vPFS+: Managing I/O Performance for Diverse HPC Applications

Ming Zhao, Arizona State University Yiqi Xu, VMware

http://visa.lab.asu.edu

Background: HPC I/O Management

- Increasing diverse HPC applications on shared storage
 - Different I/O rates, sizes, and data/metadata intensities
- Lack of I/O QoS differentiation

Mismatch!

Parallel file systems treat all I/Os equally

Background: vPFS

- Proxy-based interposition of application data requests
 - Transparent to applications, support different setups
- Proportional I/O bandwidth scheduling using SFQ(D)
 - Work conserving, strong fairness
 Limitations?

Limitations

- Lack of isolation between large and small workloads
- SFQ (D): start-time fair queueing with I/O depth D
 - Start times capture each flow's service usage
 - Dispatch requests in the increasing order of their start times
 - o D captures the available I/O parallelism
 - Allow up to D of outstanding requests

Limitations

- Lack of Metadata I/O scheduling
- Many HPC applications are metadata intensive
 - Metadata I/O performance is important

Solution: vPFS+

- SFQ(D)+
 - A new scheduler to support diverse I/O sizes
- Metadata I/O management
 - An extension to support distributed scheduling of metadata requests
- PVFS2-based real prototype
- Comprehensive experimental evaluation

SFQ(D)+: Variable Cost I/O Depth Allocation

- Allocate the limited I/O depth D to outstanding requests based on their sizes
 - o Consider D as the number of available I/O slots
 - Each slot represents the cost of the smallest I/Os
 - Each outstanding request occupies one or multiple slots based on its size
 - Stop dispatching when D is used up
- Effectively protect small I/O workloads
 - Low-rate I/Os wait less for large outstanding I/Os to complete
 - Small I/Os are less affected by large I/Os after dispatched

SFQ(D)+: I/O Backfilling

- Large I/Os at the head of queue have to wait till there are enough slots
 - Waste the currently available slots
- Backfill promotes small I/Os to utilize the available slots
 - Similar to the backfill of small jobs in batch scheduling

Metadata I/O Scheduling

- Extends the scheduling to both data and metadata requests

 -2(n)+ to schedule
 -3ch server

 - Treat metadata I/Os as small I/Os

- Achieve total-metadata-service fair sharing for distributed metadata servers
 - Coordinate scheduling across distributed metadata servers
 - Each scheduler adjusts its scheduling of local metadata requests based on global metadata service distribution

Evaluation

Testbed

- vPFS+ implemented for PVFS2
- o 8 Clients & 8 Servers, 1 gigabit switch

Workloads

- IOR: intensive checkpointing I/Os
- o multi-md-test: intensive metadata I/Os
- BTIO: scientific application benchmark
- WRF: real-world scientific application

BTIO vs. IOR

- BTIO—Class C (4MB-16MB I/Os), Class A (320B I/Os)
- vPFS+ substantially reduces BTIO slowdown

WRF vs. IOR

- WRF—a large number of small I/Os and intensive metadata requests
- vPFS+ achieves 80% and 281% better performance for WRF than Native and vPFS, respectively

Metadata I/O Scheduling

- multi-md-test—mktestdir, create, write, readdir, read, close, rm, rmtestdir
- vPFS+ achieves nearly perfect fairness despite dynamic metadata demands for two metadata-intensive apps

13

Conclusions

- I/O diversity is becoming a top concern
 - Different types of requests (POSIX vs. MPI-IO, data vs. metadata)
 - Different I/O rates and sizes
- vPFS+ manages I/O performance for diverse apps
 - SFQ(D)+ recognizes the variable cost of different I/Os and takes it under control
 - Distributed metadata scheduling supports metadataintensive applications

Future Work

- Implement SFQ(D)+ directly into data/metadata servers
 - Proxy-based scheduling may incur extra latency
 - But its impact to throughput is small (< 1%)
- Evaluate vPFS+ in larger and more diverse environments
 - Performance isolation is even more important on larger systems with more diverse workloads
 - Faster storage does not eliminate performance isolation
 → the gap between processor and I/O performance is still increasing

Acknowledgement

- National Science Foundation
 - CNS-1629888, CNS-1619653, CNS-1562837,
 CNS-1629888, CMMI-1610282, IIS-1633381

VISA Lab @ ASU

• Thank you!

