, it has been observed that the
amount of metadata in a system grows at a faster rate than the
data. Taking WRF, a real-world scientific application as an
example, it entails a variety of intensive metadata operations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Metadata I/O Data I/O
 0

 20

 40

 60

 80

N
u
m

b
er

 o
f
A

cc
es

se
s

(m
il
li
on

)

A
v
er

ag
e

S
iz

e
(K

B
)

Number of Accesses3.11

1.78

Average Size

0.2

63.5

Fig. 4: The comparison between data and metadata I/Os in
terms of the number of I/Os (left y-axis) and the average size
of the I/Os (right y-axis). The statistics were collected from a
WRF run with 64 processes that lasted 10 minutes.

First, for checkpointing, WRF uses a file-per-process, N-to-
N access pattern, in which each process writes to its own
checkpointing file. The creation of and accesses to a large
number of checkpoint files involve substantial metadata opera-
tions, which, if not serviced with the adequate throughput, may
slow down the checkpoint operations and delay the application
progress. Second, for scalable output operations, WRF often
employs a group of dedicated I/O processes (in the I/O quilting
mode) [28] to perform I/Os on a shared output file. These
output files involve a large number of concurrent operations
to the shared metadata, which can also become a bottleneck
if they are not provisioned with fair shares of the metadata
service.

As an example, Figure 4 shows the number of metadata
I/Os versus data I/Os during a typical run of WRF on PVFS2.
A total of 64 MPI processes were spawned to execute WRF
on eight nodes, and they used POSIX to access the parallel
file system (via the mount points) which uses another eight
nodes as both data servers and metadata servers. During the
whole run, metadata requests must accompany data requests
to fulfill the job, and the total number of metadata requests
in fact far exceeds the number of data requests. For example,
the metadata I/Os include many GETATTR requests issued by
the PVFS2 clients for retrieving the attributes of the input,
output, and restart files throughout the run. Each request has
an average size of 176 bytes. Meanwhile, most of the data
I/Os are 512KB or 64KB in size and split into 64KB or 8KB
parallel requests, respectively, across the servers. While this
example is specific to PVFS2, as discussed above, parallel file
systems in general can have intensive metadata I/Os which are
critical to application performance and need to be effectively
scheduled for performance management.

Although modern parallel file systems have adopted various
techniques to improve the scalability of metadata manage-
ment, they are not sufficient to guarantee the performance
for metadata-intensive applications. For example, parallel file

systems can employ distributed metadata servers to share the
metadata load, and there is related work on optimizing the load
balance across the distributed metadata servers [21]. Some
systems start to deploy solid-state storage to hide the latency
increase due to the burstiness of metadata accesses [27].
However, such scalability techniques can only improve the
overall metadata access performance for applications, and
cannot address the performance interference and provide fair
sharing of the metadata servers among competing applications.
In fact, these parallel file systems do not provide any means
to differentiate metadata requests from different applications,
and an application’s metadata access may be slowed down in
unpredictable ways when under contention. Moreover, as an
application’s data I/Os often depend on its metadata I/Os, the
lack of performance isolation on metadata requests can impact
data requests and hurt the fairness of sharing the data servers,
which further aggravates the performance interference caused
by metadata I/O contention.

To solve this problem, vPFS+ also applies the new SFQ(D)+
scheduler to the scheduling of metadata accesses, thereby
providing complete support to fair sharing of key parallel
storage resources, including both data and metadata servers,
and offering comprehensive I/O performance guarantee to
HPC applications. Metadata accesses are similar to small data
requests in size. But different from data requests, the exact
size of the response to a metadata request is not always known
before scheduling (e.g., the total number of objects in a direc-
tory is unknown to the scheduler until the directory contents
are fetched from the server). Nonetheless, the costs of the
generally small metadata accesses are similar on the metadata
servers (e.g., for the readdir request, the contents of a large
directory are often sent in multiple smaller responses), and it is
much more important to measure metadata throughput in terms
of IOPS than MB/s. For example, considering WRF in the
above example, metadata servers receive millions of requests
in a short period with responses all smaller than 200 bytes.
Thus, SFQ(D)+ uses a constant value (10KB) to approximate
each metadata I/O’s cost, which is large enough to cover most
of the metadata I/Os and small enough with respect to 128KB
threshold discussed in Section III-B.

Finally, to support distributed metadata servers that modern
parallel file systems adopt for scalable metadata management,
vPFS+ also extends the virtualization framework that it is
built upon to support distributed scheduling of metadata I/Os
across the metadata servers and ensure applications’ fair-
sharing of the system’s total metadata service, as how it is
done for the distributed scheduling of data I/Os. The amount of
service that each individual metadata server provides may be
unevenly distributed when applications issue different amounts
of requests to their directories and files stored across these
servers. For example, PVFS2 [8] stores a directory object
(usually at a middle level in a directory tree) and all its
underlying metadata objects on a single metadata server. Thus,
a frequently accessed directory can make its corresponding
metadata server a hotspot and cause uneven distribution of
metadata services across the metadata servers.

To achieve total-metadata-service proportional sharing un-
der such scenarios, the vPFS+ schedulers running on the
servers coordinate with one another to exchange their local ser-
vice information, acquire the knowledge of global service dis-
tribution, and adjust their scheduling of local metadata requests
accordingly. The global synchronization schemes proposed for
total-data-service proportional sharing [30] can be adapted
to efficiently coordinate the distributed vPFS+ schedulers on
metadata scheduling. In particular, in the threshold-driven
synchronization scheme, each scheduler synchronizes with the
others only when its locally serviced number of metadata
operations exceeds a predefined threshold. The worst-case
unfairness in the metadata service received by the applications
is therefore bounded by this threshold, and by tuning this
threshold, the tradeoff between synchronization overhead and
service unfairness can be flexibly adjusted based on application
and system needs.

V. EVALUATION

A. Setup

vPFS+ was prototyped on PVFS2 [8] for the experimental
evaluation. PVFS2 is a modern parallel file system implemen-
tation, and has comparable performance to other commonly
used implementations [24]. It has been often used as the
platform for studying various parallel file system problems [1],
[3], [7], [21], [32]. The fundamental techniques (virtualization-
based parallel I/O scheduling) and algorithms (SFQ(D+) in
vPFS+ for managing the performance of parallel file system
I/Os are generally applicable to different parallel file system
implementations.

This evaluation was done on a test-bed consisting of two
clusters, one as compute nodes running a variety of bench-
marks and the other as storage nodes running vPFS+ proxies
and PVFS2 (version 2.8.2) servers. The storage cluster has
eight nodes each with two six-core 2.4GHz AMD Opteron
CPUs, 32GB of RAM, and two 500GB 7.2K SAS disks.
The compute cluster has eight nodes each with two six-core
2.4GHz Intel Xeon CPUs, 24GB of RAM, and two 1TB
7.2K SAS disks. Both clusters are connected to the same
Gigabit Ethernet switch. All the nodes run the Debian 4.3.5-4
Linux with the 2.6.32-5-amd64 kernel and use EXT3 (in the
journaling-data mode) as the local file system.

The evaluation considers four types of benchmarks:

Data-intensive parallel I/O benchmark—IOR (2.10.3) [17],
a typical HPC I/O benchmark, is used to generate parallel I/Os
through MPI-IO. IOR issues large sequential reads or writes to
represent the I/Os from accessing checkpointing files, which
is a major source of I/O traffic in HPC systems. Since there
is no computation involved, IOR generates the most intensive
I/O workloads.

Metadata-intensive parallel I/O benchmarks—multi-md-
test from the PVFS2 suite is used to represent applications
that are metadata intensive. Multi-md-test measures the per-
formance of concurrent parallel metadata operations from
processes that use the POSIX or MPI-IO interface to access

the parallel file system. It simulates a burst of back-to-back
metadata requests issued to parallel file systems with no
computation in between.

Scientific application benchmark—BTIO (Block Tri-
diagonal solver with I/O subtypes) benchmark from the NASA
Parallel Benchmark (NPB) suite (MPI version 3.3.1) [29] is
used to represent a typical scientific application with inter-
leaved intensive computation and I/O phases. The problem
solving algorithm and its implementation in BTIO make it a
good benchmark for parallel I/Os [29]. This paper considers
the different I/O access patterns (Class A and Class C) of
BTIO. Class A generates 400MB of data and Class C generates
6817MB. Class A uses simple subtype and Class C uses full
subtype of BTIO. The former does not use collective buffering
and as a result involves a large number of small I/Os. The
latter uses MPI-IO with collective buffering which aggregates
and rearranges data on a subset of the participating processes
before writing it out.

Real-world scientific application—WRF [28] version 3.3,
a weather forecast and modeling application widely used
for weather research. WRF uses MPI to coordinate parallel
computing while using POSIX I/Os for data accesses to the
parallel file system mounted on the compute nodes. It is
compiled using the dmpar configuration (distributed memory
option (MPI)), and run with the em quarter ss test case. This
test case produces a simulation of a supercell thunderstorm.
The environmental wind makes a “quarter circle” when plotted
on a hodograph, and is commonly referred to as “quarter
circle shear”. In general, WRF simulates and forecasts weather
conditions based on models.

All WRF test cases share the same I/O pattern: WRF
sequentially reads input, and sequentially writes output and
checkpoint data periodically during the mass calculation for
each granular time unit calculated and forecasted. Although
the evaluation here focuses on one specific case, it is repre-
sentative of the common I/O patterns of all WRF cases and
the results are thus useful to WRF users in general. In this
setup, WRF starts with about 50MB of input data, and for
every forecast minute during the storm’s progress, writes to
an output file shared by all processes and restart files owned
by individual processes. The entire execution generates a total
of 70GB of restart files (from 64 processes) and 7GB of final
output file. Input, output, and restart files are all stored using
NetCDF3 [22], a commonly used scientific data format. The
average I/O size is around 32KB on each data server. Note that
the choice of data format for WRF will not change the relative
comparison between vPFS+ and the native parallel file system,
because the management of data and metadata I/O contention
is always needed regardless of the data format used.

Based on the profiling results discussed in Section III-B,
the parameter D (the total number of slots that the storage
supports) for SFQ(D) and SFQ(D)+ is set to 14, and the
parameter Llarge (a large I/O’s slot cost) for SFQ(D)+ is set

 0

 20

 40

 60

Class A
Simple Subtype

Class C
Full Subtype

T
h
ro

u
gh

p
u
t

(M
B

/s
)

Standalone

100%

100%

BTIO w/ IOR Native

8%

32%

BTIO w/ IOR Virtual (SFQ(D))

17%

72%

BTIO w/ IOR Virtual (Non-work-conserving SFQ(D))

93%

99%

BTIO w/ IOR Virtual (SFQ(D+))

74%

77%

Fig. 5: BTIO’s I/O throughput under different configurations.
The performance relative to the standalone case is shown on
top of the bars.

to 5, unless otherwise noted1.

B. BTIO vs. IOR

The first experiment demonstrates how vPFS+ provides
performance isolation to applications with small I/Os when
under contention from others with intensive, large I/Os on a
shared parallel storage system. BTIO is used to model typical
HPC applications with interleaved computation and I/Os, and
IOR is used to model I/O-intensive HPC workloads (e.g., from
checkpointing). BTIO and IOR each have 64 MPI processes
running on a separate set of four compute nodes while sharing
the eight I/O nodes.

Two types of BTIO workloads are considered in this ex-
periment: Class C (writing and reading 6817MB of data)
with full subtype (using collective buffering) and Class A
(writing and reading 400MB of data) with simple subtype
(without collective buffering). A major difference between
these two types is that the former issues I/O requests of 4MB
to 16MB in size, whereas the latter issues I/Os of 320B in
size. Therefore, this experiment can provide a good evaluation
of how effectively vPFS+ provides performance isolation to
applications with different I/O sizes when under contention
from intensive I/Os (continuous 32MB writes from IOR). The
goal of the experiment is to minimize the performance impact
to BTIO while allowing the competing IOR to fully utilize the
unused bandwidth, which is challenging to achieve. The focus
is on the performance isolation for BTIO because it is much
more vulnerable to the I/O contention due to its much smaller
I/Os and lower issue rate, compared to IOR.

Figures 5 and 6 show the I/O throughput and total runtime,
respectively, of BTIO under different configurations. When
there is no bandwidth management (BTIO w/ IOR, Native),
BTIO’s I/O throughput is reduced by 92.5% in Class A, and
68.4% in Class C, compared to its standalone throughput

1Setting D to multiples of Llarge (e.g., D=10 or 15) will not starve small
I/Os in SFQ(D)+. As soon as one large I/O completes, the five slots that it
frees up can be used to service backlogged small I/Os

 0

 150

 300

 450

 600

Class A
Simple Subtype

Class C
Full Subtype

B
T

IO
 R

u
n
ti

m
e

(s
)

T
h
in

k
 T

im
e(

b
el

ow
)+

I/
O

 T
im

e(
ab

ov
e)

Standalone

100%

100%

BTIO w/ IOR Native

329%

176%

BTIO w/ IOR Virtual (SFQ(D))

253%

120%

BTIO w/ IOR Virtual (Non-work-conserving SFQ(D))

102%

102%

BTIO w/ IOR Virtual (SFQ(D)+)

120%

120%

Fig. 6: BTIO’s total runtime under different configurations. In
each bar, the upper part indicates the amount of I/O Time,
and the lower part indicates the amount of Think Time. The
performance relative to the standalone case is shown on top
of the bars.

(Standalone). Consequently, BTIO’s runtime is increased by
228.8% in Class A, and 75% in Class C. When vPFS+ em-
ploys the traditional SFQ(D) scheduler (BTIO w/ IOR, Virtual
(SFQ(D))), it reduces the slowdown to 153.3% for Class A
and 20.3% for Class C, as the throughput is restored to 16.8%
and 72.1%, respectively, of the Standalone case. As discussed
in Section III, the lack of differentiation between large and
small I/Os in the traditional SFQ(D) when considering the
dispatch of D requests puts BTIO at an unfair disadvantage.
It is also noticeable that Class A’s performance is much more
challenging to restore than Class C, because of its use of much
smaller I/Os which are more sensitive to the interference from
IOR’s large I/Os.

A non-work-conserving scheduler which strictly throttles
an application’s bandwidth usage based on its allocation can
completely shield BTIO from the impact of I/O contention,
but at the cost of poor resource utilization. Specifically,
such a scheduler can put the competing application’s I/Os
temporarily on hold when its completed I/O service exceeds
its given bandwidth cap. When running under this non-work-
conserving scheduler (BTIO w/ IOR, Non-work-conserving
SFQ(D)), BTIO can achieve the same level of performance
as when it runs alone. Although the non-work-conserving
scheduler can provide performance isolation to BTIO, it is not
desirable for a shared system because IOR cannot make use
of BTIO’s spare bandwidth to make progress and the system
can be severely underutilized when BTIO’s demand is low.

In comparison, the new SFQ(D)+ scheduler is designed
to protect small I/Os while still being work-conserving. The
result (BTIO w/ IOR, SFQ(D)+) in Figure 6 shows that for
Class A, SFQ(D)+ can restore BTIO’s runtime to 120% of its
standalone case, which is 219% better than traditional SFQ(D),

and only 18% worse than the non-work-conserving scheduler.
For Class C, SFQ(D)+ cannot achieve more improvement than
SFQ(D) because Class C issues I/Os of the same average size
as IOR and SFQ(D)+ thus reduces to SFQ(D).

SFQ(D)+ cannot completely restore BTIO’s performance as
the non-work-conserving scheduler does, because of BTIO’s
bursty I/Os with low issue rate. Considering one of the 64
BTIO processes, after the initial file creation, the process
interleaves four seconds of writes and six seconds of com-
putation for 40 iterations in the first output phase. Then in the
verification phase, it repeats three seconds of reads and one
second of verification for 40 iterations. In addition, each BTIO
process issues only one outstanding I/O. Therefore, BTIO’s
I/O issue rate is much lower compared to IOR which issues
I/Os continuously. Since SFQ(D)+ is work-conserving, spare
bandwidth from BTIO has to be yielded to IOR. But when a
BTIO process’ I/O arrives, it has to wait for the outstanding
I/Os of IOR to complete before it can be dispatched. In
comparison, the non-work-conserving scheduler would not
dispatch any I/O from IOR until BTIO uses up its fair share
of the bandwidth.

However, SFQ(D)+ achieves a better balance between re-
source utilization and performance isolation. When it restores
BTIO Class A’s performance to 120% of its standalone case,
it slows down IOR by only 56% (from 597MB/s to 262MB/s).
In comparison, the non-work-conserving scheduler improves
BTIO by 20% but has to slow down IOR by up to 99%
(from 597MB/s to 0.69MB/s). Overall, SFQ(D)+ achieves
13.81 times better total throughput and resource utilization.
Moreover, compared to the traditional SFQ(D), SFQ(D)+
achieves 3.35 times better performance for BTIO with only
10.6% reduction in total throughput. Hence, SFQ(D)+ provides
excellent performance isolation for a small I/O application
while still making efficient use of the shared storage band-
width.

C. WRF vs. IOR

The second experiment continues to evaluate vPFS+’s sup-
port of performance isolation using WRF, a real-world scien-
tific application. WRF reads input at the beginning of each
computation iteration and writes checkpointing data (contain-
ing dumps of all variables in the model at a certain forecast
time) and output data (containing the final forecast variables
of the model simulation) periodically. In the experiment, it
is run using 64 parallel processes, each issuing reads and
writes of sizes between 128KB and 512KB. IOR is used
again to create contention using 64 parallel MPI processes
each issuing large (8MB) writes. The two applications are
run on separate compute nodes but sharing all the eight data
nodes. Similarly to the previous experiment, the goal here is
to protect the performance of WRF from the I/O contention
caused by IOR. But, compared with BTIO, it is even more
challenging to provide performance isolation to WRF, because
it accesses the parallel file system through the POSIX interface
which generates all small I/Os and a large volume of intensive
metadata accesses (Figure 4).

 0

 20

 40

 60

 80

 100

W
R

F
 R

u
n
ti

m
e

(m
in

)

Standalone

100%

WRF w/ IOR Native

682%

WRF w/ IOR Virtual (SFQ(D),1:1)

328%

WRF w/ IOR Virtual (SFQ(D),4:1)

324%

WRF w/ IOR Virtual (SFQ(D),16:1)

280%

WRF w/ IOR Virtual (SFQ(D)+,1:1)

179%

Fig. 7: WRF’s runtime under different configurations. The
performance relative to the standalone case is shown on top
of the bars.

As shown in Figure 7, when contended by IOR, the runtime
of WRF is increased by 582% (WRF w/ IOR Native). With
the SFQ(D) scheduler, vPFS+ can reduce the runtime increase
to 180% at best when using a high sharing ratio of 16:1 to
favor WRF. In comparison, the new SFQ(D)+ scheduler allows
vPFS+ to reduce the slowdown to 79% of the standalone
runtime while using a fair 1:1 sharing ratio. This improvement
is from the use of variable slot cost to capture large I/Os’
actual processing cost in the underlying storage and the use of
backfilling to allow small I/Os to be promoted whenever there
is free bandwidth available. For WRF, these techniques benefit
both its data and metadata I/Os when they are scheduled on
the eight PVFS2 nodes which serve as both data and metadata
servers. Overall SFQ(D)+ allows WRF to run up to 81% and
281% faster than SFQ(D) and the native case, respectively.

This experiment is also used to evaluate the impact of the
L parameter—the slot cost of large I/Os—in the proposed
SFQ(D)+ scheduler. Figure 8 shows the throughput of IOR and
WRF as well as their combined throughput with different L
settings. When L is too small, the scheduler underestimates
the cost of large I/Os, and it reduces to the traditional SFQ(D)
which considers large I/Os as expensive as small I/Os when
making dispatching decisions. The throughput of WRF is
thus substantially reduced, whereas IOR does not gain much
because it can already saturate the storage. When L is set
too large, the scheduler overestimates the cost of large I/Os,
and behaves more like the non-work-conserving scheduler
(discussed in Section V-B) where the share allocated to WRF
is left idle when WRF cannot fully utilize it. Consequently, the
throughput of IOR drops substantially, but WRF cannot gain
much due to its low I/O rate, so the combined throughput drops
severely too. The experiment shows that adjusting the L value
can balance performance isolation and resource utilization.
It also confirms that the choice of L = 5 based on the
profiling results is indeed optimal as it provides the best

 0

 50

 100

 150

 200

 250

 300

1 2 5 9

T
h
ro

u
gh

p
u
t

(M
B

/s
)

Slot Cost L

IOR
WRF
Total

Fig. 8: The throughput of WRF and IOR as well as their
combined throughput from SFQ(D)+ with different L settings
for estimating the slot cost of IOR’s large I/Os. When L = 1,
SFQ(D)+ reduces to SFQ(D). When L = 9, SFQ(D)+
becomes the least work-conserving.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

 0.2

 0.4

 0.6

 0.8

 1

T
h
ro

u
gh

p
u
t

(K
 I

O
P

S
) J

ai
n
’s

F
ai

rn
es

s
In

d
ex

Time (s)

Jain’s Fairness Index
App1 IOPS
App2 IOPS

Fig. 9: The metadata I/O throughput of two competing multi-
md-test instances (left y-axis) and the Jain’s Fairness Index
(right y-axis) from a metadata server shared by the two
applications.

tradeoff between fairly treating small I/Os vs. large I/Os and
fully utilizing the storage bandwidth. Specifically, SFQ(D)+
performs at least 281% better than the non-work-conserving
scheduler and 25% better than the traditional SFQ(D) in terms
of total system throughput.

D. Metadata Scheduling

The third experiment evaluates vPFS+’s ability of schedul-
ing metadata I/Os and proportionally sharing the parallel file
system’s metadata service. Multi-md-test from the PVFS2
suite is used to represent a metadata-intensive application.
The PVFS2 setup is configured with distributed metadata
servers, where each storage node runs both the data server and
metadata server. Two instances of the multi-md-test bench-
marks (App1 and App2) were used, each with 64 parallel

processes, to share the eight data/metadata servers. The as-
signed weights for App1 and App2 are 2:1. Multi-md-test
accesses the mounted parallel file system using the POSIX
interface, and the PVFS2 clients on the compute nodes convert
the POSIX requests to the PVFS2 requests and send them
to the distributed servers. Its execution follows the phases of
mktestdir, create, write, readdir, read, close,
rm, and rmtestdir. The write and read phases involve
writing and reading of 400MB data to a file per process.

Figure 9 shows the metadata I/O throughput of the two
applications on one of the metadata servers on the left y-
axis and Jain’s Fairness Index over time on the right y-axis.
(The results on the other metadata servers are similar and
omitted here.) The throughput data shows two sets of spikes,
which represent the high IOPS of the readdir phase for
both applications, where App1’s progress is roughly twice as
fast as App2. During the first 160 seconds of the experiment,
both applications are performing mktestdir and create
operations, but App1 gets twice the amount of metadata IOPS
as App2, which matches their given weights of 2:1. The
second overlapped period is from 350 second to 550 second,
during which App1 is performing rm and rmtestdir while
App2 is performing readdir and read. Note that the read
phase also involves metadata accesses, because a getattr
request is often issued before a read according to the PVFS2
protocol. During this overlapped period, the metadata accesses
from the two applications also follow the given 2:1 ratio.

Jain’s fairness index [13] is a commonly used metric for
evaluating the fairness in resource sharing. It is defined as(∑n

i=1
Ti

Wi

)2/(
n
∑n

i=1

(
Ti

Wi

)2)
where Ti and Wi are the throughput and weight, respectively,
of Application i in the system. The range of the fairness index
is [0, 1] where a larger index value indicates better fairness.

The results in Figure 9 show that vPFS+ achieves excellent
fairness (above 0.95 on average in Jain’s fairness index)
throughout the experiment, despite the fluctuations in total
system throughput as the two competing applications execute
in different phases dynamically. There are two periods when
one of the two applications is in the write phase (160s-
260s for App1, 300s-360s for App2) and does not issue any
metadata request. During these periods, the Fairness Index
drops to close to 0.5 only because vPFS+’s work-conserving
SFQ(D)+ scheduler allows the application that is more active
in metadata I/Os to take away the spare bandwidth from
the other and make efficient use of the metadata servers’
processing capacity.

E. Overhead

The last experiment studies the performance overhead of
vPFS+. Previously reported results [30] have shown that
the proxy-based virtualization and scheduling of parallel file
system data I/Os has only a small overhead (up to 1%
for READ throughput and 3% for WRITE throughput w.r.t.
native PVFS2). Therefore, the evaluation here focuses on
the overhead of virtualizing and scheduling metadata I/Os in

1

10

100

1k

10k

100k

1 mil

mkdir create readdir close rm rmdir

T
h
ro

u
gh

p
u
t

(I
O

P
S
)

Native (POSIX)
Virtual (POSIX)
Native (PVFS2)
Virtual (PVFS2)

Fig. 10: The overhead of vPFS+ for a metadata-intensive
application.

TABLE I: The development cost of vPFS+, estimated by
the total number of lines of code (LOC) for the different
components of vPFS+

Framework LOC Components LOC

Virtualization 1,695
Interface 694

TCP 397
PVFS2 601

Scheduler
3,502

Interface 735
SFQ(D) 552

SFQ(D)+ 987
Two-Level 1228

Total 5197

vPFS+. A set of eight nodes is used to run a total of 128 multi-
md-test processes, each issuing 60K metadata operations, and
another set of eight nodes is employed as the PVFS2 metadata
servers. Figure 10 shows the benchmark’s total throughput
of metadata operations from vPFS+ (Virtual) vs. the native
PVFS2 (Native). Two different configurations of the bench-
mark are considered: one issues metadata operations through
the POSIX interface (POSIX) and the other through the PVFS2
interface (PVFS2) directly. The former configuration has a
lower throughput because metadata operations have to go
through additional layers (Linux virtual file system) to reach
the parallel file system. The memory caches on the servers are
warmed up before the tests in order to maximize the metadata
I/O rate and reveal the worst-case overhead of vPFS+. Overall
the overhead is less than 3% when using the PVFS2 API and
less than 5% when using POSIX. Note that the PVFS2 API
does not provide the close call, and the POSIX API does
not offer readdir_stat and readdir_plus, which are
omitted in the figure.

F. Cost of Implementation

Finally, vPFS+ is designed as a framework that allows var-
ious I/O schedulers to be developed in a modularized fashion
and flexibly plugged in for parallel file systems. To evaluate the
development effort, Table I summarizes the code complexity

of vPFS+. The total number of lines of C code currently in
the prototype sums up to 5, 197, including the support for
TCP interconnect, PVFS2 parallel file system, and three types
of schedulers. To break it down, the virtualization framework
requires 1,695 lines of code and the scheduling framework
uses 3,502 lines of code. The generic interfaces exposed by
these frameworks allow different network transports, parallel
file systems, and scheduling algorithms to be incorporated
into vPFS+. Specifically, the support for TCP and PVFS2
protocols each costs less than 1,000 lines of code. Different
schedulers use from 500 to 1,300 lines of code depending
on their complexity. For example, the most complex one is
an experimental two-level scheduler [31] that supports both
throughput and latency driven I/O scheduling, and it requires
1,228 lines of code.

VI. RELATED WORK

Storage resource management has been studied in related
work in order to service competing I/O workloads and meet
their desired throughput and latency goals. Such management
can be embedded in the shared storage resource’s internal
scheduler (Cello [25], YFQ [6], PVFS [8]), which has direct
control over the resource but requires the internal scheduler
to be accessible and modifiable. The management can also
be implemented via virtualization by interposing a layer be-
tween clients and their shared storage resources (SLEDS [9],
SFQ(D) [14], GVFS [33]). This approach does not need any
knowledge of the storage resource’s internals or any changes
to its implementation. vPFS+ follows this approach in order to
support existing HPC setups and diverse parallel file systems.
Although this virtualization approach has been studied for
several storage systems, vPFS+ embodies new designs that
address the unique challenges in parallel storage systems for
servicing diverse applications.

The majority of storage resource schedulers in the literature
focuses on the allocation of a single storage resource (e.g., a
storage server, device, or a cluster of interchangeable stor-
age resources) and addresses the local throughput or latency
objectives. LexAS [11] was proposed for fair bandwidth
scheduling on a storage system with parallel disks, but I/Os
are not striped and the scheduling is done with a centralized
controller. U-Shape [32] is a related project that tries to achieve
application-desired performance by first profiling the applica-
tion’s instantaneous throughput demands and then at runtime
scheduling the application’s I/Os according to the predicted
demands. However, it does not address the often unpredictable
contentions in a real-world HPC system where applications
with complex behaviors compete on the shared parallel storage
system in a convolved manner. In comparison, vPFS+ provides
proportional sharing of the data and metadata services for
diverse applications without assuming a priori knowledge of
the applications. DSFQ [26] is a distributed algorithm that
can realize total service proportional sharing of distributed
storage resources. But it faces challenges in efficient global
scheduling when applied to an HPC parallel storage system,

which are addressed by vPFS+ and the distributed scheduling
framework that it is built upon [30].

vPFS+ leverages the authors’ previous work [30] to provide
transparent and efficient distributed scheduling of parallel file
system I/Os. But as discussed in Section II, it addresses
the two major limitations of the previous work in order to
support applications with small I/Os and applications that are
metadata-intensive. These are non-trivial contributions and are
important to today’s increasingly diverse HPC environments,
as confirmed by a multi-year study of the I/O behaviors from
multiple production HPC systems [19].

Recognizing the importance of metadata management, HPC
researchers proposed various solutions to improve metadata
access performance. OrangeFS [20] and Giga+ [21] studied
directory distribution for highly scalable parallel file systems.
Arteaga et al. proposed parallel file system delegation tech-
niques to offload the management of parallel storage space to
applications, relieving the metadata management bottleneck at
the parallel file system [3]. Others considered techniques to
improve metadata access efficiency in PVFS by precreating
objects and batching requests [7], and studied the use of SSD-
based buffers for accelerating metadata accesses [27]. These
solutions are complementary to vPFS+ in that vPFS+ can
benefit from the metadata performance enhancements made
by these related solutions while providing the missing control
knob for sharing of the metadata service in a fair and efficient
manner.

There are related works that also adopt the approach of
adding a layer upon an existing parallel file system deployment
in order to extend its functionality or improve its performance
(pNFS [12], PLFS [4]). These efforts do not address the fair
sharing of a parallel file system by concurrent applications and
are hence also complementary to this paper’s solution.

Finally, the problem of handling diverse I/O workloads has
also been studied for other types of systems such as cloud
computing systems. MOS [2] is a solution for supporting
different types of applications on a cloud object store. vPFS+
complements this related work in that it can be employed by
MOS as a low-level I/O scheduler for handling object I/Os of
different sizes and further improving its performance isolation
and resource efficiency.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a new solution, vPFS+, to parallel
storage management in HPC systems. Today’s parallel storage
systems are unable to recognize applications’ different I/O
workloads and unable to satisfy their different I/O performance
requirements. This problem is aggravated by the increasing
diverse HPC applications with different I/O sizes and intensive
data and metadata accesses. vPFS+ addresses this problem
based on a parallel file system virtualization framework which
allows file system I/Os to be transparently intercepted and
differentiated by applications. A new proportional sharing I/O
scheduler, SFQ(D)+, is proposed to allow applications with
various I/O sizes and issue rates to share the storage with
good application-level fairness and system-level utilization.

SFQ(D)+ improves over SFQ(D) by taking into account the
different I/O depth costs when dispatching small vs. large I/Os,
thereby achieving better fairness among diverse workloads.
Moreover, the scheduling is extended to support metadata I/Os
and to provide performance isolation to metadata-intensive
applications. A comprehensive evaluation of vPFS+ using both
intensive benchmarks and realistic applications shows that it
is able to deliver both high performance and good isolation to
diverse HPC applications.

The future work will consider other HPC storage manage-
ment objectives upon the vPFS+ framework, and extend it
beyond proportional bandwidth sharing. In particular, it will
consider deadline-driven I/O scheduling to support new HPC
applications that are increasingly latency-sensitive. The initial
investigation on a two-level I/O scheduler that supports both
throughput- and latency-driven parallel I/O scheduling has
shown promising results [31]. Moreover, with the emergence
of solid-state storage and its adoption in HPC systems, future
work will also study the holistic management of SSD and
HDD storage resources upon vPFS+.

VIII. ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their helpful
comments. This research is sponsored by National Science
Foundation CAREER award CNS-1619653 and grants CNS-
1562837, CNS-1629888, CMMI-1610282, and IIS-1633381.

REFERENCES

[1] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzel-
loni. Parallel I/O and the metadata wall. In Proceedings of the Sixth
Workshop on Parallel Data Storage (PDSW), pages 13–18, New York,
NY, USA, 2011. ACM.

[2] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt. MOS: Workload-
aware elasticity for cloud object stores. In Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed
Computing, pages 177–188. ACM, 2016.

[3] D. Arteaga and M. Zhao. Towards scalable application checkpointing
with parallel file system delegation. In Proceedings of 6th IEEE In-
ternational Conference on Networking, Architecture and Storage (NAS),
pages 130–139. IEEE, 2011.

[4] J. Bent, H. Chen, D. Gunter, G. Grider, S. Gutierrez, A. Manzanares,
B. McClelland, D. Montoya, J. Nunez, A. Torrez, M. Wingate, G. Gib-
son, M. Polte, and P. Nowoczinski. PLFS update. High End Computing
and File System I/O Workshop, 2010.

[5] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland,
A. Torres, and A. Torrez. Storage challenges at Los Alamos National
Lab. In Proceedings of IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–5, 2012.

[6] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz. Disk
scheduling with quality of service guarantees. In Proceedings of the
IEEE International Conference on Multimedia Computing and Systems
(ICMCS), Washington, DC, USA, 1999. IEEE Computer Society.

[7] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig.
Small-file access in parallel file systems. In Proceedings of the 2009
IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pages 1–11, Washington, DC, USA, 2009. IEEE Computer
Society.

[8] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur. PVFS: a
parallel file system for Linux clusters. In Proceedings of the 4th annual
Linux Showcase & Conference (ALS), pages 28–28, Berkeley, CA, USA,
2000. USENIX Association.

[9] D. Chambliss, G. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon, and
T. Lee. Performance virtualization for large-scale storage systems. In
Proceedings of the 22nd International Symposium on Reliable Dis-
tributed Systems, pages 109 – 118, Oct. 2003.

[10] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: a
scheduling algorithm for integrated services packet switching networks.
IEEE/ACM Transactions on Networking, 5(5):690–704, Oct. 1997.

[11] A. Gulati and P. Varman. Lexicographic QoS scheduling for parallel
I/O. In Proceedings of the seventeenth annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 29–38, New
York, NY, USA, 2005. ACM.

[12] D. Hildebrand and P. Honeyman. Exporting storage systems in a
scalable manner with pNFS. In Proceedings of the 22nd IEEE/13th
NASA Goddard Conference on Mass Storage Systems and Technologies
(MSST), pages 18–27, Washington, DC, USA, 2005. IEEE Computer
Society.

[13] K. R. Jain, W. D.-M. Chiu, and R. W. Hawe. A quantitative measure
of fairness and discrimination of resource allocation in shared computer
system. In DEC Research Report TR-301, 66 Reed Road, Hudson,
MA 01749, USA, 1984. Eastern Research Lab, Digital Equipment
Corporation.

[14] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional sharing
for a storage service utility. In Proceedings of the joint Interna-
tional Conference on Measurement and Modeling of Computer systems
(SIGMETRICS’04/Performance’04), pages 37–48, New York, NY, USA,
2004. ACM.

[15] J. P. Jones and B. Nitzberg. Scheduling for parallel supercom-
puting: A historical perspective of achievable utilization. In Pro-
ceedings of the Job Scheduling Strategies for Parallel Processing
(IPPS/SPDP’99/JSSPP’99), pages 1–16, London, UK, UK, 1999.
Springer-Verlag.

[16] S. N. Jones, C. R. Strong, A. Parker-Wood, A. Holloway, and D. D. E.
Long. Easing the burdens of HPC file management. In Proceedings
of the Sixth Workshop on Parallel Data Storage (PDSW), pages 25–30,
New York, NY, USA, 2011. ACM.

[17] R. Klundt. Parallel File System Benchmark. http://sourceforge.net/
projects/ior-sio/, 2010.

[18] P. Koutoupis. The Lustre distributed filesystem. Linux Journal,
2011(210), Oct. 2011.

[19] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao. A multiplatform study of I/O behavior on petascale
supercomputers. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), pages
33–44, New York, NY, USA, 2015. ACM.

[20] M. Moore, D. Bonnie, W. Ligon, N. Mills, S. Yang, B. Ligon, M. Mar-
shall, E. Quarles, S. Sampson, and B. Wilson. OrangeFS: Advancing
PVFS. In Work-in-progress of the 9th USENIX Conference on File
and Storage Technologies (FAST), Berkeley, CA, USA, 2011. USENIX
Association.

[21] S. Patil and G. Gibson. Scale and concurrency of GIGA+: File system
directories with millions of files. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies (FAST), pages 13–13,
Berkeley, CA, USA, 2011. USENIX Association.

[22] R. Rew and G. Davis. NetCDF: an interface for scientific data access.
IEEE Computer Graphics and Applications, 10(4):76–82, July 1990.

[23] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large
computing clusters. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies (FAST), Berkeley, CA, USA, 2002.
USENIX Association.

[24] Z. Sebepou, K. Magoutis, M. Marazakis, and A. Bilas. A comparative
experimental study of parallel file systems for large-scale data process-
ing. In First USENIX Workshop on Large-Scale Computing (LASCO),
pages 5:1–5:10, Berkeley, CA, USA, 2008. USENIX Association.

[25] P. J. Shenoy and H. M. Vin. Cello: a disk scheduling framework for next
generation operating systems. In Proceedings of the 1998 ACM SIGMET-
RICS Joint International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’98/PERFORMANCE’98), pages 44–
55, New York, NY, USA, 1998. ACM.

[26] Y. Wang and A. Merchant. Proportional-share scheduling for distributed
storage systems. In Proceedings of the 5th USENIX Conference on File
and Storage Technologies (FAST), pages 4–4, Berkeley, CA, USA, 2007.
USENIX Association.

[27] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. Scalable performance of the Panasas parallel
file system. In Proceedings of the 6th USENIX Conference on File
and Storage Technologies (FAST), pages 2:1–2:17, Berkeley, CA, USA,
2008. USENIX Association.

[28] P. T. Welsh and P. Bogenschutz. Weather research and forecast model:
Precipitation prognostics from the WRF model during recent tropical
cyclones. In Proceedings of Interdepartmental Hurricane Conference,
2005.

[29] P. Wong and R. F. V. der Wijngaart. NAS parallel benchmarks I/O
version 2.4. In NAS Technical Report NAS-03-002, Moffett Field,
CA 94035-1000, USA, 2003. Computer Sciences Corporation, NASA
Advanced Supercomputing (NAS) Division, NASA Ames Research
Center.

[30] Y. Xu, D. Arteaga, M. Zhao, Y. Liu, R. Figueiredo, and S. Seelam. vPFS:
Bandwidth virtualization of parallel storage systems. In Proceedings of
the IEEE 28th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1 –12, april 2012.

[31] Y. Xu and M. Zhao. Two-level throughput and latency IO control for
parallel file systems. In Proceedings of the 8th International Workshop
on Feedback Computing, Berkeley, CA, 2013. USENIX.

[32] X. Zhang, K. Davis, and S. Jiang. QoS support for end users of I/O-
intensive applications using shared storage systems. In Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 18:1–18:12, New York,
NY, USA, 2011. ACM.

[33] M. Zhao, J. Zhang, and R. J. Figueiredo. Distributed file system virtual-
ization techniques supporting on-demand virtual machine environments
for grid computing. Cluster Computing, 9(1):45–56, Jan. 2006.

http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/

	Introduction
	Background and Motivations
	Parallel File System based HPC Storage
	Virtualization-based Parallel I/O Scheduling

	SFQ(D)+
	Limitation of Classic SFQ Schedulers
	Variable Cost I/O Depth Allocation
	Backfill I/O Dispatching

	Metadata I/O Scheduling
	Evaluation
	Setup
	BTIO vs. IOR
	WRF vs. IOR
	Metadata Scheduling
	Overhead
	Cost of Implementation

	Related Work
	Conclusions and Future Work
	Acknowledgement
	References

