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Abstract—In this paper, we study the performance of new
Intel Optane DC Persistent Memory (Optane DC) from indexing
data structures’ perspective. Different from existing Optane DC
benchmark studies, which focus on either low-level memory
accesses or high-level holistic system evaluations, we work on
the data structures level, benchmarking commonly seen indexing
data structures such as Linkedlist, Hashtable, Skiplist, and Trees
under various running modes and settings. We believe that
indexing data structures are basic and necessary building blocks
of various real-world applications. Hence, the accurate knowledge
about their performance characteristics on Optane DC will
directly help developers design and implement their persistent
applications. To conduct these performance evaluations, we
implemented pmemids_bench, a benchmark suite that includes
seven commonly used indexing data structures implemented in
Sfour persistent modes and four parallel modes. Through extensive
evaluations on real Optane DC-based platform under different
workloads, we identify seven observations that cover various
aspects of Optane DC programming. These observations contani
some unique results on how different data structures will be
affected by Optane DC, providing useful reference for developers
to design their persistent applications.

I. INTRODUCTION

Non-volatile memory (NVM) or persistent memory (PMEM)
is a new kind of memory device that provides both near-DRAM
data access latency and data persistence capability [[1]]. Different
from block-based devices, PMEM can be directly accessed in
bytes through the memory bus using CPU load and store
instruction without using block-based interfaces. Due to its high
density, low cost, and near-zero standby power cost [2], [3], [4]],
PMEM devices have been considered as a promising part of
the next generation memory hierarchy. Among all the persistent
memory solutions, the Intel Optane DC Persistent Memory
(or Optane DC for short) has become the first commercially
available PMEM device on the market in 2019 [3]].

As the NVM device (e.g., Optane DC) becomes available,
software developers start to consider porting their applications
to persistent memory. However, to make it work efficiently,
they need to have an accurate expectation of their applications
performance on PMEM, as well as know how to re-design
their applications to achieve the best performance.

Recently, one of the authors plans to port an application that
operates graph-structured datasets to Optane DC. The author
knows that there are multiple data structures that can be used to
store graph-structured datasets, such as Edge List, Adjacency
List, Compressed Sparse Row, or Trees; and for each data
structure, there are multiple implementation choices [6], [7],

[I8]. Without knowing how each of these solutions will perform
on Optane DC, it is hard for him to make the design decisions.
In addition, the Optane DC/DRAM hybrid memory system
provides even more choices: he may store part of the datasets in
Optane DC for persistence and part in DRAM for performance.
These options further complicate the programming and require
developers to have a deep understanding about how Optane DC
and how their applications with different designs will perform.

There are already several timely benchmark studies on
Optane DC recently, aiming to provide such information [9],
[10], [11], [A2], [13]. However, their results are hard for
developers to use mostly because of the granularity they
worked on. The low-level device performance benchmarks [10],
[L1], [13l], which focus on evaluating the memory access
latency and bandwidth of Optane DC, are hard to be linked
back to the performance of users’ applications, which are
typically built using data structures instead of individual
Optane DC read/write access. On the other hand, the high-level
performance benchmarks [9]], [12]], which essentially evaluate
the holistic storage systems on Optane DC, do include too
many system components and factors in their results, making
it hard for application developers to reason the performance
of their own implementations.

The challenge here is that, the developers need in-depth
insights about the potential performance of their applications
on Optane DC under different design choices, but existing
benchmarks are either too high-level or too low-level, providing
limited help. To bridge this gap, in this study, we propose to
benchmark the Optane DC performance in the middle level,
i.e., the data structures level, to help developers program their
applications on the new PMEM devices.

We further limit the data structures to be indexing data
structures, which are widely used in various applications for
locating and accessing data elements. Typical examples are
Arraylist, Linkedlist, Hashtable, Skiplist, and Trees, etc. We
benchmark the indexing data structures for two reasons: 1)
they are the basic and common units of most data-intensive
applications, not only for storing the data but also for processing
the data; 2) their accesses usually take a majority portion
of the applications’ memory accesses. Hence, knowing the
performance of these commonly seen indexing data structures
on Optane DC could help developers have a better picture of
their applications performance and potentially lead to better
system designs.

Specifically, in this study, we implement a new PMEM



Indexing Data Structure Benchmark (pmemids_bench) to
benchmark commonly seen indexing data structures on Optane
DC under different design choices. Apart from the existing
benchmarks, pmemids_bench aims to help developers who
are not necessarily experts in nor interested in building basal
storage systems on Optane DC, but want to leverage Optane
DC to improve the performance of their applications.

This goal leads to specific designs in pmemids_bench.
First, we limit our focus to the commonly seen indexing data
structures, such as Hashtable, Linkedlist, and Trees. We argue
that if the developers need to use specific, advanced indexing
data structures (e.g., LSM-tree [[14]]), they might prefer to use
the holistic PMEM-aware storage system built based on that
data structure (e.g., SLM-DB [15])) instead of implementing
one manually. For such cases, the benchmark and experimental
results from existing literature will be helpful for them to make
the design decisions.

Second, we emphasize more on benchmarking the indexing
data structures under different settings, such as: a) storing
on Optane DC or DRAM; b) forcing persistence or not; c)
supporting transactions or not; d) using multi-threads or not.
We understand that in the real-world, developers might be
constrained on how to program the persistent memory, for
example, the data accessing concurrency might be limited by
other parts of the application. So they will need to know the
performance of the data structures in widely different settings
and hence make more accurate design decisions based on their
needs.

Third, instead of expecting developers to program Optane
DC using low-level APIs such as cache line flushing, memory
fence, or their own transaction mechanism, we focus on the case
where developers use high-level programming libraries, such
as the Intel PMDK library [[16], to develop their applications.
The high-level libraries are much easier to use and provide a
better guarantee on the code correctness and data consistency.
We expect they will be the de facto choice for application
developers in the near future, hence benchmarking their
performance would be useful to application developers.

In summary, our goal is to benchmark common indexing
data structures in various settings on Optane DC to provide
application developers useful insights about the potential
performance of their applications on Optane DC. Besides,
we also try to make the benchmark extensible by introducing
standard interfaces and workload generators similar to YCSB
(Yahoo! Cloud Serving Benchmark) [17]. This allows others
to reuse our framework and implement their specific data
structures for performance comparison. We summarize our
contributions as follow:

o To the best of our knowledge, we conduct the first Optane
DC performance study from the basic and commonly
used indexing data structure’s perspective. The collected
insights aim to help application developers design and
implement their applications.

o Through extensive evaluations, we concluded seven obser-
vations about the performance characteristics of indexing
data structures on Optane DC, covering read/write perfor-

mance of various persistent modes, transaction overheads,
lock overheads, and non-local memory access perfor-
mance, etc. We also discussed how these observations
can be leveraged in application development.

o We collected our implementation and presented them as a
complete benchmark suite (i.e., pmemids_bench [18])
to enable more standardized indexing data structures
evaluations in the future.

The remainder of this paper is organized as follows: In
Section II we introduce the basis of Optane persistent memory
and its programming models. In Section III, we discuss a
motivation example. In Section IV, we present the detailed
design and implementation of pmemids_bench and the
rationale of the designs. We discuss the evaluation results
and the key insights in Section V, related work in Section VI,
and the conclusions and future work in Section VII.

II. PERSISTENT MEMORY AND PMDK

In this section, we introduce the background of Intel Optane
DC Persistent Memory technologies [9] and how to program
Optane DC using the Intel PMDK library [16].

A. Optane Persistent Memory

Non-volatile memory (NVM) is a board concept. It consists
of a set of technologies, such as PCM [19], [20], ReRAM [21]],
and STT-RAM [22], which use resistive memory to store data
in a persistent way. Among them, the byte-addressable ones
have been considered as promising complements of DRAM
for the next generation memory systems. Intel Optane DC
Persistent Memory is the first commercially available byte-
addressable NVM device. Working on Intel Cascade Lake
platforms, Optane DC scales up to 6TB capacity in a single
machine [10].

Although the exact storage media of Optane DC has not
been public yet, we do know that it uses a non-standard DDR-
T protocol and a small internal buffer to enable out-of-order
commands and data transfer to address the long latency to
Optane media [9]]. Also, similar to DRAM, the data transfer
between CPU and Optane DC also go through the cache line
(in 64 bytes). And internally, the PMEM buffer communicates
with Optane media in 256 bytes. This does mean consecutive
requests to the same 256 bytes could have less latency. More
details about Optane DC can be seen at [23].

B. Optane Programming Modes

Optane DC can be configured in either Memory mode or
App Direct mode[16]. In Memory mode, the Optane devices
are exposed as normal DRAM, while the DRAM becomes a
transparent ‘L4’ cache to accelerate data accesses. This model
does not guarantee data persistence nor allows direct access to
PMEM. In App Direct mode, the Optane DC devices are directly
exposed to users’ applications, in parallel with DRAM. The
existing file system data path is re-used to access the persisted
data. Specifically, data accesses on Optane DC are through
the DAX-aware file system, which transparently converts file
operations to memory load/store operations. Since App Direct



PMEMoid pmem_ptr;
VMEM *vmp

void xptr

vmem_create(path, pmem_size);
vmem_malloc(vmp, malloc_size);

a) PMDK vmem

PMEMobjpool *pop = pmemobj_create(file, ...);
pmemobj_alloc(pop, &pmem_ptr, size, type, ...);
void xdram_ptr = memobj_direct(pmem_ptr);

pmemobj_persist(pop, dram_ptr, len);

b) PMDK pmemobj

TX_BEGIN(pop) {
pmemobj_tx_add_range(mem_ptr, off, size);
//update & operations

} TX_ONABORT {

//abort operation

} TX_END

¢) PMDK transaction

Fig. 1. Three different sets of PMDK programming APIs and typical usage patterns.

mode allows users to simultaneously access both Optane DC
and DRAM and allows users to persist data as they need, it is
then the more flexible way to program persistent memory. In
this study, we focus on only this mode.

C. Program Optane DC Persistently

Optane DC devices are physically persistent, which means
any write arrives at the memory subsystem of Optane DC will
be guaranteed persisted. However, this does not mean calling
store to a PMEM address will automatically guarantee data
persistence. The reason is, the CPU caches, which are in the
middle between CPU and Optane DC, are still volatile. So, the
stored data might still be in the CPU caches. To make sure
data is persisted, we need to call CLEFLUSHOPT after store
to flush the cache line to Optane DC. Also, modern CPUs
reorder memory accesses for better performance. So, for two
consecutive persistent memory writes, we may have the later
one persisted before the first one, potentially breaking data
consistency if failures happen in the middle. To avoid this, we
need to call instructions such as SFENCE to enforce the order
of multiple memory operations [24].

However, even with cache line flushed and memory fenced,
writing a large chunk of data to Optane DC may still result
in partially persisted data. This is because the atomic write
unit of Optane DC is small (i.e., 8 bytes). So large writes will
actually involve multiple atomic writes. If there are failures
in the middle, data will be partially persisted. To guarantee
data consistency for critical data structures larger than 8 bytes,
we have to deploy transaction mechanisms such as logging
(undo log and redo log) or copy-on-write (CoW) to protect
these writes [25]].

These extra measures for guaranteeing data persistence and
safety complicate programming applications on Optane DC, but
at the same time, also offer developers a wide range of flexibility
to design their applications. For example, some auxiliary data
structures on PMEM might do not need strong persistence or
consistency, so that cache line flushing and transactions can
be skipped to gain better performance. These different design
choices lead to different performance characteristics of the
Optane DC and its applications. Understanding their actual
performance and the key factors under different workloads
and system setting becomes critical. In this study, we devel-
oped pmemids_bench to help developers understand these
characteristics.

D. Program Optane DC Using PMDK

The Persistent Memory Development Kit (PMDK) [16],
formerly known as NVML, is a collection of libraries and
tools, tuned and validated on both Linux and Windows for
programming Optane DC. It builds on the DAX features of the
operating systems, which essentially allows user applications
to access persistent memory as memory-mapped files (Optane
DC is operated in App Direct mode). PMDK provides different
level of supports through its multiple libraries, shown in Fig I]

Program Optane DC as DRAM. To gain the best perfor-
mance out of Optane DC, developers can skip the persistence
operations, such as cache line flushing and memory fencing
when writing into Optane DC. In this case, the Optane DC is
used as volatile memory and no data persistence is guaranteed.
PMDK provides 1ibvmem library for this use case. The basic
APIs are shown in Fig. Eka). Here, function vmem_create
maps the Optane DC into the application’s memory heap; then
functions vmem_malloc and vmem_free are for the mem-
ory management, which internally leverages the jemalloc
library [26]. Although there is no data persistence guarantee,
we believe developers may still be interested in this model
when they 1) hope to leverage the large capacity of Optane DC
(up to 512GB per dimm); 2) hope to leverage the low standby
energy consumption; or 3) have the data persistence be taken
care of elsewhere.

Program Optane DC as Persistent Memory. This should
be the most commonly used case for Optane DC. PMDK
actually provides two set of APIs to developers for this
purpose. The first one is 1ibpmem. It provides low-level data
persistent APIs, which are essentially an optimized wrapper
of instructions such as CLFLUSHOPT and CLWB. The main
limitation of this library, however, is it does not support
dynamic memory management (such as malloc or free). The
persistent memory management itself is challenging and will
introduce extra overheads that the 1ibpmem library wants to
avoid. For example, each time the ‘malloc-ed’ memory must be
persistently recorded by the library, so that if failure happens
after the ‘malloc’, the library has a chance to free the unused
memory to avoid memory leaking.

Due to the complexity of implementing a correct persistent
memory management library, we expect developers who need
dynamic memory management will not use 1ibpmem directly.
Hence, our focus in this study is on another PMDK persistent
library: 1ibpmemob j, which provides rich APIs to support
various needs of application development.



We show example APIs in Fig. [T{b). The 1ibpmemob j
library provides a transactional object store, which includes
useful facilities such as dynamic memory allocation, transac-
tions support (via undo log and redo log), and persistent locks,
etc. There are several important concepts worth discussing in
the 1ibpmemob j library. First, there are two kinds of pointers
needed to operate an Optane DC address. One is PMEMoid and
another is a normal pointer, such as void . Any persistent
pointer should be stored as PMEMoid and translated to a
normal pointer (via pmemob j_direct function) before being
used. So, there will be a translation overhead for any pointer
access. Second, it is necessary to call pmemobj_persist
to make sure a write to Optane DC is flushed successfully to
the persistent domain. Such persistence operation will result
in performance overheads as we mentioned earlier.

Program Optane with Transactions. The 1ibpmemobj
library provides transaction support to developers as shown
in Fig. [T[c). The memory operations happened in the same
transaction block (between TX_BEGIN and TX_END) will
succeed or fail together. In users’ applications, there are several
places where transactions might be necessary. First, if users
want to update continuous data that is larger than 8 bytes, such
as updating a B-tree node in place, they should protect this
update using a transaction, otherwise part of the update might
be lost if failure happens. Second, if users need to update
several distinct data in memory, for instance, updating several
child pointers to re-balance a RB-tree, they also should protect
these updates using a transaction, otherwise a failure in the
middle may break the whole data structure.

Internally, PMDK uses undo/redo logs to implement trans-
actions, which introduces overheads for copying data. So,
developers might choose not to use PMDK transactions to get
better performance. This choice might be acceptable if they can
fix the partial persistence caused by system failures elsewhere.
For instance, if all the data is already logged persistently, then
incomplete operations can be fixed after application reboot
using the logs. In this case, developers might skip PMDK
transactions. For the same reason, in this study, we actually
benchmark indexing data structures both with transactions and
without transactions. When we do not use transaction, we
simply assume developers themselves will take care of the data
consistency.

III. MOTIVATION EXAMPLE

Recently, one of the authors was developing an application
to process a graph-structured dataset. In this application, the
dataset contains multi-millions of entities, each of which has
a set of attributes. Entities have relationships, which also have
attributes attached. The dataset is expected to be persistent, and
will be continuously updated and queried by the application.
Previously, the data was stored in SSD, and each time loaded
and rebuilt into DRAM when application starts. Using Optane
DC, we expect to persist the dataset and achieve high speed
updates and queries at the same time. But, when we port the
application to Optane DC, we noticed there are multiple data
structures available, and it is hard to make the decision without

knowing how each of them would perform on the Optane DC
device.
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(a) PMEM Adjacency List | (b) PMEM Log and DRAM Indexes

(d) PMEM Tree-based

Fig. 2. Three exemplar design choices for storing graphs using Optane DC
and DRAM. Here, we use gray color to indicate data is stored on Optane DC.
We do not plot attributes of vertices and edges for simplicity.

In Fig. 2] we demonstrated three design choices for storing
the graph-structured dataset. These designs are just examples
out of large number of possible solutions.

Specifically, we can use Adjacency List (on Optane DC) to
store the vertices in a list (typically a hashtable indexed by
vertex Id) and the edges in multiple linkedlists (or a blocked
linkedlist for better cache performance), attached to each source
vertex. This design is demonstrated in Fig. [2[a).

We can also use log structure (such as a Linkedlist (Optane
DC)) to persistently store all the edges and leverage an in-
DRAM index to enable dynamic queries, as shown in Fig. 2[b).
The logs are append-only, hence very efficient for updates. The
DRAM index has multiple choices, such as Hashtable, Skiplist,
B-tree, and RB-tree, etc. But, they should be consistent with
data updates on Optane DC, and need to be rebuilt each time
applications crash or reboot. Hence, both the performance of
Optane DC log and DRAM index are important.

The third design we show here is to use tree data structures
to directly store the edges on Optane DC, demonstrated in
Fig. c). We can consider an edge key as [v;, v;] and the
vertex (v) as a special case of edge ([v,nil]). We can leverage
tree structures (i.e., B+-tree) that support scan operations to
store the graph. Each tree node will store an edge. In this
way, the common query such as finding neighbors can be well
supported as scanning the tree. In this design, the performance
of the Optane DC B+-tree structure is critically important.

Among these options, there are various indexing data
structures (Arraylist, Hashtable, Skiplist, B-tree, RB-tree) on
different memory devices (Optane DC and DRAM) involved. In
fact, besides these high-level design choices, detailed implemen-
tation choices such as how many concurrent threads or other
optimizations could also affect the performance significantly.
Picking which solution would require developers to well
understand the performance characteristics of Optane DC and
their applications together. For instance, if PMEM Adjacency
List will perform much worse with higher concurrency, then
we may move to other data structures if our application does
have high concurrency. However, this knowledge is still not
widely available to application developers yet. And we want
to solve this in pmemids_bench.

IV. BENCHMARK DESIGN AND IMPLEMENTATION

In Table. [l we first give a quick summary of what are
included in pmemids_bench: the indexing data structures,
their key implementation details, different persistent modes,



TABLE I
SUMMARY OF INDEXING DATA STRUCTURES, THEIR DIFFERENT RUNNING MODES UNDER VARIOUS WORKLOADS INCLUDED IN THE BENCHMARK SUITE.

Parallel Modes Workloads

Data Structure Description Persistent Modes
Arraylist Fixed items/size =~ DRAM
Linkedlist Appended only
Hashtable Chained Linkedlist =~ PMEM-Volatile
Skiplist Fixed height, fair probability
B-Tree Values referenced/embedded =~ PMEM-Persist
B+-Tree Values in the leaf nodes only
RB-Tree Instant rebalancing ~ PMEM-Trans

parallel settings, and various workloads. We will discuss them
in more details in the following subsections.

A. Indexing Data Structures

In this study, we do not intend to identify the best persistent
indexing data structures nor benchmark all possible indexing
data structures. Instead, we focus on showing developers the
performance they should expect from Optane DC when use
commonly seen indexing data structures in their applications
under various system settings.

As shown in Table m in pmemids_bench, we imple-
ment seven commonly seen structures: Arraylist, Linkedlist,
Hashtable, Skiplist, B-tree, B+-tree, and RBTree, and discuss
their benchmarking results running in various settings. If
needed, developers can easily extend pmemids_bench to
include their new indexing data structures for benchmarking,
which will be detailed in the later section.

Since each of these seven selected indexing data structures
still has many variants, here we first discuss their key imple-
mentation aspects in pmemids_bench. More details can be
found in our Github Repo [18].

First, we implement Arraylist as an unsorted array of fixed-
size items. The array is allocated once at the beginning and
will not dynamically grow. Since all items have fixed size, the
array supports random access using item Id. Each time, a new
item is inserted into a specific index of the array based on
its Id. Finding an item is also a direct memory access. Each
element in our arraylist is 128 bytes for storing the value. Such
a persistent array is useful if developers know the size of their
data ahead.

We implement Linkedlist as an unsorted list of elements
linked using pointers. Each element is dynamically allocated
when needed. Each time, the new element is appended at the
end of the list. To locate an item from the unsorted linkedlist,
we also implement an in-DRAM index (using Hashtable as
described later) to fast locate the linkedlist element through an
Id. Each element in our linkedlist is 156 bytes. The linkedlist
is fit for implementing logs, especially if the logs need to grow
continuously.

There are two ways of implementing Hashtable: open
hashing or close hashing. The close hashing can not have more
elements than the table slots, hence is limited in certain cases. In
pmemids_bench, we implement open hashing, specifically
the chained hashtable [27]]. We allocate a fixed number of hash
buckets at the beginning. The bucket number is determined by

Single thread

Parallel, Saturated A (100% Read)

B (100% Write)

Concurrent, Contention (90% Update, 10% Tnsert)

NUMA

the load factor and workload size (total number of elements in
the hashtable), both given in the benchmark configuration. The
default load factor of our hashtable is 0.75, which offers a good
trade-off between performance and space [28]. Each chain is
implemented as an unsorted Linkedlist. The new element is
inserted at the beginning of the chain each time. And checking
whether an element is exist needs to scan the whole chain.
Each element in hashtable is around 156 bytes.

We implement Skiplist using the fair probability (i.e. 0.5) for
an element in the i-th layer to be shown in (i+1)-th layer [29].
The default maximal height is 16 and also configurable.
Although there are other biased, deterministic and randomized
skiplist [30], [31], we focus on the fair one as it is widely
used in real systems, such as the in-memory key-value store
Redis [32]. Each element in the skiplist takes around 256 bytes.

We implement B-tree and B+-tree in the similar way, except
B-tree has both the keys and values stored in the internal nodes;
while B+-tree has keys stored in the internal nodes and values
stored in the leaf nodes. Previous research showed the size of
tree nodes affects the cache behaviors and leads to different
performance characteristics [33l], [34]], [35]. So, we implement
two versions of B-tree: 1) the values are part of the tree nodes
(value embedded); and 2) the values are stored separately and
linked via a pointer in the tree node (value referenced). These
two implementations lead to largely different tree node sizes.
More specifically, the first version generates tree nodes around
2K bytes while the second version leads to tree nodes 256
bytes (calculated based on the default B-tree branching factor
18, value size 128 bytes, and pointer size 8 bytes). B+-tree
does not store values in the internal nodes, hence only has
one implementation. Its tree node size is similar to the second
version of B-tree (256 bytes). For both trees, looking up a
key inside a tree node is done sequentially as binary search
will not introduce observable better performance with small
branching factor.

We implement RB-Tree following its initial design [36]]. We
instantly re-balance the tree after each insertion. Although RB-
Tree can have better performance with relaxed balancing [37],
[38]], we do not consider them in this study. The RB-Tree node
is around 192 bytes.

B. Persistent Modes

Each of these selected indexing data structures has been
studied thoroughly in DRAM setting. Our new contribution
in pmemids_bench is to evaluate their performance under



different persistent modes on Optane DC and DRAM. Specifi-
cally, we implemented four different modes for each indexing
data structure:

e DRAM mode is the original implementation of the
indexing data structure in DRAM, without any persistence
considered. This mode is for developers to compare what
the performance they could get if they introduce DRAM
indexing for their persisted data, for example the vertex
index shown in Fig. 2[b).

e PMEM-Volatile mode uses the PMEM device as a volatile
DRAM, ignoring the data persistence. In this mode, the
indexing data structures are written into Optane DC, but
without cache line flushing or memory fencing. Hence,
it does not guarantee data will be persisted safely. This
mode is implemented using PMDK 1ibvmem library. It
is useful if developers need large storage capacity and do
not require data persistence.

o PMEM-Persist is the standard way of using Optane DC.
As discussed in Section [[I-D} we leverage 1ibpmemob ]
library to implement all the persisted indexing data
structures. Specifically, we use its persistent, dynamic
memory management APIs to allocate memory and use
_persist APIs to properly flush the writes into Optane
DC (in batch for better performance). But, we do not
use the transaction mechanism for any of these memory
updates. Instead, we expect the developers will have
their own logic to solve the issues caused by potential
partial writes (as discussed in Section [[I-D). Together
with the PMEM-Trans mode, the results tell developers
the performance with or without transaction in their
applications, helping them make the trade-off.

e PMEM-Trans mode first guarantees all the data is per-
sistent, similar to PMEM-Persist mode. But, it further
leverages the transaction APIs from 1ibpmemob j library
to protect all operations that may contain multiple different
memory accesses or one memory update larger than 8
bytes. For instance, appending an element to a linkedlist
will include two operations: 1) allocate the new element
and initialize it; 2) modify the pointer to point to the
new element. We protect these two operations using a
transaction to avoid memory leaking. This mode tells
developers the overheads they will have if they use the
default transaction mechanism provided by PMDK, as
well as how they could optimize their data structures to
reduce the overheads.

C. Parallel Mode

It is known the Optane DC is much easier to be saturated
comparing to DRAM [10]]. So the performance would be vastly
different when users’ applications consist of multi-threads. So,
we consider the performance of the indexing data structures in
various parallel modes in pmemids_bench.

We list four parallel modes in Table. [l Among them, the
single thread mode is a special case of parallel mode: only one
thread is operating the indexing data structures. The NUMA
mode is another special case where we benchmark the NUMA

effects for all parallel modes. More details will be discussed
later about the NUMA setting of our platforms. The keys modes
here are actually Parallel, Saturated mode and Concurrent,
Contention mode.

In Parallel, Saturated mode, we initialize multiple in-
dependent instances of each indexing data structure. Each
data structure instance will be exclusively operated by an
independent thread. In this way, all threads are running in
parallel without any data race, hence do not need synchro-
nization. The performance limitations will mainly come from
the hardware bandwidth limitation. The results in this mode
also suggest the ideal concurrent performance of each indexing
data structure, where multiple threads are operating the data
structures concurrently but no conflicts are generated.

In Concurrent, Contention mode, we initialize only one
instance of each indexing data structure and have multiple
threads operate it concurrently. There will be a massive data
race. Then developers need to resolve these conflicts using
synchronization methods, which could be blocking (e.g., mutex
lock), non-blocking (e.g., spinning lock), lock-free, or wait-free.
The actual implementations of synchronization strategy vary
and can be quite different case by case. In pmemids_bench,
we do not try to benchmark all of them. Instead, we focus
on investigating the overheads of the commonly used mutex
locks in both volatile and persistent implementations, and leave
benchmarking specific synchronization methods to users.

To benchmark mutex locks, we use a single mutex lock to
serialize all data accesses, including both reads and writes to
the data structures. This will make the multiple threads run one
by one to write to the data structures, similar to what happens
when there is only one thread. But, running in multi-thread
introduces extra overheads for initializing, competing, holding,
and releasing the mutex lock. By comparing the performance
with different number of concurrent threads, we can identify
the overheads caused by the mutex lock and how they grow
as the number of threads increases.

There are multiple choices provided to developers when they
need to use mutex lock. And we want to understand their perfor-
mance overheads. First, there are two mutex locks developers
can pick: 1) the traditional pthread_mutex_lock offered
by pthread library, and 2) the pmemobj_mutex_ lock
offered by the 1ibpmemobj library. The semantic of these
two mutex locks is similar. The main difference is the pmemobj
mutex lock is stored on Optane DC persistently. This also means
that if the applications crashed, the 1ibpmemobj library will
automatically re-initialize the lock to avoid deadlock after
restart. Second, when developers pick the pthread mutex lock,
they have the options to store it in DRAM or Optane DC.
Although they might need to re-initialize the lock manually if
store pthread mutex lock on Optane DC, this strategy is still
useful when developers want to integrate locks into the PMEM-
resident data structures. Third, when developers program in
PMEM-Persist mode, they have the flexibility of using pthread
mutex lock instead of pmemobj mutex lock, especially given
the fact that DRAM-based pthread mutex lock will re-initialize
itself after a crash. So, whether using different locks may lead



to a different performance of the indexing data structures is
an important question to answer.

D. Workloads

The actual workloads running on real applications vary
significantly and hard to predict. While at the same time,
they do have a profound impact on the performance. Existing
benchmarks like YCSB typically include some representative
workloads, such as the five workloads (A to E) shown in the
top part of Table [II} to help benchmark the storage systems
in a setting that is close to the real world [17]. However,
in pmemids_bench, this is not feasible anymore, simply
because unlike benchmarking storage systems, we do not know
how developers will use the indexing data structures. So, in our
implementation, we leverage the YCSB workload generator,
but we do create different workloads for our evaluations.

TABLE II
WORKLOADS IN % OF DIFFERENT OPERATIONS.
YCSB Workload || A B C D E
Read 50 95 100 95 50
Update 50 5 - - -
Insert - - - 5 -
Read & Update - - - - 50

pmemids_bench

A (100% Read) B (100% Write)

Workload
Read 100 -
Update - 90
Insert - 10

As the bottom part of Table [[I| shows, there are only two
workloads included in pmemids_bench by default. And they
are the extreme workloads: ‘A (100% Read)’ and ‘B (100%
Write)’. In the 100% write workload, we actually include 10%
new insertions and 90% updates on existing data. Also, the
100% read workload only contains point lookups as not all the
data structures that we implement support range queries. For
range queries, more details can be seen in Lucas et. al. [39].

By benchmarking these extreme workloads, we do not at-
tempt to model the real-world workloads in pmemids_bench.
Instead, we provide developers an expectation or boundary
of the performance of their different design choices. Once
developers have their PMEM-based applications implemented,
they are free to generate the workloads they need to benchmark
the accurate performance of their applications. Note that, all
the workloads are generated using Zipfian distribution unless
specified otherwise.

E. Implementation Details

We implement pmemids_bench based on a C++ version
of YCSB [40]]. Our code is in open source at Github [18].

We make several major changes to YCSB to enable our data
structure-level benchmarking. Specifically, YCSB is designed
for evaluating Cloud storage systems, whose typical architecture
includes clients and servers connected via Ethernet with million-
second latency. However, the latency of accessing DRAM and
Optane DC is often less than micro-second (a thousand time

less). So, the overheads introduced by the framework itself
may become significant enough to change our results.

We carefully redesign the benchmark framework to remove
these overheads. First, we no longer implement separate storage
servers and clients. Instead, the client code has the indexing data
structure implemented internally. This eliminates the overheads
of network stacks. In addition, we move the data generation
phase out of the critical path. Currently, YCSB generates a
new key/value right before the operation, which will create
noticeable overheads in the evaluations. In pmemids_bench,
we pre-generate all key/value pairs before the actual operations
and store them in DRAM. These pre-generated data are stored
continuously and later accessed sequentially. They gain good
cache behaviors and introduce little overheads to our results.

V. BENCHMARKING RESULTS AND ANALYSIS

In this section, we report benchmark results we collected
in our evaluation platform and discuss our observations from
these results. Due to the space limitation, we can not present
all the results here. The complete results can be found in our
Github Repo [18].

A. Evaluation Platform

We conducted all the evaluations on a Dell R740 rack server
with two sockets. Each socket installs a 2nd generation Intel
Xeon Scalable Processor (Gold 6254 @ 3.10G) with 18 physical
(36 virtual) cores. The machine is running Ubuntu 18.04 with a
Linux kernel version 4.15.0. To enable the NUMA evaluation,
we put all the DRAM and Optane DC DIMMS into one socket
(node 0). This socket has 6 DRAM DIMMS with 32GB each
and 1 Optane DC DIMM with 128GB. In all the evaluations,
except the NUMA ones, we bind all the threads to node 0 to
enable local memory accesses. The total memory capacity is
192GB DRAM and 128GB Optane DC. We used PMDK 1.8
in the implementation.

B. Benchmarking Results and Observations

We collected extensive benchmark results from running seven
indexing data structures implemented in four different persistent
modes (DRAM, PMEM-Volatile, PMEM-Persist, PMEM-Trans)
under four parallel modes (with thread number increases from
1 to 16) on two workloads (100% write and 100% read). All
the evaluations were conducted 10 times to avoid bias; and
the workloads are large enough (i.e., 1 million reads/writes in
average) to place enough pressure on the data structures. In
this section, we show some key results and summarize our key
observations from these results.

Observation 1: PMEM-volatile mode performs better
than other PMEM-based modes in Read operations.

It is easy to understand that PMEM-Volatile will lead to
better write performance comparing with other PMEM modes,
simply because PMEM-Volatile mode does not flush cache line
nor fence memory operations to guarantee data persistence
during writes. Results in Fig. [3(a) confirm this.

But, interestingly, our results show PMEM-Volatile mode
also leads to noticeably better read performance than other
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PMEM modes. This is interesting because PMEM reads should
be operated the same in all PMEM-based modes. But, our
evaluations show different results in most of the indexing data
structures (except Arraylist and Linkedlist) for 100% read
workload.

We consider two potential reasons here. First, in PMEM-
Volatile, all the memory pointers are direct pointers and do
not need a translation. While in PMEM-Persist and PMEM-
trans modes, we need to call function pmemobj_direct
to convert a persistent pointer (PMEMoid) to normal pointer
(void ) each time, as shown in Fig. Ekb). This memory
translation is efficient, but still takes time and introduces
overheads. Second, although all three PMEM-based modes use
the same memory management library (jemalloc) internally,
the 1ibpmemobj used by PMEM-Persist and PMEM-trans
modes does include necessary extra steps and memory space to
guarantee transactional allocations. This will change the layout
during dynamic memory allocations and potentially affect the
later reads performance.

TABLE III
THE LAST LEVEL CACHE MISS RATIO OF DIFFERENT INDEXING DATA
STRUCTURES IN 100% READ WORKLOAD.

Data Structures PMEM-Volatile = PMEM-Persist PMEM-Trans
Hashtable 50.831% 66.081% 65.958%
Skiplist 44.002% 68.366% 72.643%

B-Tree 31.771% 74.940% 76.309%
B+Tree 37.333% 69.854% 73.858%
RBTree 37.205% 65.296% 67.832%

To validate our hypothesis, in Table we show the cache
miss ratios of five indexing data structures (i.e., Hashtable,
Skiplist, B-Tree, B+-Tree, RBTree) that have better read
performance in PMEM-Volatile mode. The cache miss ratios
are collected using perf [41] while running the same 100%
read workload in three PMEM-based modes. The results clearly

show, for these indexing data structures, PMEM-Volatile obtains
the least cache miss ratios among all PMEM-based modes;
the other two modes (PMEM-Persist and PMEM-Trans) have
similar cache miss ratios. This explains why PMEM-Volatile
leads to the best read performance in actual data structures.

Observation 2: The Read performance of indexing
data structures on Optane DC diverges from what
the low-level benchmarks suggested.

Previous low-level benchmarking studies showed Optane
DC has lower read bandwidth and higher read latency than
DRAM [10]. We conducted the same low-level benchmarking
on our evaluation platform and presented the results in Fig. f]
Here, we can see our Optane DC read bandwidth (single thread)
is 2.0X lower than DRAM and the read latency is 2.8X higher
than DRAM, which are similar to the one reported previously.
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Fig. 4. The low-level benchmark results of random reads (from single
thread) on our Optane DC platform. The left figure shows the read latency in
nanoseconds; the right figure shows the bandwidth in GB/s. Note that, Both
DRAM and PMEM are local memory accesses.

But, when it comes to the actual indexing data structures,
the overheads of Optane DC are different across different
data structures and may diverge a lot from the low-level
benchmarking results, as shown in Fig. 3(b). For some indexing
data structures, such as Arraylist, Linkedlist, and B+-tree,
DRAM is less than 1.5x faster than PMEM-Persist (e.g., 3282
KTPS vs 2537 KTPS in B+-Tree). While, at the same time,



data structures such as Skiplist, B-Tree, and RBTree, do show
2x performance slowdown when moved from DRAM to PMEM-
Persist mode.

We consider the divergent read performance mainly comes
from the locality of different indexing data structures, which
comes from two places. The first is spatial locality. The sizes
of the elements in our data structures are larger than CPU
cache line, for example, Skiplist element takes about 256
bytes and B-tree node also takes about 256 bytes. So reading
elements can take advantages from both the CPU caches (64
bytes) and the Optane DC internal buffer (256 bytes) to gain
better performance. The second source is temporal locality.
The workload we generated in pmemids_bench follows
the Zipfian distribution by default. This distribution has hot
elements. So the generated workload may request the same
data element repeatedly, in which case, later accesses can take
advantage of the CPU caches and the internal buffers.

Observation 3: The persistent Writes on Optane DC
have high overheads, while volatile Writes have lower
overheads.

From Fig. [3] we can observe that PMEM-Persist introduces
significant overheads in writes across all data structures. For
most of the indexing data structures, the persistent writes
introduce a 2-5x slowdown comparing to DRAM mode.

We also observed the PMEM-Volatile mode has lower writes
overheads. This is expected since writes in PMEM-Volatile
mode do not force cache line flushing nor memory fencing. But
to what extent this will improve the performance is unknown.

We showed, for most of the indexing data structures, there
is less than 2x slow down on writes in PMEM-Volatile mode
comparing to DRAM. This is impressive given the PMEM
media is much slower than DRAM [10]]. Together with its
high read performance as discussed earlier, PMEM-Volatile
mode should be an attractive option for holding large datasets
if data persistence is not a concern or handled elsewhere. The
application could perform exceptionally well even comparing
with DRAM, while at the same time be more cost-effective
and energy-effective.

Observation 4: PMDK transaction mechanism intro-
duces high overhead. The overhead increases with
the size of the transaction.

From Fig. [3a), it is easy to observe that PMEM-Trans mode
leads to the worst writes performance across all indexing data
structures. For reads performance, it is basically the same as
PMEM-Persist as the transaction is not needed in reads.

PMDK implements transaction through redo/undo logs,
which will copy the protected memory back and forth to
ensure the transaction executed together. Here, the main
overhead is memory copy, which increases when the size of the
transaction increases. We observe the same from Fig. [3[(a). For
indexing data structures that have a small element size, such as
Hashtable, Skiplist, and RBTree, PMEM-Trans writes perform
only slightly worse than PMEM-Persist. While, on the other
hand, data structures such as B-tree and B+tree, which have

large tree node, will experience much higher overheads due
to transaction operations, for example, B-tree with transaction
achieves less than 1/2 performance comparing with PMEM-
Persist mode.

To show how the size of protected memory changes the per-
formance of PMDK transactions, we implemented two B-trees
in pmemids_bench for comparison. The main difference of
them is whether it is the values (i.e., value embedded) or just
the references pointing to the values (i.e., value referenced)
that are stored in the non-leaf nodes. This creates B-tree with
node size 2k bytes v.s. 256 bytes. We show the performance
of both B-tree implementations in four persistent modes in
Fig. E} Here, we can see that, increasing the node size (value
embedded) actually increases the write performance in DRAM,
PMEM-Volatile, and PMEM-Persist modes; but decreases the
performance of PMEM-Trans mode. The better performance
of value embedded comes from the larger continuous writes
(2k). But the transaction overheads out-weight the good cache
behaviors and significantly reduce the write performance.
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Fig. 5. The performance of two B-Tree implementations (value referenced vs.
value embedded) in different persistent modes. The tree node size changes
from 256 byts to 2K btyes.

This observation shows the transaction mechanism provided
by the PMDK library introduces high overheads. To minimize
them, developers should reduce the size of memory updated
inside the transaction. In addition, for some cases, developers
may further consider leverage after-failure fixing mechanisms
instead of using transactions. For example, in Linkedlist, two
operations: ‘allocate a new node’ and ‘append the new node
to the linkedlist’ should both success or fail to avoid memory
leaking. If developers protect these two operations using
transaction, they will experience a similar overhead as shown in
our benchmarking results. However, instead of using transaction,
developers can actually fix the memory leaking after the
failures. Specifically, the 1ibpmemobj library already tracks
all the memory allocation internally. So, if a failure happens
in-between these two operations, after the crash and restart,
developers can scan all the recorded memory allocations and
free the ones that are not reachable through the Linkedlist to
fix the potential memory leaking.

Observation 5: Both Optane DC writes and reads do
not scale well in indexing data structure level.
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All the previous observations are based on single-thread
benchmarking results shown in Fig. [J] We further investigated
the parallel performance of Optane DC.

In this set of evaluations, we benchmarked the indexing data
structures in the Parallel, Saturated mode. In this mode, we
started a given number of threads to run the workloads. Each
of these threads initialized a local instance of the indexing
data structures and operated on its local instance only. This
mode can be seen in concurrent applications where 1) multiple
threads read/write to separate datasets; or 2) multiple threads
read/write to the same dataset but happen do not conflict due to
the workload pattern or the lock design. For both scenarios, the
bottleneck will be on how fast Optane DC can be saturated by
multiple independent threads. Note that, in all evaluations, we

bind all the threads to node O to ensure local memory accesses.

In Fig. [f[a), we show 100% write performance of different
indexing data structures running in this Parallel, Saturated
mode. Here, we can observe that wrifes in Optane DC do not
scale when thread number increases. Across all the indexing
data structures, all three PMEM-based modes (PMEM-Volatile,
PMEM-Persist, and PMEME-Trans) have flat or descendent
curves when the thread number increases from 4 to 16. As
this mode does not introduce any data race nor involve
synchronization, we believe this comes from the limited
scalability of Optane DC itself. Such a trend is distinct from the
DRAM mode, where all data structures show good scalability
on write performance with more threads.

We also plot the 100% read performance in the Parallel,
Saturated mode. The results are shown in Fig. |§kb). Here, we
can observe a similar pattern, i.e., limited scalability, as writes
for most of the indexing data structures, except Arraylist and
Linkedlist. This is interesting, because different from other data
structures, only these two data structures do reads in one-hop,
which means only one Optane DC access is needed to fulfill
a read request. While, other indexing data structures, such as
RB-Tree, will need to access Optane DC multiple times for

searching the element before reading it. We believe it is such
a read fanout that affects the read scalability.

The results on read scalability of ArrayList and Linkedlist
actually agree with the conclusion made by previous Optane DC
low-level benchmark results [11], quoted "Optane DC reads
scale with thread count; whereas writes do not." But, our
indexing data structures level benchmarking further suggests
that the data structure itself actually has a profound impact on
the Optane DC read scalability. And the impacts are not equal
to DRAM and Optane DC. More accurately, if reading from
a data structure requires multiple data accesses to locate that
element, the read performance will not scale on Optane DC.

The key insight for application developers is two-fold. First,
if your application is highly concurrent, then picking the
indexing data structures that have less read fanout is necessary
to exploit the Optane DC concurrency. Second, if your core data
structures do have high fanout, then increasing the parallelism
will not improve the Optane DC read/write performance.
Developers should look for DRAM-based solutions.

Observation 6: Storing mutex locks in PMEM or
DRAM does not change the performance much.

We further investigated the overheads of mutex locks using
the Concurrent, Contention mode. In this mode, we initialized
one instance for each indexing data structure and had multiple
threads operate it concurrently. To maximize the mutex lock
overheads, we actually used a single mutex lock to protect the
whole data structure for both read and write operations. In this
way, we can compare the overheads of different mutex lock
choices in an extreme scenario with their impacts amplified.

In Fig. [/| we plot the write performance of all the indexing
data structures in two concurrent cases, i.e., single thread and
16 threads. This is to show the overheads caused by intensively
competing the same lock for different data structures. Note
that, we implement mutex lock differently in these persist
modes: in DRAM and PMEM-Volatile mode, we directly use
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the pthread mutex lock stored in DRAM; in PMEM-Persist
and PMEM-Trans modes, we use the pmemobj mutex lock
stored in PMEM.

From these results, we can see that competing the single
mutex lock among multiple threads significantly decreases
the write performance. This is expected because the single
mutex lock creates significant contentions. More than this, we
also see that the persistent mutex locks used in PMEM-Persist
and PMEM-Trans modes actually have less effects on the
performance, especially when compared with the pthread mutex
locks in the other two modes. The results suggest that PMEM-
based data structures are less affected by mutex locks than
their DRAM counterparts. This is because DRAM-based data
structures have higher throughput and hence higher contention.

The developers actually have multiple choices to use mutex
locks in their applications. So, in addition to know that mutex
locks kill the performance, it is also important to understand
how different ways of using mutex locks would affect the
performance. In this evaluation, we implemented and compared
four different ways that developers could use to program mutex
locks. Specifically, when program in PMEM-Volatile mode,
developers can directly use the pthread mutex lock. And, they
have the options to store the lock in DRAM (separated from the
In-PMEM data structures) or in Optane DC (together with the
In-PMEM data structures). When program in PMEM-Persist
mode, developers can use either PMEM-based pmemobj mutex
lock or DRAM-based pthread mutex lock, both of which will
be re-initialized after applications reboot. These choices may
have an impact on the performance.

To show how these ways will affect the performance, we
plot the write performance of these four cases with increasing
the number of threads in Fig. [8] Due to the limited space, we

only use RBTree as an example. Other indexing data structures
have the similar results. From Fig. [8] we observed that, for
both PMEM-Volatile and PMEM-Persist modes, putting mutex
locks in DRAM or Optane DC does not affect the performance
of the data structure much. We believe these results come from
the fact that the pmemobj mutex lock is internally also pthread
mutex lock, and the frequent acquire/release lock operations
are actually done in CPU cache level without being affected
by the location.
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Fig. 8. The 100% write performance comparison of four different mutex lock
usages in PMEM-based RBTree, with thread number increases from 1 to 16.

Observation 7: Non-local memory accesses affects
Optane DC more than DRAM; affects writes more
than reads.

We further evaluated how NUMA architecture could affect
the performance of Optane DC. In the previous evaluations,
we bind threads to node 0, which has all the Optane DC and
DRAM DIMMS installed. In this evaluation, we ran the same
evaluations but bind all threads to node 1, which does not have
any memory installed. In this way, all memory accesses become
non-local and will experience higher latency. In Fig. [0 we
compared the performance of these two cases on all indexing
data structures. It contains results on two workloads (100%
read and 100% write) using a single thread.

We have several observations from the results in Fig. [9]
First, the throughput of indexing data structures using non-local
memory accesses is indeed lower for both DRAM and Optane
DC, simply because of the higher latency in each non-local
memory access. Second, non-local memory accesses affect the
most on PMEM-Trans writes. For most of the indexing data
structures, we see only half bandwidth if they wrote to non-
local memory. We believe this is because transaction writes
on Optane DC introduce extra writes on PMEM undo/redo
logs. These writes are also non-local, hence further slow down
the writes. Third, non-local memory affects writes more than
reads, mostly because writes do not leverage cache as well as
reads. For the same reason, the non-local memory also affects
more in PMEM-Persist mode, in which the cache line needs to
be flushed after each write. The insight for developers here is,
if they need to read/write data stored in remote nodes anyway,
they might consider loading or buffering the data from remote
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Fig. 9. The benchmark results of seven indexing data structures in different persistent modes accessing local memory and remote memory. All evaluations are

based on single thread.

Optane DC to remote DRAM first, instead of directly accessing
the remote persistent memory.

VI. RELATED WORK

There have been several benchmark studies on Optane
DC recently. Some focus on Optane DC low level device
properties [10], [11]], [13]]; some focus on high level application
on Optane DC [12], [42]. Our work is inherently different
from them as we focus on indexing data structures, which are
the build blocks of various applications, aiming to provide
developers insights about the potential performance of their
applications on Optane DC under different design choices.

Lately, there are studies starting to focus on indexing data
structures on Optane DC as well, such as [39], [43]. Among
them, Philipp et. al. benchmarked low-level primitive
operations of indexing data structures, such as splitting or
merging tree nodes. Lucas et. al. [39], on the other hand,
benchmarked B+-Tree-based indexing data structures that
are designed specifically for persistent memory, such as
BzTree [44], FPTree [43], NV-Tree [46], and wBTree [24].
Although focusing on different data structures and levels, we
do believe their results are good complementary to our study.

Since we benchmark indexing data structures in this study,
it is worth noting that there have been a significant amount
of efforts conducted in designing new indexing data structures
on persistent memory, such as persistent B+-Tree [47], [24]],
[45], [46], persistent Hashtable [48], [49], [50], persistent
Skiplist [51]], and persistent RB-tree [52]]. Several works [53]],
also proposed general guidelines for porting data structures
to persistent memory. All these research works do include some
performance evaluations. But these evaluations are specific and
cannot directly serve as benchmarks for application developers.
Also, most of these works were not evaluated on real Optane
DC platforms.

VII. CONCLUSION AND FUTURE WORK

In this paper, motivated by the trends of adopting the new
Optane DC devices into various applications and the needs
for developers to better understand the performance of Optane
DC, we conducted the first performance study of the Intel
Optane DC from indexing data structures’ perspective. To do
so, we implemented pmemids_bench, a benchmark suite
that includes seven commonly used indexing data structures
implemented in different persistent modes and parallel modes.
Through extensive evaluations on real Optane DC platforms,
we summarized seven observations covering various aspects
of Optane DC programming, such as persistence overheads,
transaction overheads, scalability, and lock overheads, etc.
Some of our observations match the previous benchmarking
results well, but some do not, which makes our results useful
and interesting to end-users. We believe pmemids_bench
has the potential to be a necessary reference for developers
who are designing their applications to work with Optane DC.
In the future, we plan to enrich the benchmark by adding more
commonly seen data structures, such as stack and graph. We
also plan to investigate more lock selections in the Concurrent,
Contention mode, such as read-write lock, fine-grained locking,
and lock-free concurrency, etc.
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