Analytical models for performance and energy
consumption evaluation of storage devices

Eric Borba, Eduardo Tavares, Paulo Maciel, and Carlos Gomes
Centro de Informdtica, Universidade Federal de Pernambuco, Recife, Brasil
{erb,eagt,prmm,cga} @cin.ufpe.br

Abstract—Improvements in data storage may be constrained
by the lower performance of hard disk drives (HDD) and
the higher cost per gigabyte of solid-state drives (SSD). To
mitigate these issues, hybrid storage architectures have been
conceived. Some works evaluate the performance of storage
architectures, but energy consumption is usually neglected and
not simultaneously evaluated with performance. This paper
presents an approach based on generalized stochastic Petri nets
(GSPN) for performance and energy consumption evaluation of
individual and hybrid storage systems. The proposed models
can represent distinct workloads and also estimate throughput,
response time and energy consumption of storage systems. Some
case studies based on industry-standard benchmarks are adopted
to demonstrate the feasibility of the proposed approach.

Index Terms—performance evaluation, stochastic Petri nets,
data management, energy consumption, hybrid storage, cloud
computing

I. INTRODUCTION

Energy consumption in data centers is a critical and chal-
lenging issue, which has motivated many studies to reduce
operational costs. For instance, reports indicate the cost of
energy consumed by a server (during its lifetime) will exceed
the hardware costs, if current demand continues to increase
further [1].

Cloud computing has been widely adopted for representa-
tive companies and institutions, since this paradigm reduces
operational costs and improves the utilization of computational
resources. For instance, the United States Library of Congress
has moved its digital content to a cloud storage provider, and
Netflix adopts Amazon S3 platform for storing its videos [2]

Nevertheless, energy consumption of cloud computing sys-
tems also needs to be addressed, as the amount of stored data
and applications using this paradigm steadily increases [3].
90% of all data in the world was generated over the last 2
years [4], and global data are predicted to reach 163 zettabytes
by 2025 [5]. Facebook and Google respectively process 20 [6]
and 25 petabytes of data per day [7].

Storage subsystems are a major part of cloud computing,
as they contemplate 35% of cloud computing costs [3] and
are responsible for more than 27% of energy consumption.
Besides, storage devices may be a bottleneck for computer
systems [8], as they may take about 90% of a transaction
execution time [9].

Regarding the technology for storage devices, solid-state
drives provide faster read operations than magnetic hard
disks [10]. However, for some workloads, SSDs may not

provide better results than HDDs regarding sequential access.
Alternatively, hybrid approaches have been proposed. Hybrid
storage systems may have higher performance than HDD
storage with affordable cost, becoming a very promising
solution for many systems, such as those based on cloud
computing [11].

As a consequence, researches concerning storage architec-
tures have been carried out [12]. Although many works eval-
uate the performance of storage systems, energy consumption
is usually neglected and not simultaneously evaluated with
performance. In this context, performance models [13] are
quite important, as different designs and architectures can be
assessed before implementing the real system.

This paper proposes an approach based on generalized
stochastic petri nets (GSPN) for performance and energy
consumption evaluation of homogeneous (e.g., only HDD) and
hybrid storage systems. The proposed models can represent
distinct workloads, and they may also estimate throughput,
energy consumption and response time. Case studies based on
industry-standard benchmarks demonstrate the feasibility of
the proposed approach.

II. RELATED WORK

Hybrid storage is a prominent research field that has mo-
tivated many studies: architectures to integrate HDDs and
SSDs; analytical models for performance estimate; and data
placement techniques for putting specific data on the most
suitable storage component.

In [14], the authors propose a mechanism for integrating
SSD devices with HDD using a hybrid file system. However,
that work only investigates individual drive performance and,
based on the results, an ideal super block structure is presented
without experimentation or simulation. Tan et al. [15] study the
effectiveness of Hadoop Distributed File System (HDFS) on a
SSD-HDD storage. Experiments utilize different architectures,
which are submitted to three types of big data workloads.
Although results indicate the benefits of adopting SSDs, the
authors indicate a workload-aware architecture may obtain
better results.

Mingzhou et al. [16] propose a numerical approach based
on Markov chains to estimate the service time of HDDs,
considering random accesses. The arrival of read or write
requests is represented as a Poisson process. Experimental
results are presented to validate their approach. In [17], the
authors present an analytical model based on Markov decision



process to estimate the hit ratio (i.e., number of cache hits to
the number of lookups) of hybrid storages.

To improve energy consumption and reliability of hybrid
storage systems, Jingyu et al. [18] suggest storing metadata
in SSDs separated from data files. Results show 70% of
energy savings. Boukhelef et al. [11] propose a hybrid storage
system to deal with data placement problem. Optimization
algorithms are also presented to better place data based on user
requirements. Results indicate performance can be improved
up to 40%.

Different from previous works, this paper proposes models
based on GSPN for evaluating the performance and energy
consumption of homogenous and hybrid storage systems.
Additionally, the proposed models provide a graphical rep-
resentation of workload features. This work also takes into
account real-world workloads to demonstrate the practical
suitability of the conceived models.

III. GENERALIZED STOCHASTIC PETRI NETS

Petri nets (PN) [19] are a family of formalisms very well
suited for modeling several system types, since concurrency,
synchronization, communication mechanisms as well as de-
terministic and probabilistic delays are naturally represented.
In general, a Petri net is a bipartite directed graph, in which
places (represented by circles) denote local states and transi-
tions (depicted as rectangles) represent actions. Arcs (directed
edges) connect places to transitions and vice-versa. Tokens
(small filled circles) may reside in places, which denote the
state (i.e., marking) of a PN.

This work adopts generalized stochastic Petri nets
(GSPN) [19], which is a prominent PN extension that allows
the association of exponential distribution to timed transitions
(represented by white rectangles), or zero delays to immediate
transitions (depicted as thin black rectangles). The state space
of GSPN models may be translated into continuous-time
Markov chains (CTMC) [20], and simulation techniques may
also be adopted for estimating performance metrics, as an
alternative to the Markov chain generation.

In GSPNs, non-exponential delays may be approximated
using phase-type distributions [21], more specifically, Erlang,
hyperexponential and hypoexponential. A trapezoidal transi-
tion, namely, s-transition, is adopted to denote a subnet, which
models a delay using a phase-type distribution. Particularly,
this paper adopts the phase approximation technique described
in [21], which is an algorithm to match first and second central
moments of a distribution.

GSPN is a suitable formalism for this work, as it contem-
plates a graphical representation of actions with zero (e.g.,
to represent workload features) and non-exponential delays.
More specifically, such a formalism reduces the complexity of
modeling (without loss of reliability on results) and explaining
the proposed approach. For instance, different from queueing
network models, GSPNs can model features such as blocking,
synchronization, priority queuing disciplines, and operations
to acquire and hold multiple resources [21].

IV. PERFORMANCE MODELING

This section presents the performance models conceived for
representing storage systems. The models allow the represen-
tation of read and write operations under different workloads,
access patterns (random or sequential) and object sizes. Be-
sides, we have conceived our modeling approach for stationary
analysis [19], in which (without loss of generality) the analysis
assumes a system’s long run.

Two models are proposed and they are based on GSPN
formalism: (i) single storage model; and (ii) multiple storage
model. The single storage model represents client requests
to a system with a single storage device (e.g., HDD) or a
hybrid system as a black box (i.e., without distinguishing
its components). The multiple storage model is adopted for
assessing the impact of workloads on different arrangements
of storages (i.e., hybrid storage systems). Unlike the single
model, this approach allows system designers to explicitly
evaluate the components of hybrid systems.

The metrics of interest are throughput, mean response time,
and energy consumption. Throughput represents input/output
per second (IOPS) [22], which estimates the amount of pro-
cessed requests (write or read) in one second. Mean response
time is the average time for a single operation to complete.
To estimate energy consumption, the same parameters (i.e., the
proportion of each workload feature) of models are considered.

For the sake of explanation, we present the multiple storage
model with only two different devices (HDD and SSD).
However, this is not a limitation of the model, which is capable
of representing storage systems with additional components
(e.g., 4 HDDs; 2 SDDs and 4 HDDs). Additional storages
may lead to state space size explosion [23], but simulation
techniques may also be taken into account, as an alternative
to CTMC generation [24].

Besides, specific features, such as metadata manipulation,
are not explicitly represented on the conceived models, as, in
the context of storage devices, there is no distinction of the
data type being accessed or stored. Basic components are also
abstracted since we have been concerned only with the whole
storage device. As an example, for the sake of simplicity, cache
memories are not represented explicitly. Similarly, filesystems
and respective policies are not analyzed, as, in the context
of this work, such a data structuring is not detailed. This
abstraction level allows the assessment of different systems
without dealing with a detailed model that may not be feasibly
evaluated.

For characterizing workloads, we have taken into account
some considerations due to the various possibilities of at-
tributes. For the sake of tractability, we have adopted only
two access patterns: random and sequential. Concerning object
sizes, we have assumed a classification typically used in the
literature to cover distinct operational characteristics found
in storage devices [25] [26] [27]. In such a classification,
SSDs and HDDs’ performance distinguishes considerably for
processing small and large objects. These considerations con-
template the most relevant standards for assessing storage
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Fig. 1: Single storage model.

devices [28]. Nevertheless, this modeling approach does not
contemplate the impacts of several request sizes on storage
devices’ performance (i.e., any request is classified only as
small or large). Additionally, as a limitation, this approach
has not contemplated features for evaluating issues as caching,
write buffering, prefetching, and write amplification (the ratio
of total intern writes to externally-requested writes).

The following notation is adopted: E{#p} represents the
mean value of the inner expression, in which #p denotes the
number of tokens in place p; and W (T') represents the firing
rate associated with transition 7.

Additionally, function 7 Timm — [0,1] maps each
immediate transition (¢t € Tj,,,) to a normalized weight.
More specifically, the weights represent the transition firing
probability in a conflict set [19], and, for the adopted models,
each immediate transition can only be in one conflict set.
Next sections present the models using building blocks (i.e.,
submodels).

A. Single storage model

Figure 1 depicts the GSPN model for representing systems
with a single storage.

workload generator block is responsible for representing
user requests. The marking of place pRequests (IN) rep-
resents the allowed number of concurrent requests in the
system, and each token is a client (worker) request. Transition
t Requesting indicates the arrival of a request within a storage.
This transition adopts infinite server semantics [19] in order

to represent concurrent arrivals. Tokens in place pForward
represent the request prepared for writing (tWWrite) or reading
(tRead).

A block workload classifier,, is adopted for each operation.
Transitions tWrite and ¢ Read denote the amount of requests
for the respective activity, and they have weights indicating
the probability of each operation [29]. For instance, in mized
operations, read and write may have the same probability
(0.5). Tokens in places pRequest,, indicate read or write
requests are queued. Immediate transitions tSequential,, and
tRandom,, define the access pattern for a workload, and,
similarly, their weights indicate the amount of requests associ-
ated with each pattern. Transition tSmall,p ,+ and tLarge,p pt
represent the object size.

write and read operation blocks model the operation
execution, and the delay is denoted by s-transition
tWritingpt,os and tReadingp: ... Tokens in places
pWrittenp o« and pRead ,s represent the conclusion
of an activity. tReleasingop pt,os and tAck,, indicate the
notification of resource release to the storage controller.

resource controller block denotes the storage readiness to
execute read or write operations. A token in place pAck
indicates a resource is ready to be released, in which the
communication with the controller is depicted by transition
tCommunicating. Besides the marking of place pResource
(R) indicates the storage is ready for executing one or more
operations.
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Fig. 2: Multiple storage model.

For the proposed model, mean response time is estimated
using Little’s law [20] R = L/), in which R represents the
mean response time, L is the average number of requisitions
and A represents the arrival rate of requests. For this model,
L = N — E{#pRequests} and A = E{#pRequests} x
W (tRequesting). System throughput (i.e., IOPS) is estimated
as TH = E{#pAck} x W (tCommunicating).

For energy consumption, the workload features (e.g., access
pattern) must be taken into account, as they influence the
system power consumption. This work takes into account the
proportion of each factor, which is represented as weights in
immediate transitions (7(t)). For the single device model, the
following weights are taken into account: n(tWrite) = k;
n(tRead) = 1 — k; n(tRandom) = «; n(tSequential) =
1 — a; n(tSmall) = B; and n(tLarge) = 1 — . System
energy consumption (EC) is then estimated as follows

EP, =k (EPy, xax 3+ EPy, * (1 —a) %+ EP,,

sk (1—B)+ EPy, x(1—a)x(1-p)
(1)

EP,=(1-k)* (EPq *xa*+ EP., x(1—a)x*fp+

EP, xax(1—0)+EP,,*(1—a)x(1-7)
2)

EC = (EP, + EP,)*«TH *time 3)

E'P,, is the mean power consumption for an operation (read
- r or write - w), which is estimated using the mean power of
each workload feature. For instance F'P,,; denotes the power
of a write operation (w) using random access («) and an small
object (B). time is the time of interest.

B. Multiple storage model

Figure 2 depicts the GSPN model for representing systems
with multiple storage devices. For a better understanding, this
section presents the model using a hybrid storage system (1
SSD and 1 HDD).

Similar to previous model, workload generator block rep-
resents the creation of user requests, in which the marking
N in place pRequests indicates the number of concurrent
requests. Timed transition t Requesting adopts infinite server
semantic to represent concurrent arrivals. Immediate transi-
tions tForwardy denote a request is redirected to a storage
d. Tokens in places pHDD and pSSD (pStorage) indicate
read or write requests are queued in a storage device.

Similar to single storage model, read operation, and write
operationg blocks represent, respectively, the reading and
writing activities. For each storage device in the system, both
blocks are adopted.

resource controllery block models the available resources
for performing an operation in a request. The number of tokens
(e.g., R1) in places pResourcey denotes the number of oper-
ations are concurrently carried out. Transition tControllery
represent the device is informing the controller about the
conclusion of an operation.

In storage controller block, a token in place pAck rep-
resents a storage concluded the operation, and transition
tCommunicating denotes the controller delay for receiving
the acknowledgment. This work assumes the storage con-
troller can simultaneously receive acknowledgments from all
devices (i.e..infinite server semantics). The marking in place
pStorages (S) denotes the number of devices in the system.

Mean response time is estimated as Ry =
(N - E{#pRequests})/(E{#pRequests} X



W (tRequesting)). Throughput is THy, = E{#pAck} x
1/W (tCommunicating). Energy consumption (EC}) is
obtained from the power consumption of the workload
features (' Pg,0p,i,5) in all storage devices (n):

EC, = <Z n(tForwardy) * EPd> *THy xtime (4)
d=0

EP; = > > nlop) (i) *n(j) * EPaopij (5
op i j

in  which op €  (tWriteq,tReadg), 1 €

(tSequentialg op, tRandomg op) and J €

(tSmally,op,i, tLargeq op,i)

The model has been presented considering two distinct
devices for a hybrid system. However, additional devices
can be included by considering additional read, write and
resource controller blocks.

V. DESIGN OF EXPERIMENTS

This work adopts an approach based on design of experi-
ments (DoE) [30] for evaluating storage systems. More specif-
ically, a factorial design (i.e., all possible combinations of the
levels of the factors are investigated) is adopted (]_[f:1 l;), and
four experiments are carried out using GSPN models.

The first experiment adopts a screening approach for iden-
tifying the magnitude of each factor and interactions. Five
factors (k = 5) are taken into account: (i) storage technology
(technology); (i) object size (object_size); (iii) operation
type (operation); (iv) access pattern (pattern); and (v) num-
ber of threads (workers). Table I depicts the levels (I;) for
each factor, and the metrics of interest are response time,
IOPS and energy consumption. For the sake of validation
and comparison in the experiments, we assume the energy
consumption for one second.

Two additional experiments are adopted, which utilize the
results from the screening approach and the guidelines for
benchmarks developed by the Storage Performance Council
(SPC) [31]. Such a council is composed of representative com-
panies that define methodologies to evaluate storage devices

TABLE I: Screening - factors and levels.

factor levels
technology ~ 1TBHDD, 120GBSSD, Hybrid
object_size 4KB, 1IMB
operation write, read
workers 1, 4
pattern random (rnd), sequential (seq)

TABLE II: Experiment components.

component description
ITBHDD HDD 1TB

120GBSSD  SSD 120GB

Hybrid HDD 1TB + SSD 120GB

server

quad-core, 3.10GHz, 8GB RAM

and systems. The experiments also utilize two supplementary
metrics: (i) IOPS/energy consumption, and (ii) price/IOPS.
The former represents energy efficiency and a higher value is
better. The latter is the relation between storage system price
and performance, and lower values are preferable. Storage
system price is calculated as storage capacity x cost per GB.
In this work, we have considered US$0.075 and US$1.0 [32]
per gigabyte for HDD and SSD, respectively.

Similar to the screening approach, the same five factors are
considered, and, except for technology, we fixed the levels to
represent specific workloads. The experiments are explained
as follows.

The second experiment evaluates the performance of stor-
age systems, in which the application’s access pattern is
predominately random (e.g., database systems). In this case,
the objects are stored on device blocks without a specifc
order [33]. Besides, write operations contemplate 70% of the
workload (70%_w). This experiment, namely, random access,
contemplates the following factors and levels: (i) technology
- 1TBHDD, 120GBSSD and Huybrid; (ii) object_size -
4K B; (iii) operation - 70%_w; (iv) pattern - rnd; and (v)
workers - 4.

Fig. 3: Environment setting

The third experiment (sequential access) assesses the behav-
ior of storage systems for applications that require large-scale
sequential data access (e.g., financial processing). Sequential
access assumes the objects are stored on contiguous blocks
in the storage devices [34]. The workload also assumes equal
proportion (50%) of write and read operations (50%_w). The
experiment considers the following levels: (i) technology
- 1TBHDD, 120GBSSD and Huybrid; (ii) object_size -
1M B; (iii) operation - 50%_w; (iv) pattern - seq; and (v)
workers - 4.

The fourth experiment, namely, mixed, represents raw data
workloads, which usually are composed of small random
requisitions (80% - 80%_rnd) and commonly have mixed
operations (50% write - 50%_w) from simultaneous clients
(e.g., 4 workers) [31] [35]. The workload also assumes
20% of sequential requisitions with large object sizes (1MB)
(20%_los). This experiment takes into account the follow-
ing levels: (i) technology - 1"TBHDD, 120GBSSD and
Hybrid; (i) object_size - 20%_los; (iii) operation - 50%_w;
(iv) pattern - 80%_rnd; and (v) workers - 4.



TABLE III: Moment matching - HDD and SSD

1TBHDD 120GBSSD

op 0s pt mean (ms) st.dev. (ms) phases distribution | mean (ms) st.dev. (ms) phases distribution
AKB rnd 3.510000 0.950510 10 hypo. 0.968840 0.778870 1 hypo.
write seq 0.072336 0.024602 8  hypo. 0.223670 0.142030 2 hypo.
IMB rnd 9.920000 3.820000 6  hypo. 29.950000 17.410000 2 hypo.
seq 5.690000 0.131970 10 hypo. 9.930000 4.540000 4 hypo.
AKB rnd 8.000000 0.839160 10 hypo. 0.612730 0.056047 10  hypo.
read seq 0.047958 0.019129 6  hypo. 0.210620 0.040588 10 hypo.
IMB rnd 14.190000 0.276980 10 hypo. 4.470000 0.234440 10  hypo.
seq 5.580000 0.107310 10 hypo. 4.010000 0.022829 10  hypo.

A. Tools models (using stationary analysis). The single model is vali-

This work adopts Iometer tool [36] [37] [38] to characterize
storage devices for read and write operations. The results are
utilized on the conceived GSPN models for validation and
experiments. We utilize the same factors and levels in Table I,
but only one worker is considered.

Figure 3 depicts the adopted system, whose components
are detailed in Table II. Using Iometer, the server performs
workload on each drive (or simultaneously for the hybrid
approach). Simultaneously, an oscilloscope collects instanta-
neous voltage (using shunt resistors), the power is estimated
and, then, energy consumption is obtained using numerical
integration. For each treatment, the system collects 20 samples
to estimate the mean delays for the read/write operations and
the metrics of interest (i.e., IOPS, mean response time and
energy consumption).

This work adopts Mercury [39] and TimeNET [40] tools for
evaluating GSPN models. The validation has been carried out
on a Intel core 2 Duo 2.4GHz, 8GB RAM, Windows 10. The
average time for evaluating each model (i.e., Markov chain
generation and numerical solution) is around 5s.

VI. EXPERIMENTAL RESULTS

This section presents the validation for the conceived GSPN
models and experimentals results to demonstrate the practical
feasibility of the proposed approach.

A. Validation

This work demonstrates the validation for the single stor-
age model, since this approach also provides insights to the
multiple storage model.

We have performed experiments with real systems (Sec-
tion V-A) and compared to the values obtained with GSPN

TABLE IV: Mean power values.

power (W)
op 0s pt 1ITBHDD  120GBSSD
AKB rmd | 0.0102094 0.0008643
write seq | 0.0003109 0.0001321
IMB rmd | 0.0411532 0.0328646
seq | 0.0229215 0.0075362
AKB rmd | 0.0252030 0.0004737
read seq | 0.0001598 0.0001919
IMB rmd | 0.0455828 0.0086180
seq | 0.0183449 0.0081872

dated for HDD and SSD storages. Besides, a single object size
is utilized (4K B) and two access patterns (pt) are assumed:
random (rnd) and sequential (seq). The validation also takes
into account read and write operations (op).

The models utilize a delay of 1us (following an exponential
distribution) for transition ¢t Requesting. For all GSPN models,
the marking of place pRequests is 1, which denotes only one
worker. The marking Rz (place pResourcesg) is also 1, as
we have adopted storages (17"BH DD and 120G BSSD) with
serial advanced technology attachment (SATA) and advanced
host controller interface (AHCI). In these technologies, a
device do not carry out simultaneous operations.

The delays for write and read operation have been approx-
imated using phase-type distributions. Table III details the
results for the moment matching, considering data collected
on the real system using lometer. mean is the mean delay
and st.dev. is the standard deviation. distribution denotes
the probability distribution, and hypoexponential (hypo) has
been adopted [21]. phases represents the number of phases.
We adopt a limit of 10 phases, since additional phases do
not influence the results [41]. Table IV shows the mean
power of each drive (17" BH DD and 120G BSS D) for distinct
workload features.

Table V depicts the values for the real systems and the esti-
mates using the single storage model. The metrics are energy
consumption, response time and IOPS™!. For all metrics, the
model values are contained in the 95% confidence intervals
(95% c.i.) obtained from the systems and, thus, the hypothesis
of equivalence cannot be refuted.

B. Experiment I: Screening

This experiment assesses the effects of each factor and
interactions based on DoE detailed in Section V. Effect is the
change in response due to a change in the factor level, and
Table VI shows a rank for main and second-order interactions.
The rank is ordered in descending order taking into account
the absolute values of all effects.

This work considers only main effects and second-order
interactions, since high order interactions do not considerably
impact the adopted metrics [30]. Besides, the nine most signif-
icant effects are illustrated, as other effects do not remarkably
affect the metrics. For technology factor, the adopted levels



TABLE V: Validation results - single storage model.

energy consumption (J) response time (ms) IOPS—T

device op pt 95% c.i. GSPN  95% c.i. GSPN  95% c.i. GSPN
write md | (2.8450; 2.9597) 2.8909  (3.4862; 3.5218) 3.5190  (0.003400; 0.003523)  0.003520
ITBHDD seq | (3.5052; 4.3209) 39166 (0.0808; 0.0823)  0.0813  (0.000081; 0.000083)  0.000082
read md | (2.9513; 3.1926) 3.0812  (8.0046; 8.0584) 8.0090  (0.008007; 0.008061)  0.008010
seq | (2.8750;2.9931) 29007 (0.0561; 0.0574)  0.0569  (0.000056; 0.000057)  0.000057
write md | (0.8625; 0.9753) 0.8830  (0.7839; 1.0923) 0.9778  (0.000785; 0.001095)  0.000978
120GBSSD seq | (0.7909; 0.8507) 0.8195  (0.1456; 0.1754)  0.1602  (0.000146; 0.000176)  0.000161
read md | (0.7598; 0.7708) 0.7647  (0.6145; 0.6217)  0.6217  (0.000615; 0.000622)  0.000622
seq | (0.8585; 0.8875) 0.8701 (0.2183; 0.2200)  0.2196  (0.000219; 0.000220)  0.000220

TABLE VI: Rank of main and interaction effects.
energy consumption (J) response time (ms) 10PS

factor/interaction effect factor/interaction effect factor/interaction effect
technology(120GBSSD-Hybrid) 5.6919  object_size 20.1874  object_size 721.7838
technology(1TBHDD-Hybrid) 3.6281  workers 16.2618  technology(1TBHDD-Hybrid) 285.0174
operation*technology(120GBSSD-Hybrid) 2.1027  pattern 9.7670  technology(120GBSSD-Hybrid) 281.6786
object_size*technology(1TBHDD-Hybrid) 2.0719  operation 7.2928  object_size*technology(120GBSSD-Hybrid) 270.4418
technology(1TBHDD-120GBSSD) 2.0637  technology(120GBSSD-Hybrid) 3.4529  pattern 218.5956
object_size 2.0182  technology(1TBHDD-Hybrid) 2.8260  operation*technology(120GBSSD-Hybrid) 188.1111
object_size*technology(120GBSSD-Hybrid)  1.8911  technology(1TBHDD-120GBSSD) 0.6269  operation*technology(I TBHDD-120GBSSD)  146.8808
object_size*operation 1.2833  object_size*technology(1TBHDD-120GBSSD) 0.0060  pattern*technology(1TBHDD-Hybrid) 144.0635
operation 1.0491  operation*technology(1TBHDD-Hybrid) 0.0040  object_size*operation 136.4913
TABLE VII: Experimental results.
experiment technology energy consumption (J) response time (ms) I0PS
SSD 0.850 3.162  1264.690
random accesses ~ HDD 2.937 17.248 231.897
Hybrid 6.179 8.636 926
SSD 2.055 36.901 108.396
sequential access HDD 3.580 21.299 187.793
Hybrid 10.734 14.173 564.599
SSD 1.571 10.862 368.226
mixed HDD 3.089 19.711 202.922
Hybrid 6.639 11.746 681.211

for estimating an effect are indicated in parenthesis (e.g.,
technology(120GBSSD — Hybrid)).

Considering energy consumption, technology, object_size,
operation and respective interactions (e.g., operation x
technology(120GBSSD — Hybrid)) are the most sig-
nificant effects. Nevertheless, the adoption of a hy-
brid system (i.e., technology(120GBSSD — Hybrid) and
technology(1TBHDD — Hybrid)) considerably contribute
to energy consumption (change of 5.6919J and 3.6281.J).

The main effects account for most of the impact on response
time, and interactions do not affect significantly this metric.
object_size and workers are the factors with considerable
variation: 20.1874ms and 16.2618ms, respectively. Hybrid
is the best level for technology, since it reduces response
time in 3.4529ms and 2.8260ms compared to 120GBSSD
and 1 TBHDD.

Regarding IOPS, object_size has the greatest influence
followed by technology. Hybrid level considerably im-
proves IOPS, as it may increase throughput more than
280 operations per second. pattern also influences system
throughput: rnd - 158.3573 and seq - 376.9530. Besides,
some interactions also have an effect on IOPS, for in-
stance, object_size * technology(120GBSSD — Hybrid)
(270.4418), and operation * technology(120GBSSD —

Hybrid) (188.1111).

Results show the factors do not similarly influence all
metrics (i.e., have the same rank position). Thus, for the next
experiments, we fix and mix some factors levels to better as-
sess the effects on storage systems. Henceforth, four workers
are adopted, since real-workloads are usually composed of
concurrent requests [35].

C. Experiment II: Random access

This section presents results for storages considering a
workload mainly composed of random requests (Table VII).

Results indicate 120GB.SSD as the best technology regard-
ing all metrics, due to the absence of mechanical components.
The performance of magnetic disks is jeopardized because of
excessive disk rotations. Compared to 17" BH DD, Hybrid has
better values for response time and IOPS, but hybrid system
consumes more energy. Considering the ratios IOPS/energy
consumption and price/IOPS (Figures 4(a) and 4(b)), SSD has
better results followed by hybrid system.

Usually, SSDs are known by the remarkable performance
for read operations [42]. Additionally, this experiment corrobo-
rates the ability of SSDs to handle random requests, even under
a workload consisting mostly of write requests (70%) [43].



1600 -
1486,70723

1400

12004

IOPS / Energy consumption (J)
S (2] o3 5
o o o o
o o o o
L L L L

149,91314
78,93636

1TBWDHDD

(a)

T
Hybrid 120GBSSD

0,354
0,32342

0,304

0,254
0,21051

o

N}

o
1

Price (US$) / IOPS
&
1

0,09488

o

[

o
1

0,054

0,00

1TBWDHDD

(d)

T
Hybrid 120GBSSD

Fig. 4: Random access - (a) IOPS/energy consumption; and (b) price/IOPS.

60+

52,59633 52,44702 52,74712

20

IOPS / Energy consumption (J)

1,29
1,10704

0,39937
' 0,34538
0,0

=} o -
) © =}
! N !

Price (US$) / IOPS
:

=}
N
N

f
Hybrid 1TBWDHDD 120GBSSD

(a)

f
Hybrid 1TBWDHDD 120GBSSD

(b)

Fig. 5: Sequential access - (a) IOPS/energy consumption; and (b) price/IOPS.

250+
234,2545

200

150+

02,60712

100

65,69042

IOPS / Energy consumption (J)

o
=}
L

1TBWDHDD

(a)

f
Hybrid 120GBSSD

0,404
0,3696

0,354
0,32589

120GBSSD

0,30 0,28625

0,254

=}

N

o
1

Price (US$) / IOPS
_E <
L

0,104

0,054

0,00

1TBWDHDD

(b)

T
Hybrid

Fig. 6: Mixed access - (a) IOPS/energy consumption; and (b) price/IOPS.

D. Experiment IlI: Sequential access

This section takes into account a workload represented by
sequential requests.

Similar to previous experiment, the hybrid system has the
worst values for energy consumption (Table VII). However,
this system is capable of reducing response time (33.45%) and
increasing IOPS (200.64%), comparing to 17T BHDD (com-
monly considered the most suitable technology for sequential
workloads [44]). Results highlight the improvement obtained

with Hybrid for large objects. Except for energy consumption,
120GBS'SD has not presented significant results.

Figure 5(a) depicts 120G BSS D does not have a prominent
IOPS/energy ratio, compared to other tecnologies. Regarding
the ratio price/IO, Figure 5(b) indicates SSD has the highest
cost.

E. Experiment V: Mixed

Table VII depicts the results for a workload composed of
mixed operations, access patterns and distinct object sizes.



120GBSSD has the smallest value for response time
(10.86ms), influenced by small random requisitions (4K B
and rnd). Hybrid has the highest IOPS (681.211) and
ITBHDD has the worst performance, except for energy
consumption.

Figure 6(a) indicates 120GBSSD has the best energy
efficiency, about 128.30% higher than Hybrid. However,
Figure 6(b) shows Hybrid has the best price-performance.
Indeed, for the hybrid system, the high values for energy
consumption and price are strongly compensated by system
throughput.

F. Remarks

Hybrid systems generally have higher energy consumption.
However, whenever performance requirements prevail over
energy savings, hybrid storage is a prominent alternative,
mainly for sequential accesses.

SSDs may have performance issues with sequential ac-
cesses, but they are suitable for services with small random
requests. Concerning HDDs, results confirm the issues for pro-
cessing small objects. Nevertheless, HDDs are still a feasible
option for some systems represented by sequential accesses
due to IOPS/energy and price/IOPS ratios.

VII. CONCLUSION

This paper presented an approach based on GSPN for
performance and energy consumption assessment of storage
systems. The proposed models allow the evaluation of different
storage technologies and workloads. Experiments based on
Storage Performance Council’s guidelines illustrate the prac-
tical feasibility of our modeling approach for assisting system
designers.

As future work, we are developing models for assessing the
reliability and availability of hybrid storage systems.
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