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Abstract—LDPC codes provide stronger error correction ca-
pability for flash memory, but at the expense of high decoding
latency that leads to poor read performance. In this paper,
we demonstrate via preliminary analysis that the four states
of a MLC cell in flash memory differ substantially in error
proneness and proportion, which opens up new opportunities
for reducing the read latency. We therefore design BitFlip, a
lightweight yet effective bit-flipping scheme for flash memory.
BitFlip carefully examines the bits at the proper granularity
and looks for opportunities to flip the error-prone data to make
them more stable against retention errors, thereby reducing the
decoding time. In-depth analysis and extensive experiments are
conducted to show that BitFlip can reduce 25.9%-34.2% of the
read latency and prolong 2.9%-33.3% of the lifespan for flash
memory, while adding negligible impact on the write latency.

Index Terms—LDPC Codes, Bit Flips, Read Performance,
Reliability, NAND Flash Memory

I. INTRODUCTION

Over the past few years, NAND flash memory [1] (also
called “flash memory” for brevity) has been replacing hard
disk drives as the primary storage device in many storage
systems (e.g., mobiles and laptops), mainly due to its superior
traits, such as low access latency, low power consumption,
and high shock resistance. With the per-bit cost of the flash
memory continuing to drop, the flash memory is poised to be
deployed in a wide range of applications (e.g., storage servers
and data centers).

However, flash memory has a potential defect in that it can
only tolerate a certain number of program/erase (P/E) cycles,
thereby aggravating the concern about the reliability of the
data being stored in the flash memory. For example, the SLC
flash, which stores one bit per cell, can only survive under 10 k
P/E cycles [2]. More specifically, each cell, which is the basic
storage unit in flash memory, is constructed of floating gate
transistors. When writing data into a flash cell (also called
“programming”), a certain number of electrons are injected
into the floating gate to ensure that the resulting threshold
voltage is properly set, such that the subsequent reads can
obtain the right data by transforming the sensed threshold
voltage. To re-program a flash cell, an erase operation has
to be performed in advance to eject all the electrons that are
currently captured in the floating gate. Frequently performing
P/E cycles will damage the structure of the floating gate
and weaken its capability to trap electrons. Consequently, the
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electrons are prone to escaping from the floating gate over
time, resulting in flash errors. More seriously, as the flash
memory continuously becomes denser, the number of P/E
cycles that it can tolerate sharply declines. For example, the
MLC (multi-level cell) flash memory, while capable of storing
two bits in a cell, can merely endure about 3 k P/E cycles for
30-40nm technology generations [2].

The reliability weakness of flash memory calls for ad-
vanced error correction codes with stronger correction capa-
bility. To this end, the low-density parity-check (LDPC) code
has emerged to be such a code [3]–[7]. Generally, LDPC
code adopts two stages of decoding processes, namely, hard-
decision decoding and soft-decision decoding, to increase the
probability of data correction. LDPC code first tries hard-
decision decoding to correct the arised errors. If the hard-
decision decoding fails, then LDPC code will resort to the soft-
decision decoding, which comprises several decoding levels.
The decoding levels in the soft-decision decoding are per-
formed iteratively until the decoding process succeeds, where
at each level the data will be re-sensed and re-transferred
for conducting another decoding trial. As a result, though the
decoding probability increases with the number of decoding
levels used, the decoding time is also progressively accumu-
lated. Therefore, when the raw bit error rate (RBER) grows,
the decoding latency in LDPC code is detrimental to the read
performance.

In this paper, we mainly focus on retention errors for the
MLC flash memory, which are caused by charge leakage over
time and have been demonstrated as a main source of the flash
errors in many independent studies [2], [8]. Generally, there
are four possible states exhibited by a MLC flash cell, namely,
‘00’, ‘01’, ‘10’, and ‘11’. The retention errors of a MLC flash
cell can be formally represented as ‘AB’→‘CD’, where ‘AB’
and ‘CD’ are the states stored in the MLC flash cell before
and after the occurrence of retention errors, respectively. Our
observation is that the four possible states that a MLC flash
cell exhibits are substantially different in both error proneness
and proportion in practice. On one hand, the fractions of
erroneous changes between any two possible state pairs are
relatively unbalanced, where ‘00’→‘01’ and ‘01→10’ are the
most frequent retention errors and account for about 90% of
all possible retention errors [2]. On the other hand, we find
via analyzing the real-world files that the states ‘00’ and ‘01’
take up the majority of all the four possible states (69.0% on



average, see Section II-C).
Based on this observation and insight, we then design Bit-

Flip, a bit-flipping technique from the ground up to make use
of the differences of the four possible states to simultaneously
improve the read performance and reliability of flash memory.
BitFlip first carefully examines the state proportions of the
stored data at a proper granularity (e.g., 512 Bytes). It then
looks for opportunity to flip the bits, with the primary objective
of reducing the number of the states ‘00’ and ‘01’ that are
prone to retention errors. This design can bring forth two
advantages. First, by reducing the number of the states ‘00’
and ‘01’, BitFlip can effectively decrease the probability of
retention errors, thereby reducing the decoding latency in
LDPC code and improving the read performance. Second,
by reducing the occurrence of retention errors, BitFlip helps
prolong the lifespan of flash memory. To the best of our
knowledge, BitFlip is the first work that employs the bit-
flipping technique to simultaneously improve the read perfor-
mance and reliability of flash memory. In addition, BitFlip is
also orthogonal to prior work [3], [4], [6], [7], [9]–[12] and
therefore can complement existing studies in the literature of
flash memory.

Our main contributions can be summarized as follows.
• We first analyze a wide range of real-world data files and

identify that the proportions of the four MLC states are
substantially unbalanced in practice.

• We design BitFlip, a bit-flipping technique to improve the
read performance and reliability for flash memory. BitFlip
first carefully analyzes the proportion of the states at a
proper granularity. It then duly flips the bits to reduce the
distribution of the two error-prone states ‘00’ and ‘01’,
with the primary objective of suppressing retention errors.

• We implement BitFlip in the SSDsim simulator [13] and
conduct extensive evaluation with real-world traces and
files, showing that BitFlip can reduce 25.9%-34.2% of the
read latency and prolong 2.9%-33.3%% of the lifespan
for flash memory, while adding negligible impact on the
write latency.

The rest of this paper proceeds as follows. Section II
presents the background and motivation. We then elaborate
the main idea of the BitFlip in Section III and evaluate its
performance in Section IV. Finally, we review the related work
in Section V and conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATIONS

In this section, we first introduce the basics of flash (Sec-
tion II-A) and elaborate the workflow of error correction in
LDPC code (Section II-B). We then present the analysis of
the state proportions in real-world data files, which guides
and motivates the design of BitFlip (Section II-C).

A. Basics of Flash

A NAND flash cell is a floating gate metal oxide semicon-
ductor field effect transistor (FGMOSFET), which stores the
injected electrons to represent data information through the
exhibited threshold voltage [1]. Figure 1 shows a basic flash
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Fig. 1. Schematic diagram of a flash memory cell.
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Fig. 2. The four states in a MLC flash cell.

memory cell, in which two insulation layers are located at the
upper and lower ends of the floating gate, respectively. When
the flash memory is powered off, the electrons in the floating
gate are still trapped, thereby producing the non-volatile nature
of the NAND flash memory.

The evolving of microelectronics allows a flash cell to store
more information. Based on the number of bits that a cell
can store, we can classify the general flash memory into the
following branches: SLC (i.e., one bit per cell), MLC (i.e.,
two bits per cell), TLC (i.e., three bits per cell), and QLC
(i.e., four bits per cell). With the number of bits stored in a
flash cell increases, the number of P/E cycles that it can endure
dramatically drops. For example, the SLC flash memory can
tolerate 10 k P/E cycles, while the QLC flash memory can
survive under merely 1.5 k P/E cycles [14]. In this paper, we
mainly focus on the MLC flash memory, as the MLC flash
memory continues dominating the global flash memory market
[15].

A flash cell uses threshold voltage to represent the data
stored, where the threshold voltage of each cell heavily de-
pends on the number of electrons stored in the floating gate.
Consequently, the write and read operations to a flash cell
can be realized by setting and sensing the threshold voltage,



respectively [1], [2]. Specifically, to store n bits in a flash
cell, the corresponding voltage range will be partitioned into
2n voltage windows. Figure 2 shows an example of the four
voltage windows of the MLC flash cell, which is supposed to
arrange two bits (i.e., n = 2). When writing data to a flash cell
(also called the “program” operation), the threshold voltage is
set by injecting a certain number of electrons into the floating
gate, ensuring that the resulting threshold voltage is properly
in the range of the corresponding voltage window [3], [16].
Generally, the higher threshold voltage requires more charge
injected. When reading the data in a flash cell, its threshold
voltage will be sensed and then compared with the voltage
window to identify the stored information.

A flash cell cannot be re-programmed directly. Before re-
programming a flash cell, we have to perform an erase opera-
tion, which ejects all the electrons stored in the corresponding
floating gate [1]. However, the frequently program/erase (P/E)
cycles will damage the structure of the floating gate transistor
and hence weaken the capability for the floating gate to trap
electrons. As a consequence, after enduring enough P/E cycles,
the threshold voltage is prone to shift and the noise margin
between voltage windows gradually blurs (see Figure 2(b)).

In this paper, we mainly focus on the retention errors
in the MLC flash memory, which are caused by the charge
leakage over time and becomes the dominant source of flash
memory errors [17]. Previous studies have uncovered that the
distribution of retention errors closely relates to the states [2].
More particularly, because of the electron leakage in retention
errors, the state with more electrons is much easier to shift
to the left adjacent state with less electrons. To demonstrate,
among the four states of the MLC flash cell, the most common
retention errors are ‘00’→‘01’ (i.e., the original information
‘00’ will change to ‘01’ if the retention error occurs) and
‘01’→‘10’ (i.e., the original information ‘01’ will shift to
‘10’ if the retention error occurs), which take up 46% and
44% among all possible information changes under retention
errors [2], respectively. It rarely happens that a state transits
to another non-adjacent state (e.g., ‘00’→‘11’). As the states
‘00’ and ‘01’ are more vulnerable to incur retention errors, we
call them error-prone states throughout the paper.

B. Error Correction in LDPC

Because of the stronger error correction capability, LDPC
code [18] is now extensively adopted in flash memory [3], [4],
[6], [7], [19]. LDPC code corrects errors using the following
two consecutive steps, namely hard-decision decoding and
soft-decision decoding [20], where Figure 3 summarizes the
workflow of the data decoding in the LDPC code. Specifically,
it first uses the optimal reference voltage to read the data
(represented in the binary form) and performs the hard-
decision decoding. If the hard-decision decoding fails, it then
resorts to the soft-decision decoding, which comprises several
decoding levels 1 by default [12]. The soft-decision decoding is
performed level-by-level and the error correction capability is

1Some papers also call them “sensing levels” [3] or “read levels” [12].
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Fig. 3. The workflow of the data decoding in LDPC code.
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stronger when the level of the soft-decision decoding increases
[12]. Specifically, when using more levels in the soft-decision
decoding, the LDPC decoder can re-sense more accurate
information for decoding, thereby increasing the probability
for data correction. Figure 4 shows the decoding probability
versus the RBER for different decoding levels, indicating
that for a given RBER, the LDPC code with more sensing
levels has a lower decoding failure probability. For example,
when the RBER is 0.016, the soft-decision decoding with
six extra decoding levels (i.e., the LDPC code with six extra
sensing levels in Figure 4) has a much smaller decoding failure
probability than that with four extra decoding levels.

While LDPC code has stronger error correction capability,
it severely deteriorates the read performance of flash memory.
The reason lies in that the iterative decoding process in
the hard-decision and soft-decision decodings of LDPC code
accumulates the read latency [10]. For each trial, the system
has to re-sense the stored data and re-transfer it to the LDPC
decoder. Table I gives the latencies spent in the hard-decision
decoding and different decoding levels of the soft-decision
decoding, indicating that the decoding latency progressively
grows with the number of the decoding levels used.

C. Analysis and Motivation

Analysis: To probe the real proportions of the four states in
the MLC flash memory, we first carry out preliminary analysis
based on the real-world files. The same as the previous work



TABLE I
RBERS AND THE CORRESPONDING DECODING LATENCIES.

Level RBER Read Latency
Hard-decision decoding <0.005 85us

One extra decoding level [0.005,0.006) 109us
Two extra decoding levels [0.006,0.008) 133us

Three extra decoding levels [0.008,0.009) 157us
Four extra decoding levels [0.009,0.01) 181us
Five extra decoding levels [0.01,0.012) 205us
Six extra decoding levels [0.012,0.013] 229us

TABLE II
FILE SELECTED FOR ANALYSIS.

File Type File information

Game files
Game 1∼10: Kerbal Space Program, Onigiri,
Paunch, Robocraft, Sniper Fury, War Thunder,
Destiny 2, Dark Deception, Star Conflict, Kika Raid

Image files Image 1∼10: Linux (version: 1.1.13, 1.2.12, 1.3.12,
2.0.10, 2.2.21, 2.3.13, 2.4.19, 2.6.12, 3.0.11, 5.0.7)

Multimedia files

Photos_1∼3: New York Times [21]–[23]
Mp4_1∼3: Vienna New Year Concert (2017∼2019)
(Bit rate: 192 Kbps)
Mp3_1∼4: Partita No. 2 in C Minor,
Prelude and Fugue No. 9 in E Major,
Prelude and Fugue No. 16 in G Minor,
Prelude and Fugue No. 19 in A Major,
(By Johann Sebastian Bach, Bit rate:192 Kbps)

Executable files Executable files in Linux Kernel (5.3.0)

[24], we select a bunch of files from a wide range of file
types, including game files, image files, multimedia files, and
executable files. Table II lists the files and the corresponding
file types that are chosen in this analysis. For each file, we
analyze its content and measure the proportion of the error-
prone states (i.e., states ‘00’ and ‘01’). For example, based on
ASCII, the character ‘a’ can be represented by the eight bits
“01 00 00 01”, thereby occupying four MLC flash cells (each
MLC cell can store two bits, see Section II-A) to exhibit two
‘00’ states and another two ‘01’ states.

Figure 5 first presents the proportion of the error-prone
states in different files across the four file types. We can
observe that the error-prone states take up the majority among
the four states in all the files. Specifically, the proportion of the
error-prone states ranges from 50.1% (MP3_1 in Figure 5(c))
to 78.6% (dir in Figure 5(d)).

Figure 6 then gives the average proportions of the four states
in different file types. The results show that the proportion
of the state ‘00’ (resp ‘01’) is obviously larger than that of
the state ‘11’ (resp. ‘10’) across all file types. This finding
will be utilized to demonstrate that the reliability of the
stored data is further strengthened under the proposed BitFlip
(Section III-D).

As the error-prone states predominate in the state propor-
tions, it raises a critical concern about the reliability of the
stored data, especially when RBER dramatically climbs with
the aging process of the flash memory.

Motivation: Our motivation is that we can convert the error-
prone states to other states that are relatively stable (e.g., the
states ‘10’ and ‘11’) via bit flips and therefore reduce the
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Fig. 5. Analysis on the proportion of the error-prone states for different file
types.

Game Image Multimedia Executable
0

5

10

15

20

25

30

35

40

45

3
7
.4

%

3
2

.4
%

1
4

.8
%

1
5

.4
%

2
7

.9
%

2
7

.7
%

2
2

.2
%

2
2

.2
%

3
6

.8
%

3
2

.2
%

1
7

.7
%

1
3

.3
%

3
9

.6
%

1
8

.8
%

1
8
.5

%

P
ro

p
o

rt
io

n
 (

%
)

File types

 '11'  '10'  '01'  '00'

2
3

.1
%

Fig. 6. Proportions of the four states across the four file types.

proportion of the error-prone states. For example, the original
eight bits to represent the character ‘a’ is “01 00 00 01”, which
are represented via four error-prone states. By using the bit
flips, we can change the eight bits to “10 11 11 10”, thereby
avoiding the error-prone states.

Reducing the number of the error-prone states can bring
forth two advances. On one hand, as the error-prone states
are the major cause of the RBER, we can suppress the
RBER once the number of the error-prone states is reduced,
thereby favoring the data reliability. On the other hand, we can
decrease the number of decoding levels for data correction in
LDPC decoding and hence reduce the read latency.

III. DESIGN OF BITFLIP

We now present the design of BitFlip, which is built on
two modules: bit counter module and reorganization module.
Figure 7 presents the architecture of BitFlip, which is realized
in the flash translation layer (FTL) [25], [26].

We summarize the workflow of BitFlip as follows. Before
writing data to the flash memory, the bit counter module and
the reorganization module will examine the state proportions
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of the data (Section III-A) and flip the bits once the error-prone
states in the data are dominant (Section III-B). When reading
data from the flash memory, the reorganization module will
restore the data and return them to the host (Section III-C). We
finally provide in-depth analysis in terms of storage overhead
and data reliability for BitFlip (Section III-D).

A. Bit Counter Module

The bit counter module is responsible for analyzing the
incoming data and counting the number of four states for
deciding whether to perform the bit flip operations. Specifi-
cally, to reduce the metadata overhead, the bit counter module
suggests analyzing and flipping the data at the unit-level. In
this paper, a unit is actually a piece of data information, whose
size can be tunable to conform with the system requirement.

Figure 8 shows the workflow of the bit counter module and
Algorithm 1 elaborates the detailed write procedures (steps 1-
6). Given a data chunk to be written, the bit counter module
first divides the data chunk into equal-sized units. For each
unit, the bit counter module calculates the number of the
four states (i.e., ‘00’, ‘01’, ‘10’, and ‘11’) (steps 1-2 in
Algorithm 1). If the error-prone states occupy the mainstream
position (i.e., more than the states ‘10’ and ‘11’ which are
relatively stable) in this unit, we term this unit as an error-
prone unit (step 3) and suggest flipping the bits in this unit.
To facilitate the restoration of the flipped unit in future reads,
the bit counter module generates a tag bit with the value of ‘1’
for this unit, indicating that this unit should be flipped before

Algorithm 1: Write procedures in BitFlip.
Input : Data from the host {D1, D2, · · · , Du}, where u is

the number of units.
Output: Data flushed to the flash memory

{R1, R2, · · · , Ru}.
/* Functionality of the bit counter module:

checking the error-prone states */
1 for i← 1 to u do
2 Get the numbers of four states of Di represented by

N00, N01, N10, and N11

3 if N00 +N01 > N10 +N11 then
4 Set the tag bit ti as 1

5 else
6 Set the tag bit ti as 0

/* Functionality of the reorganization module:
flipping the bits for the error-prone units

*/
7 for i← 1 to u do
8 if ti == 1 then
9 Generate a unit Fi with all ‘1’s (i.e., {11 · · · 1})

10 Ri = Di ⊕ Fi // ⊕ means XOR operation

11 else
12 Ri = Di

13 Save tag bits {t1, t2, · · · , tu} in the OOB area
14 return {R1, R2, · · · , Ru}

writing to the flash memory (step 4). On the other hand, if the
error-prone states are less than other states in a unit, the bit
counter module will generate a tag bit with the value of ‘0’
for this unit conversely, representing that the data of this unit
should be unchanged in the write operation (step 5).

Consequently, the bit counter module can bring forth the
following three advantages. First, by flipping the error-prone
states for the error-prone units, the bit counter module can
ensure that the proportion of the error-prone states in any
unit will be no more than 50%. We also measure the number
of error-prone states that can be reduced via bit flips in the
experiment evaluation (Figure 11(b) in Section IV-A).

Second, the bit counter module merely needs eight tag bits
for each 4-KB data chunk, if assuming that the unit size is 512
Bytes, to record the flip status of the data, thereby introducing
marginal storage overhead (about 0.02% of the data to be
stored in the flash memory). In realization, the additional tag
bits can be stored in the out-of-band (OOB) area of the flash
memory, and the unit size can be tuned as well to conform
with the storage requirement of practical applications. We also
uncover the intrinsic connection between the unit size and the
introduced storage overhead in Section III-D (Figure 10).

Third, the bit flips can be easily implemented by using
basic hardware circuits, demonstrating that BitFlip has good
technical feasibility. The XOR operations in hardware can be
quickly performed, thereby adding marginal impact on the
write latency (Section IV-D).
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Fig. 9. An example about the workflow of the reorganization module.

Algorithm 2: Read procedures in BitFlip.
Input : Data stored in the flash memory

{R1, R2, · · · , Ru}, where u is the number of units.
Output: Data returned to the host {D1, D2, · · · , Du}.

1 Read tag bits {t1, t2, · · · , tu} from the OOB area
2 Fetch the data {R1, R2, · · · , Ru} from the LDPC decoder
3 for i← 1 to u do
4 if ti == 1 then
5 Generate a unit Fi with all ‘1’s (i.e., {11 · · · 1}
6 Di = Ri ⊕ Fi

7 else
8 Di = Ri

9 return {D1, D2, · · · , Du}

B. Reorganization Module

After checking the error proneness and establishing the tag
bits for each unit, the reorganization module operates the units
based on the corresponding tag bits before flushing them into
the flash memory. Algorithm 1 elaborates the detailed proce-
dures of the reorganization module (steps 7-14). Specifically,
for each unit Di (where 1 ≤ i ≤ u and u is the number
of units), if the corresponding tag bit is ‘1’ (i.e., Di is an
error-prone unit), the reorganization module generates a unit
Fi with all ‘1’s, and calculates the resulting unit Ri, where
Ri = Di ⊕ Fi (steps 7-10 in Algorithm 1). This operation
guarantees that each bit in Di is flipped. On the other hand,
if the corresponding tag bit is ‘0’ (i.e., Di is not an error-
prone unit), the reorganization module will generate Ri = Di,
indicating that all the bits in Di is unchanged (step 12). Finally,
the reorganization module writes all the tag bits to the OOB
area and forwards {R1, R2, · · · , Ru} to the LDPC encoder for
data encoding (steps 13-14). The data will be flushed into the
flash memory after being encoded.

Figure 9 shows an example about the workflow of the
reorganization module. We assume that the unit size is 512
Bytes and therefore a 4-KB data chunk can be partitioned
into eight units. Suppose that the associated tag bits of the
eight resulting units are “10101010”, indicating that the 1st,
the 3rd, the 5th, and the 7th units are all error-prone units.
Therefore, the reorganization module flips the data of these
four units and obtains the resulting data.
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Fig. 10. Analysis on the storage overhead.

C. Procedures of Read Operations

Since the data stored in the flash memory are selectively
changed by the reorganization module, BitFlip needs to restore
the data when serving the read request. Figure 7 depicts
the workflow to serve the read operation and Algorithm 2
elaborates the detailed read procedures. More specifically,
when a read request arrives, the requested data will first be
fetched from the flash memory for data decoding and delivered
to the reorganization module subsequently. At the same time,
the reorganization module also reads the corresponding tag bits
from the OOB area (step 1 in Algorithm 2) and checks for each
unit if the data were flipped before being written to the flash
memory. If the data were flipped before, the reorganization
module will restore the original data by flipping back the read
data (steps 4-6); otherwise, the reorganization module will
make the data unchanged (step 8). Finally, the reorganization
module returns the requested data to the host (step 9).

We argue that the restoration adds negligible latency on the
I/O flow, as the bit flip operations can be fast executed via
hardware circuits. On the contrary, by decreasing the number
of error-prone states, BitFlip can suppress the RBER and
therefore reduce the decoding latency of LDPC code. The
performance evaluation in Section IV-B demonstrates the read
performance improvement gained by BitFlip.

D. Analysis

Storage overhead: We first analyze the storage overhead
induced by BitFlip. Suppose that the unit size is x Bytes.
As BitFlip requires to keep a tag bit for each unit, the storage
overhead can be simply calculated as 1

8·x .
Figure 10 depicts the simulation results of the additional

storage overhead versus the unit size, indicating that the
additional storage overhead induced by BitFlip vastly drops
with the increase of the unit size. For example, when the
unit size is 4 KB, the storage overhead is merely 0.003% of
the stored data in the flash memory. The unit size can also
be tunable to make the storage overhead meet the system
requirement.

Reliability: We also demonstrate theoretically that BitFlip can
indeed improve the reliability. As BitFlip only changes the



TABLE III
CONFIGURATIONS OF THE SSD SYSTEM.

Channels 18 Chips Per Channel 4
Dies Per Chips 2 Planes Per Die 2

Blocks Per Plane 4,096 Pages Per Block 64
Flash Page Size 4KB Time of Writing a Page 660us

TABLE IV
SELECTED FILES FOR EVALUATION.

File Type File information

Game
Kerbal Space Program, Onigiri, Paunch, Robocraft,
Sniper Fury, War Thunder, Destiny 2, Dark Deception,
Star Conflict, Kaki Raid

Image Linux (version: 1.1.13, 1.2.12, 1.3.12, 2.0.10,
2.2.21, 2.3.13, 2.4.19, 2.6.12, 3.0.11, 5.0.7)

Multimedia
Photos: KITTI [27]
MP4: Vienna New Year Concert (2017∼2019)
(Bit rate: 128/192 Kbps)

Executable Executable files (e.g., bash, tar) in the Linux kernel (5.3.0)

data content for the error-prone units, our objective is to show
that the reliability of these error-prone units is improved under
BitFlip. We use Nij and Pij to denote the number of the state
‘ij’ and the probability of suffering the retention errors for
the state ‘ij’, respectively, where ‘ij’∈{‘00’, ‘01’, ‘10’, ‘11’}.
Therefore, the probability that the error-prone units do not
have any retention error without BitFlip can be calculated as:

P = (1−P00)
N00 · (1−P01)

N01 · (1−P10)
N10 · (1−P11)

N11 .

Under BitFlip, the data in the error-prone units are flipped.
For example, the original state ‘00’ will be converted to the
state ‘11’, and therefore, the number of the state ‘11’ after bit
flips is N00. Hence, the new probability that the error-prone
units do not induce any retention error under BitFlip can be
given by:

PBitFlip = (1−P11)
N00 ·(1−P10)

N01 ·(1−P01)
N10 ·(1−P00)

N11 .

Therefore, we can obtain the reliability ratio after using
BitFlip as:

r =
PBitFlip

P
= (

1− P11

1− P00
)N00−N11 · (1− P10

1− P01
)N01−N10 .

Existing studies [2], [19] have shown that the states ‘00’ and
‘01’ are much easier to suffer retention errors than the states
‘11’ and ‘10’, respectively. Then we can have P00 > P11

and P01 > P10. In addition, our analysis in Section II-C also
unveils that conditions (N00 > N11 and N01 > N10) establish
for all the file types (Figure 6). Therefore, we can deduce that
r > 1, indicating that BitFlip can improve the reliability for
the error-prone units to resist retention errors.

IV. PERFORMANCE EVALUATION

We carry out extensive experiments to evaluate the per-
formance of BitFlip, with the expectation of looking for the
answers of the following questions.

• How many error-prone units can be reduced by BitFlip?
(Section IV-A)

TABLE V
CHARACTERISTICS OF SELECTED TRACES.

Workload Size of read data (GB) Read ratio
proj 3 18.23 87.41%
web 1 3.81 85.45%
web 0 17.35 59.78%
hm 0 9.95 32.73%
mds 0 7.37 30.65%
wdev 0 7.15 27.80%
src2 0 1.37 12.76%
rsrch 0 1.39 12%
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Fig. 11. Reduction on error-prone units.

• How much read performance can be improved by BitFlip?
(Section IV-B)

• How much reliability improvement can be gained by
BitFlip? (Section IV-C)

• Will BitFlip affect the write performance? (Section IV-D)

Experimental setup: We implement BitFlip in the trace-
driven flash simulator SSDsim [13]. The configurations are
summarized in Table III. We first set up an SSD storage system
with the capacity of 288 GB constructed over 18 channels.
Inside each channel, there are 16 planes, where each plane is
supposed to contain 4,096 blocks. Each block is composed of
64 pages, where the page size is set as 4 KB.

In the LDPC decoding, we set the latency of the hard-
decision decoding as 85 us. We assume that the soft-decision
decoding has six decoding levels and each level calls for the
time of 24 us. These configurations are the same as those in
the previous work [3]. Table I shows the accumulated latency
of each level in the LDPC decoding.

Selection of test files: To demonstrate the practicality and
generality of BitFlip, we conduct evaluation with four different
file types, including game files, image files, multimedia files,
and executable files. Table IV lists the file types as well
as the corresponding files used throughout the evaluation.
Specifically, we choose the installation files (including audio,
video, and executable files) from ten famous games and the
ten image files of the released Linux, whose versions vary
from 1.1.13 to 5.0.7. The multimedia files selected include
the photos and the MP4 files, and the executable files are the
tools frequently used in the Linux kernel (version 5.3.0).

Selection of traces: To evaluate the read latency under BitFlip,
we select eight real-world traces from MSR Cambridge Traces
[28], which record various access characteristics from enter-
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Fig. 12. Comparison on the decoding levels. The smaller value is better.

prise storage systems. Specifically, the MSR Cambridge Traces
collect data access operations from 36 volumes constructed
over 179 disks of 13 servers for one week. Each trace records
the attributes of the access operations, including the I/O type
(e.g., read or write), the starting position of the I/O operation,
as well as the requested size. The eight traces selected have
dramatically different read ratios (calculated by dividing the
size of the read data by that of all the accessed data) and
therefore can well probe the overall performance of BitFlip.

Evaluation methods: In the evaluation, we mainly compare
BitFlip with a baseline approach, which is the state-of-the-
art LDPC implementation in flash-based SSDs [3] without
considering bit flips. Given a trace, the simulator consecutively
extracts every access request from it and pinpoints the physical
pages that are about to be accessed in this request. We range
the RBER from 4 × 10−3 to 13 × 10−3, ensuring that all
the decoding levels in both hard-decision and soft-decision
decodings can be tested. We then measure the elapsed latency
to complete an access request, from the time of issuing the
request to the time of receiving the response after completion.

A. Reduction on Error-Prone States

In this evaluation, we measure the reduction of the error-
prone states gained by BitFlip for different file types. We first
analyze the four file types and examine the proportion of the
error-prone units that can be found by BitFlip. We set the unit
size as 512 KB and show the results in Figure 11(a). We can
observe that the error-prone units widely exist in real-world
files and occupy the majority of the units in most of the file
types. For all the four file types, the proportions of the error-
prone units vary from 47.3% to 99.7%.

We can identify that the proportions of the error-prone states
in different file types vary dramatically. More particular, the
proportions of Game files and Multimedia files close to 50%
(i.e., 54.3%, and 47.3%, respectively), as both file types are
compressed through some special algorithms. However, the
Image file type has a sizeable error-prone proportion, and we
suspect the reason is that the Image files are not compressed.

We then measure the reduction of the error-prone states
after applying BitFlip and show the results in Figure 11(b).
Overall, BitFlip can reduce about 2.3%-53.9% of the error-
prone states for different file types, thereby demonstrating the
effectiveness of BitFlip. Specifically, BitFlip can eliminate at
most 53.9% of the error-prone states for the executable files. In
addition, BitFlip achieves the minimum reduction (i.e., 2.3%)
for the multimedia files. We surmise that the encoding method
of the multimedia files makes the state proportions much more
balanced even in the error-prone units. Therefore, even using
bit flipping for the multimedia files, the proportion of the error-
prone states does not change significantly.

B. Read Performance

We first compare BitFlip and the baseline approach on the
read performance under different RBERs. We replay the read
operations of each trace to the four file types, ensuring that
each file type receives the same amount of the requested data.
This evaluation can mimic the daily operation and therefore
can evaluate the overall read performance of BitFlip and the
baseline approach in daily life.

We then measure the read performance on the two metrics,
i.e., the number of decoding levels (including the hard-decision
decoding) needed in a read operation, and the corresponding
read latency. The first metric can indirectly reflect the decoding
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Fig. 13. Comparison on the read latency. The smaller value is better.

time, which is closely related to the used decoding levels
(Table I). The results are shown in Figure 12 and Figure 13,
respectively.

Decoding level: Figure 12 shows the average decoding levels
required under different RBERs, where BitFlip can reduce
27.1%-31.6% of the decoding levels on average. The reason is
that BitFlip is effective on suppressing the probability of the
retention errors by reducing the error-prone states. Besides,
with the RBER increases, the number of decoding levels
reduced by BitFlip sharply increases at the beginning and then
gradually decreased.

Read latency: Figure 13 shows the average read latencies
under different RBERs. We make the following two findings.
First, BitFlip can reduce the read latency by 25.9%-34.2%
for each trace compared with the baseline approach. The
reason is that by reducing the error-prone states, BitFlip
can significantly reduce the decoding time needed in read
operations.

Second, with the RBER increases, the reduction of the
read latency gained by BitFlip first sharply increases and then
gradually shrinks. More particularly, when the RBER ranges
from 0.005 to 0.009, BitFlip can gain the most reduction on
the read latency. The reason is that when the RBER climbs,
it needs more decoding levels to read the data and therefore
incurs higher accumulated decoding latency. As the number of
decoding levels reduced by BitFlip shrinks when the RBER is
extremely higher, the reduction of the read latency narrows as
well.

C. Reliability

We also assess the reliability improvement gained by BitFlip
through measuring the numbers of P/E cycles that BitFlip and
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(c) Multimedia files.
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Fig. 14. Comparison on the number of P/E cycles that can be endured. The
larger value is better.

the baseline approach can endure before emerging the same
RBER, respectively. We replay the eight selected traces to the
files of each file type, and recording the resulting RBERs.
Given a RBER, we can speculate the P/E cycles endured via
the results in a previous work (the one-week column of Table 4
in [9]), which unveils the intrinsic connections among the rate
of the retention error, the retention time, and the P/E cycles.
The results are shown in Figure 14.

From Figure 14, we can make two findings. First, BitFlip



can markedly slow down the aging process of the flash
memory, as the threshold number of P/E cycles to emerge
the same RBER is significantly increased under BitFlip. More
specifically, BitFlip can increase 2.9%-33.3% of P/E cycles
that the flash memory can endure, indicating that BitFlip can
to some extend prolong the lifespan of the flash memory when
compared with the baseline approach. The rational lies in
that BitFlip can effectively suppress the probability of raw
bit errors by reducing the number of error-prone states, and
hence slow down the rising trend of the RBER.

Second, the reliability improvement introduced by BitFlip
varies across different file types. For example, BitFlip can in-
crease 2.9% of the threshold number of P/E cycles on average
for the multimedia files. The improvement increases to 29.2%
on average for the executable files. The reason is that the
proportions of error-prone states that can be reduced by BitFlip
are dramatically varied due to the different characteristics
across file types (see Figure 11(b)).

D. Write Performance

We finally evaluate the write performance of BitFlip. We
extract the write operations from the eight selected traces and
replay them to the data files of the four file types. We evaluate
the write latencies of BitFlip and the baseline approach, which
are denoted by wBitFlip and wbaseline, respectively. We then
calculate the increase ratio of the write latency under BitFlip
as:

increase ratio =
wBitFlip

wbaseline
− 1.

The results of the increase ratio evaluated are shown in
Figure 15. We can observe that BitFlip adds negligible impact
on the write latency, typically ranging from 1.6% to 2.4%.
This is because BitFlip only requires to perform some addi-
tional XOR operations for bit flipping, which can be realized
extremely fast by using hardware circuits. In summary, it is
more appropriate to deploy BitFlip in the applications with the
access characteristics of intensive reads and infrequent writes.

V. RELATED WORK

We review the efforts to reduce the read latency from the
following three aspects: i) improving the sensing accuracy, ii)
utilizing the error patterns, and iii) reducing the sensing time.

Improving the sensing accuracy: Some studies seeked for
improving the sensing accuracy of the raw data in flash, such
that the read latency can be cut down by using fewer decoding
levels in LDPC code. By caching detected errors, EC-Cache
[6] corrected errors of the requested page before performing
the LDPC decoding process, thereby increasing the sensing
accuracy when the decoding starts. Li et al. [7] developed
a read data placement scheme by exploiting the reliability
characteristics of different blocks. There are also some tech-
niques for refreshing data to improve the read performance.
Lv et al. [29] put forward two refresh schemes for long access
latency data to reduce the tail latency. LDR [4] aggressively
corrects errors in the read-hot pages with long read latency and
refreshes the corrected data in new pages to reduce the latency
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Fig. 15. The increase ratio of the write latency under BitFlip.

in subsequent reads. As a comparison, BitFlip suppresses the
error proneness and improves the sensing accuracy via bit flips.
Utilizing the error patterns: Some studies proposed to design
read-optimized techniques based on the error patterns of flash
memory. By observing the different decoding latency caused
by the unbalanced RBER between the least significant bit
(LSB) and the most significant bit (MSB) pages, Zhang et al.
[19] designed a cooperative error correction scheme that makes
use of the decoding result of the LSB pages in the decoding
process of the MSB pages to improve the read performance.
Zhang et al. [30] noticed that the errors of LSB pages may
result in the errors of MSB pages, and consequently proposed
to supply promotion information in the decoding process to
reduce the decoding latency. Different from previous work,
BitFlip utilizes error proneness of the states in designing the
bit-flipping technique.
Reducing the sensing time: Some studies proposed to im-
prove the read performance by reducing the sensing time of
the reference voltage. FlexLevel [9] reduces bit error rate
(BER) via enlarging the noise margins by threshold voltage
level reduction. By observing that the read level of a page
may stay constant for a long time, LaLDPC [12] proposes
to estimate the read voltage level based on the reference
voltage used in the last read on the same page, so as to
reduce the number of re-sensing operation. Instead of reading
repeatedly, EP-LDPC scheme [10] reduces the read latency
by estimating errors from a variety of factors, such as refer-
ence voltage, write/read cycles, data-retention time, and inter-
cell coupling information. Du et al. [11] designed a Multi-
Granularity LDPC read method, which applies multiple read-
level-increment granularity to adapt the variations of layer
RBERs, so as to reduce the unnecessary re-sensing trials



in traditional single read-level-increment granularity. As an
orthogonal study, BitFlip mainly focuses on lowering down the
RBER in data decoding for improving the read performance.

VI. CONCLUSION

This paper explores the opportunities for utilizing the differ-
ences of the four states in both error-proneness and proportion
to improve the read performance and reliability of flash
memory. We design BitFlip, a novel bit-flipping technique.
The core idea of BitFlip is to examine the state proportions
of the data units and flip the bits for the error-prone units to
make them more stable against retention errors. We conduct
extensive experiments with real-world traces and files, showing
that BitFlip can reduce 25.9%-34.2% of the read latency and
prolong 2.9%-33.3% of the lifespan for flash memory, while
adding negligible impact on the write latency.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant U1705261, Grant
61972325, and Grant 61872305, in part by U.S. NSF under
Grant CCF-1704504 and Grant CCF-1629625.

REFERENCE

[1] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Vis-
conti. Introduction to flash memory. Proceedings of the IEEE,
91(4):489–502, 2003.

[2] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Error patterns in
mlc nand flash memory: Measurement, characterization, and analysis.
In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 521–526. EDA Consortium, 2012.

[3] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning
Zheng, and Tong Zhang. Ldpc-in-ssd: Making advanced error correction
codes work effectively in solid state drives. In the 11th USENIX
Conference on File and Storage Technologies (FAST 13), pages 243–
256, 2013.

[4] Yajuan Du, Qiao Li, Liang Shi, Deqing Zou, Hai Jin, and Chun Jason
Xue. Reducing ldpc soft sensing latency by lightweight data refresh for
flash read performance improvement. In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2017.

[5] M. Zhang, F. Wu, Y. Du, C. Yang, C. Xie, and J. Wan. Cooecc: A
cooperative error correction scheme to reduce ldpc decoding latency in
nand flash. In 2017 IEEE International Conference on Computer Design
(ICCD), pages 657–664, 2017.

[6] Ren-Shuo Liu, Meng-Yen Chuang, Chia-Lin Yang, Cheng-Hsuan Li,
Kin-Chu Ho, and Hsiang-Pang Li. Ec-cache: Exploiting error locality to
optimize ldpc in nand flash-based ssds. In 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2014.

[7] Qiao Li, Liang Shi, Yejia Di, Yajuan Du, Chun J Xue, and HM Edwin.
Exploiting process variation for read performance improvement on ldpc
based flash memory storage systems. In 2017 IEEE International
Conference on Computer Design (ICCD), pages 681–684. IEEE, 2017.

[8] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A large-
scale study of flash memory failures in the field. ACM SIGMETRICS
Performance Evaluation Review, 43(1):177–190, 2015.

[9] Jie Guo, Wujie Wen, Jingtong Hu, Danghui Wang, Hai Li, and Yiran
Chen. Flexlevel: a novel nand flash storage system design for ldpc
latency reduction. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2015.

[10] Shuhei Tanakamaru, Yuki Yanagihara, and Ken Takeuchi. Error-
prediction ldpc and error-recovery schemes for highly reliable solid-state
drives (ssds). IEEE Journal of Solid-State Circuits, 48(11):2920–2933,
2013.

[11] Yajuan Du, Yao Zhou, Meng Zhang, Wei Liu, and Shengwu Xiong.
Adapting layer rbers variations of 3d flash memories via multi-
granularity progressive ldpc reading. In Proceedings of the 56th Annual
Design Automation Conference 2019, page 37. ACM, 2019.

[12] Yajuan Du, Deqing Zou, Qiao Li, Liang Shi, Hai Jin, and Chun Jason
Xue. Laldpc: Latency-aware ldpc for read performance improvement of
solid state drives. In MSST, pages 1–13, 2017.

[13] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping
Zhang. Performance impact and interplay of ssd parallelism through
advanced commands, allocation strategy and data granularity. In Pro-
ceedings of the international conference on Supercomputing, pages 96–
107. ACM, 2011.

[14] Fei Li, Youyou Lu, Zhongjie Wu, and Jiwu Shu. Ascache: An
approximate ssd cache for error-tolerant applications. In Proceedings
of the 56th Annual Design Automation Conference 2019, pages 1–6,
2019.

[15] Guiqiang Dong, Shu Li, and Tong Zhang. Using data postcompensation
and predistortion to tolerate cell-to-cell interference in mlc nand flash
memory. IEEE Transactions on Circuits and Systems, 57(10):2718–
2728, 2010.

[16] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Threshold voltage
distribution in mlc nand flash memory: Characterization, analysis, and
modeling. In Proceedings of the Conference on Design, Automation and
Test in Europe, pages 1285–1290. EDA Consortium, 2013.

[17] Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich, Hanmant Belgal,
Eric Schares, Falgun Trivedi, Evan Goodness, and Leland R Nevill. Bit
error rate in nand flash memories. In 2008 IEEE International Reliability
Physics Symposium, pages 9–19. IEEE, 2008.

[18] Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962.

[19] Meng Zhang, Fei Wu, Yajuan Du, Chengmo Yang, Changsheng Xie,
and Jiguang Wan. CooECC: A Cooperative Error Correction Scheme
to Reduce LDPC Decoding Latency in NAND Flash. In 2017 IEEE
International Conference on Computer Design (ICCD), pages 657–664.
IEEE, 2017.

[20] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu.
Error characterization, mitigation, and recovery in flash-memory-based
solid-state drives. Proceedings of the IEEE, 105(9):1666–1704, 2017.

[21] New York Times. The Supreme Court’s Final Exam. https://www.
nytimes.com/2019/12/19/opinion/sunday/trump-tax-supreme-court.
html.

[22] New York Times. He Was One of Mexico’s Deadliest Assassins. Then
He Turned on His Cartel. https://www.nytimes.com/2019/12/14/world/
americas/sicario-mexico-drug-cartels.html.

[23] New York Times. Trump Impeached for Abuse of Power and Ob-
struction of Congress. https://www.nytimes.com/2019/12/18/us/politics/
trump-impeached.html.

[24] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic
technique to improve pram write performance, energy and endurance.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 347–357, 2009.

[25] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-
Won Lee, and Ha-Joo Song. A survey of flash translation layer. Journal
of Systems Architecture, 55(5-6):332–343, 2009.

[26] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. Dftl: a flash
translation layer employing demand-based selective caching of page-
level address mappings. Acm Sigplan Notices, 44(3):229–240, 2009.

[27] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[28] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write
off-loading: Practical power management for enterprise storage. ACM
Transactions on Storage (TOS), 4(3):10, 2008.

[29] Yina Lv, Liang Shi, Qiao Li, Congming Gao, Chun Jason Xue, and
Edwin Sha. Optimizing tail latency of ldpc based flash memory storage
systems via smart refresh. In 2019 IEEE International Conference on
Networking, Architecture and Storage (NAS), pages 1–8. IEEE, 2019.

[30] M. Zhang, F. Wu, Y. Du, W. Liu, and C. Xie. Pair-bit errors aware ldpc
decoding in mlc nand flash memory. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(12):2312–2320,
Dec 2019.

https://www.nytimes.com/2019/12/19/opinion/sunday/trump-tax-supreme-court.html
https://www.nytimes.com/2019/12/19/opinion/sunday/trump-tax-supreme-court.html
https://www.nytimes.com/2019/12/19/opinion/sunday/trump-tax-supreme-court.html
https://www.nytimes.com/2019/12/14/world/americas/sicario-mexico-drug-cartels.html
https://www.nytimes.com/2019/12/14/world/americas/sicario-mexico-drug-cartels.html
https://www.nytimes.com/2019/12/18/us/politics/trump-impeached.html
https://www.nytimes.com/2019/12/18/us/politics/trump-impeached.html

	Introduction
	Background and Motivations
	Basics of Flash
	Error Correction in LDPC
	Analysis and Motivation

	Design of BitFlip
	Bit Counter Module
	Reorganization Module
	Procedures of Read Operations
	Analysis

	Performance Evaluation
	Reduction on Error-Prone States
	Read Performance
	Reliability
	Write Performance

	Related Work
	Conclusion
	acknowledgement
	Reference

