
Dsync: a Lightweight Delta Synchronization

Approach for Cloud Storage Services

Yuan He1, Lingfeng Xiang2, Wen Xia1,4,5, Hong Jiang2, Zhenhua Li3, Xuan Wang1, and Xiangyu Zou1

1 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
2 Department of Computer Science & Engineering, University of Texas at Arlington, Arlington, USA

3 School of Software, Tsinghua University, Beijing, China
4 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China

5 Wuhan National Laboratory for Optoelectronics, Wuhan, China

Abstract—Delta synchronization (sync) is a key bandwidth-
saving technique for cloud storage services. The representative
delta sync utility, rsync, matches data chunks by sliding a search
window byte by byte, to maximize the redundancy detection for
bandwidth efficiency. This process, however, is difficult to cater
to the demand of forthcoming high-bandwidth cloud storage ser-
vices, which require lightweight delta sync that can well support
large files. Inspired by the Content-Defined Chunking (CDC)
technique used in data deduplication, we propose Dsync, a CDC-
based lightweight delta sync approach that has essentially less
computation and protocol (metadata) overheads than the state-of-
the-art delta sync approaches. The key idea of Dsync is to simplify
the process of chunk matching by (1) proposing a novel and
fast weak hash called FastFp that is piggybacked on the rolling
hashes from CDC; and (2) redesigning the delta sync protocol by
exploiting deduplication locality and weak/strong hash properties.
Our evaluation results driven by both benchmark and real-world
datasets suggest Dsync performs 2×-8× faster and supports
30%-50% more clients than the state-of-the-art rsync-based
WebR2sync+ and deduplication-based approach.

Index Terms—rsync, content-defined chunking, cloud storage

I. INTRODUCTION

The promises of being able to access data anywhere and

anytime have made personal cloud storage services with

application APIs such as Dropbox [1], GoogleDrive [3], and

iCloud [4] increasingly popular. The burgeoning cloud storage

services impose challenges to both the clients and servers

with increasing network transmission and compute overheads,

which motivates service providers to propose solutions. Drop-

Box, for example, has adopted delta synchronization (sync

for short) to reduce the amount of data traffic between the

client and server [12], [19]. In spite of this, the sync traffic

volume of DropBox still takes up to 4% of the total traffic

due to the frequent interactions between clients and servers

for calculating the delta (modified) data, according to a re-

cent study [13] on several campus border routers. Therefore,

reducing the traffic and compute overhead in synchronization

remains an important challenge to be addressed.

As a classic model of synchronizing files between two

hosts, rsync is capable of effectively reducing the traffic

volume. Generally speaking, the rsync process synchronizes

* L. Xiang and Y. He equally contributed to this work.

the client/server files f ′ (a modified version of f) and f in

three phases as follows: 1© The client sends a sync request

to the server, and the server splits the server file f into fix-

sized chunks, which is followed by the server calculating

the fingerprints of the chunks to be sent to the client as

the Checksum List. 2© The client uses a sliding window

moving on the client file f ′ byte-by-byte, to match possible

duplicate chunks with the Checksum List from the server. 3©

After finishing the byte-by-byte matching, the client obtains

the mismatched chunks, referred to as Delta Bytes, and send

them to the server, after which the server reconstructs the

client file f ′ according to the Delta Bytes and the server

file f . Several recent studies, including DeltaCFS [34], Pan-

daSync [28], and WebR2sync+ [32], have improved over and

on the basis of rsync in various aspects. However, the

chunk-matching process using a byte-by-byte sliding window

remains largely unchanged in these rsync-based approaches,

which can be very time-consuming especially when the files

to be synchronized are increasingly large in high-bandwidth

cloud storage systems [22]. For example, according to our

study and observation, WebR2sync+ [32] spends ∼10× longer

time on the byte-by-byte chunk-matching process than on

the data transferring process over the Gigabit network when

synchronizing a large file of 1GB.

The current delta sync is difficult to cater to the demand

of cloud storage, given the inevitable challenges of inherently

higher end-user network bandwidth and larger cloud-hosted

file size. We notice that residential connectivity to the Internet

has already reached 1 Gbps in access bandwidth, and the

newly emerging 5G connectivity can even exceed 1 Gbps in

access bandwidth. Accordingly, the cloud-hosted files have

been growing in both quantify and (single-file) size. As a

consequence, we have to rethink and innovate the current

design of delta sync in order to catch up with this trend as

well as to satisfy the user experience.

Recently, data deduplication, a chunk-level data reduction

approach, has been attracting increasing attention in the design

of storage systems [29]. Rather than using a byte-wise sliding

window in the traditional compression approaches, data dedu-

plication splits the files into independent chunks, usually using

a technique called Content-Defined Chunking (CDC), and

then detects duplicates chunk-by-chunk according to chunks’

fingerprints [23], [31]. Specifically, the CDC technique uses

a small sliding window (e.g., size of 48 bytes) on the file

contents for finding chunk boundaries and declares a chunk

boundary found if the hash value of the sliding window (i.e.,

the file contents) satisfies a pre-defined condition. As a result,

the chunk boundaries are declared according to the file con-

tents instead of the file locations, which adequately addresses

the ‘boundary-shift’ problem due to file modifications and

thus detects more duplicates for data reduction. Therefore, we

believe that the CDC technique can be effectively used in the

sync protocol to eliminate the need for the time-consuming

byte-wise comparison.

Although CDC has the potential to simplify the chunk-

matching process for redundancy detection, incorporating

CDC into the rsync protocol introduces new challenges,

including extra compute overhead due to the rolling-hash

based chunking and low redundancy detection ratio due to the

coarse-grained chunk-matching after CDC. To this end, we

propose Dsync, a lightweight CDC-based delta synchroniza-

tion approach for cloud storage services, with less compute

and protocol (metadata) overheads. To fully utilize the CDC

approach in delta synchronization and address the challenges

as mentioned above, we make the following four critical

contributions in this paper:

• We use FastCDC to split the client and server files into

independent chunks, which helps simplify the chunk-

matching process in the rsync protocol.

• Proposing a novel weak hash, called FastFp, to replace

Adler32 in rsync by effectively piggybacking on the

Gear hashes generated from FastCDC. The new FastFp

(CDC + weak hash) is much faster than Adler32 used

in rsync while achieving nearly a comparable hash

collision ratio.

• Redesigning the client/server communication protocol

to reduce both compute overhead and network traffic

by: a© first checking weak hash and then computing

& matching the strong hash of the weak-hash-matched

chunks, to reduce most of the unnecessary compute of

strong hash on the mismatched chunks, and b© merging

the consecutive weak-hash-matched chunks into a single

large chunk to reduce the size of Match Token (metadata

overhead) for network interactions in Dsync.

• Comprehensive evaluation driven by both real-world and

benchmark datasets illustrates that Dsync performs 2×-

4× faster and supports 30%-50% more clients than the

state-of-the-art rsync-based WebR2sync+ [32] and the

traditional deduplication-based solution [23].

The rest of this paper is organized as follows. Section II

introduces the background and related work. In Section III, we

discuss the deficiency of the state-of-the-art WebR2sync+ ap-

proach and the potential of the CDC-based approach. Section

IV describes the design and implementation details of Dsync.

Section V presents the evaluation results of Dsync, including

comparisons with the latest rsync-based WebR2sync+ and

deduplication-based solutions. Finally, Section VI concludes

this paper and outlines future work.

II. BACKGROUND AND RELATED WORK

Generally speaking, there are two approaches to synchronize

a native file from the client to the server in the cloud storage

service, full sync and delta sync. The former, which simply

transfers the whole file to the server, is suitable for small

files [28], while the latter, which only transfers the modified

data of a file (i.e., the delta) to the server to minimize the

network traffic, is suitable for large files.

Delta sync shows the most significant advantage when the

files are frequently modified, e.g., files with multiple versions

or consecutive edits. A recent study [13] on several campus

border routers indicates that the traffic volume of DropBox,

which uses delta synchronization, accounts for 4% of the total

traffic due to the frequent interactions between clients and

servers for calculating the delta (modified) data, highlighting

the significance of reducing network traffic volume with delta

synchronization. Actually, delta sync approaches have been

widely studied by many works of literature including Unix

diff [16], Vcdiff [18], WebExpress [15], rsync [26],

Content-Defined Chunking (CDC) [9], [23] and delta encoding

algorithms [21], [25], [30]. Representative sync techniques

supported by the state-of-the-art cloud storage services are

summarized in Table I and discussed next.

a) Sync tools supported by industry.: Commercial cloud

storage services include Dropbox, GoogleDrive, OneDrive,

Seafile and et cetera. [8]. The PC clients of both Dropbox and

Seafile support delta sync, where DropBox’s sync is based

on Fix-Sized Chunking (FSC) and Seafile’s sync employs

Content-Defined Chunking (CDC). To alleviate the compute

overhead, the Android client of Seafile uses full sync to

avoid energy consumed by the delta calculation in sync.

Besides, other cloud storage services such as GoogleDrive and

OneDrive also choose to support full sync for simplicity.

b) Sync tools proposed by academia.: Most of the re-

search proposals for sync tools support delta sync for bet-

ter performance (to save network bandwidth and accelerate

network transmission). rsync is a known synchronization

protocol first proposed by Tridgell to effectively synchronize a

file between two hosts over a network connection with limited

bandwidth [26], [27]. This approach is later adopted as the

standard synchronization protocol in GNU /Linux [5].

Recent studies, such as DeltaCFS [34], PandaSync [28],

and WebSync [32], make innovative improvements on top

of rsync. Specifically, DeltaCFS directly records the minor

modifications to reduce compute and network overheads due

to frequent synchronization. PandaSync strikes a tradeoff be-

tween full sync and delta sync since full sync can effectively

reduce the round trip time (rtt) for small files between the

client and server. WebR2sync+ [32] makes the first attempt to

implement delta sync over Web browsers, which is a dominant

form of Internet access. To avoid the influence of the poor

performance of browsers when executing compute-intensive

byte-wise comparison of hash values, WebR2sync+ shifts the

TABLE I
DATA SYNCHRONIZATION TECHNIQUES.

Source Full Sync1
Delta Sync

Local
Buffer

Chunking
Methods

2

DropBox (W/A) [8]3 ×
√

FSC

Seafile (W) [6] ×
√

CDC

Seafile (A) [6]
√

× ×
GoogleDrive (W/A) [8]

√
× ×

OneDrive (W/A) [8]
√

× ×
rsync [5] × × FSC

DeltaCFS [34] × × FSC

PandaSync [28]
√

∗ × FSC

WebSync [32] × × FSC

QuickSync [8] ×
√

CDC

LBFS [23] × × CDC

UDS [20] × × FSC

Dsync × × CDC

1
√

: full sync, ×: delta sync, and
√

∗: selective full sync.
2 FSC: Fix-Sized Chunking, CDC: Content-Defined Chunking.
3 W: windows client, A: android client.

comparison to the server and replaces the cumbersome MD5

hash function with a lightweight hash function called SipHash.

Due to the boundary shifting problem, QuickSync [8] employs

the CDC approach rather than rsync, where a dynamical

chunking strategy is used to adapt to bandwidth changes

and remove more redundancy of the local file. As one of

the pioneers in data deduplication, LBFS [23] splits the file

into chunks using the CDC technique, calculates and then

compares their SHA1 fingerprints to detects duplicate chunks.

It finally transmits the non-duplicate chunks from the client

to the server. UDS (Update-batch delayed sync) [20] uses

a batched sync strategy to avoid bandwidth overuse due to

frequent modifications on the basis of Dropbox.

In summary, as shown in Table I, delta sync with local buffer

requires the client to have extra storage and compute overheads

while full sync is simple but not bandwidth-efficient. Despite

the advantages of rsync-based synchronization approaches,

the exceptionally high compute overhead of the rsync proto-

col due to byte-wise comparison, and hash calculation severely

limits its applicability to resource-constrained client systems,

especially for synchronizing large files. Thus, in this paper, we

focus on providing a lightweight, portable delta sync approach

on resource-constrained client systems, via Web browsers on

Mobile phones, IoT devices and et cetera. Thus, it is quite

inconvenient for such a resource-constrained Web browser to

maintain the metadata buffer of the client files for delta sync.

On the other hand, deduplication-based sync [23] offers a

possibility to avoid byte-wise chunk-matching in rsync. Note

that our work is substantially different from all the previous

works (shown in Table I) in that it is the first attempt to

combine the CDC approach with the traditional rsync model

to effectively synchronize data when the client is resource-

constrained, without local buffer and sufficient compute ca-

pacity for executing rsync-like delta sync protocols.

Client Serverfile: f’

Reconstructing

Generating DeltaBytes

Fix-Sized Chunking;
Calculating/Comparing

Adler32 & MD5;

f + delta = f‘

2. Matching

1. Pre-treatment

Client file

Matching

 f‘

Server file f

file: f

Fix-Sized Chunking;

Calculating

Adler32 & MD5;

Sliding window byte by byte

Request

ChecksumList

DeltaBytes

Ack

3. Reconstructing

Fig. 1. Workflow chart of rsync.

III. CHALLENGES AND MOTIVATION

Problems of rsync. To better understand the strengths and

weaknesses of rsync [27], we first illustrate how it works

with the help of Figure 1 that shows a three-phase workflow.

• In Phase 1, when a client needs to synchronize a file,

it first sends a request (including the name of the local

file f ’) to the server. Upon receiving the client request,

the server starts to chunk the server file f by Fix-Sized

Chunking and calculate weak but fast-rolling hashes (i.e.,

Adler32) as well as a strong but slow hash (i.e., MD5)

of the chunks as their weak and strong fingerprints.

Both weak and strong fingerprints are included in the

Checksum List and sent to the client.

• In Phase 2, the client slides a fixed-size window on the

file f ’, to generate chunks and their weak hash Adler32 to

match with Adler32 fingerprints of file f in the Checksum

List. Note that: 1© if the current chunk under the sliding

window does not match any Adler32 fingerprints in the

Checksum List, the window will slide further byte by

byte until a matched chunk is found. 2© If the weak-hash-

matched chunk is found, its strong hash MD5 will be then

calculated and checked in the Checksum List to avoid

the case of weak hash collision, and the sliding window

will slide by the size of the window after confirming the

matched chunk. This phase takes a rather long time due to

the byte-by-byte sliding window-based chunk matching.

• In Phase 3, the client generates Delta Bytes, including the

mismatched chunks and their metadata, and sends them

to the server where the file is synchronized/reconstructed

with f ’ = f + Delta Bytes.

WebR2sync+ is implemented based on rsync, assuming

that the client is a Web browser. Considering the low compute

capacity on a Web browser, WebR2sync+ shifts the chunk-

matching process from the client to the server. Its workflow

is also three-phased, as shown in Figure 2.

Client Serverfile: f’

Reconstructing

Generating DeltaBytes

Fix-Sized Chunking;

Calculating/Comparing

Adler32 &

f + delta = f‘

2. Matching

1. Pre-treatment

file: f
Fix-Sized Chunking;

Calculating

Adler32 & SipHash;

SipHash;MatchToken

ChecksumList

DeltaBytes

Ack

3. Reconstructing

Fig. 2. Workflow chart of WebR2sync+.

fp mod D ≠ r fp mod D = r

C1 C2 C3C4

File V2

File V1

C1 C7

Modified

C3C4

Fig. 3. The CDC technique for the chunk-level data deduplication. A chunk
cut-point is declared if the hash value “fp” of the sliding window satisfies a
pre-defined condition.

• In Phase 1, in contrast to rsync, the pre-treatment (i.e.

the chunking and hashing of the file) is moved from the

client to the server, and the strong hash is replaced by

SipHash, a faster strong hash function.

• In Phase 2, the chunk-matching process is moved from

the client to the server, and the strong hash calculation is

also changed to SipHash. The operation in this phase is

almost the same as rsync. After that, the Match Token

that indicates which chunks match will be sent to the

server.

• In Phase 3, the client generates the Delta Bytes to be sent

to the server and file f ’ is reconstructed according to file

f and Delta Bytes, which is the same as rsync.

Although WebR2sync+ improves on rsync, it does not

address the challenges facing the latter fundamentally. More

specifically, in Phase 2, the time-consuming byte-wise chunk-

matching remains unchanged in WebR2sync+, which is es-

pecially problematic for large files or files with significant

modifications. In other words, the matching window needs to

slide from the beginning to the end of a file byte by byte,

comparing every byte in the worst case [14], [21], as shown

in Figure 4(a). By contrast, the Content-Defined Chunking

technique used in data deduplication provides an opportunity

to avoid the cumbersome calculation of overlapping chunks,

as shown in Figure 4(b).

Advantages of Content-Defined Chunking (CDC). CDC is

proposed to solve the “boundary-shift” problem. As shown in

Figure 3, CDC uses a sliding-window technique on the content

of files and computes a hash value (e.g., Rabin [17], Gear [30])

of the window. A chunk cut-point is declared if the hash value

satisfies some pre-defined condition. Therefore, as shown in

Figure 3, by using the CDC technique, chunks C3 and C4 of

00 c4 1e df d5 39 76 bf 97 db

Data stream

(hexadecimal)

Fingerprinting 7 strings and index 7 times

Verbatim-based Chunking

 dfd53976

 1edfd539

 c41edfd5

00c41edf

... ...

FileSize-ChunkLengthSize+1

(a) Verbatim-based Chunking

00 c4 1e df d5 39 76 bf 97 db

Content-Defined Chunking

00c41e

FileSize/AverageChunkLengthSize

dfd53976 bf97db

Fingerprinting 3 strings and index 3 times

(b) Content-Defined Chunking

Fig. 4. Comparison of Verbatim-based Chunking and Content-Defined
Chunking used for string matching. CDC-based approach executes much fewer
fingerprinting and searching operations.

file V2 will still be identified for data deduplication (with file

V1) although their boundaries have been shifted or changed

due to file modification.

In contrast, as mentioned earlier, rsync-based approaches

employ a verbatim-based chunking technique, which is time-

consuming. We believe that this CDC technique can be

utilized for chunking in rsync to significantly reduce the

compute cost for hash calculation and chunk indexing. To

better demonstrate the advantages of CDC, Figure 4 contrasts

the process for chunk boundary identification in rsync-based

approaches, which we refer to as verbatim-based chunking,

and that in CDC-based approaches. CDC-based approaches

generate much fewer chunks for fingerprinting and indexing

than the traditional rsync-based approaches, especially for

the file of considerable size.

Disadvantages of CDC-based approach. Obviously, CDC

introduces additional compute overhead for delta synchro-

nization, i.e., computing rolling hashes for chunking. Further,

CDC leads to slightly more network traffic than rsync-based

approaches since it may fail to eliminate redundancy among

similar but non-duplicate chunks (i.e., the very similar chunks

C2 and C7 in Figure 3).

Nevertheless, the CDC technique remains attractive because

it greatly simplifies the chunk fingerprinting and searching

process. To fully leverage the advantages while avoiding

disadvantages of the CDC technique, we aim to propose a

new rsync-based approach using the CDC technique in this

paper to simplify the delta sync process while overcoming

the aforementioned problems of CDC, i.e., lower compression

ratio problem and additional compute overhead.

IV. DESIGN AND IMPLEMENTATION

A. Architecture and Algorithm Overview

Architecture overview. To address the problems in rsync,

Dsync introduces Content-Defined Chunking and makes opti-

mizations above that. As depicted in Figure 5, the Dsync archi-

tecture for delta synchronization consists of four key functional

components, namely, Content-Defined Chunking, weak/strong

hashing, communication protocol, and hash matching.

• Content-Defined Chunking. In Dsync, the client file f ’

(to be synced) and server file f will be first divided

Client

Communication

protocol

Server
Checksum list/Delta bytes

Weak-hash-matched chunk index
&Strong hash

Chunking

Weak/Strong

hashing

Strong hash

matching

Weak/Strong

hashing

Weak hash

matching

Chunking

Fig. 5. Dsync Architecture overview.

into several chunks by Content-Defined Chunking (i.e.,

FastCDC) for future detection of duplicate chunks.

• Weak/strong hashing. In Dsync, two-level hash values

(i.e., weak/strong hash) are calculated for checking du-

plicate chunks. The weak hash, which is fast with low

compute overhead, is employed to first quickly check

the potential duplicate chunks that, once identified, are

further confirmed by the strong hash, which is crypto-

graphically secure, to avoid a hash collision. Otherwise, if

the weak hash mismatches, the chunk is marked as unique

and strong hash (SHA1) calculation will be skipped.

• Hash matching. In this module, the weak hash values of

chunks are compared first to find the potentially-matched

chunks on the server and their strong hash values will

be further confirmed on clients. Only the chunks whose

strong hash values match will be regarded as duplicate

chunks. Otherwise, they will be regarded as new chunks

(i.e., delta data) and sent to the server.

• Communication protocol. It is responsible for interactions

between client and server in Dsync, to check the above

mentioned weak and strong hash values of files to obtain

the delta data for synchronization ultimately.

Algorithm overview. Introducing FastCDC in rsync is

presented in Section IV-B, but we find the following two

problems:

• CDC algorithm brings extra chunking overhead. We find

it feasible to utilize the chunking algorithm to generate a

weak hash to replace Adler32 in rsync. In this way,

the extra chunking overhead counterweights the CPU

overhead for generating weak hash fingerprints. It will

be discussed in section IV-C.

• The original communication protocol for rsync-based

synchronization is not efficient for the CDC-based ap-

proach. Specifically, we find that the strong hash com-

putation and comparison used in rsync would also be

unnecessary in Dsync if the chunks’ weak hashes mis-

match, which motivates us to redesign the communication

protocol for Dsync. It will be discussed in section IV-D.

With coordinated operations of the above four components

in Dsync, mismatched chunks will be sent to the server as

Delta Bytes. A detailed workflow of Dsync with these four

key components is presented next.

B. Baseline:Dsync using FastCDC

Among existing proposals aimed to accelerate the chunk-

ing speed, FastCDC [31] appears to be a right candidate

for rsync with low compute overhead for chunking. In

our current implementation of Dsync, we directly transplant

FastCDC into Dsync for chunking based on WebR2sync+ [32]

(one of the latest improved version of rsync). Further, we

replace SipHash with SHA1 in WebR2sync+, since it is a

widely acknowledged cryptographically secure hash algorithm

for data deduplication [29], [35]. As shown in Figure 6, the

current implementation of Dsync consists of the following

three phases:

• Pre-treatment Phase. In this phase, the client splits the

file into chunks via FastCDC [31] and calculates their

weak and strong hash values (i.e., Adler32 and SHA1) as

rsync does. After that, the fingerprints are sent to the

server. Compared with the model of the rsync protocol,

where files are divided into fix-sized chunks, the CDC

approach incurs extra compute overhead. Therefore, this

phase is theoretically slower than that of rsync (see

Figure 2).

• Matching Phase. Upon receiving the Checksum List (i.e.,

Adler32 and SHA1 values of the client file f ’), the server

starts to chunk the server file f and calculate hash values

as the client does. Then the server searches the Checksum

List (of the client file f ’) for the duplicate chunks in file

f, and the metadata of matched chunks will be sent back

to the client. Our model compares the data chunk by

chunk while the rsync model compares the data byte

by byte if the chunk fingerprints of the server file f do not

match any hash values of the client file f ’. Theoretically,

our approach is much more efficient than rsync in this

phase.

• Reconstructing Phase. Upon receiving the Match Tokens,

the client will send the literal bytes of the chunks that do

not match, also known as the Delta Bytes. Based on the

Delta Bytes from the client and the server file f, the server

reconstructs the client file f ’ = f +delta. In this phase,

Dsync is almost the same as rsync.

In essence, this current version of Dsync simplifies the

comparison for the duplicate chunks for delta synchronization

by employing CDC. But it has two weaknesses as discussed in

Section III: 1© additional compute overhead from CDC, 2© low

redundancy detection ratio due to the coarse-grained chunk-

matching after CDC. For the first weakness, we will utilize

the hash values generated by Content-Defined Chunking in

FastCDC, as the weak hash (for duplicate pre-matching), to

compensate for additional compute overhead for chunking, as

detailed in Section IV-C. For the second weakness, we will

redesign the communication protocol to minimize the size of

metadata for the Match Token in the matching phase and also

minimize the hash calculation in the whole Dsync workflow,

as detailed in Section IV-D.

Client Serverfile: f’

Reconstructing

Generating DeltaBytes

Calculating
Running FastCDC;

Running FastCDC;

/Comparing

Adler32 &

f + delta = f‘

2. Matching

1. Pre-treatment

file: f

Calculating

Adler32 & SHA-1;

SHA-1;MatchToken

ChecksumList

DeltaBytes

Ack

3. Reconstructing

Client file

Matching

chunk-by-chunk

 f‘

Server file f

Fig. 6. Preliminary FastCDC-based Dsync prototype.

C. FastFp Implementation

As discussed in the last subsection, in the pre-treatment

phase in Dsync, the CDC technique incurs extra calculation

even though FastCDC is very fast. Since CDC is sliding on

the data by using the rolling hash algorithm, it is feasible

to quickly obtain the weak hash for Dsync according to the

rolling hashes during CDC. This method will replace the

additional calculation for weak hash (i.e., adler32, also a

rolling hash) in the traditional rsync approaches.

fp = (fp << 1) +G(b) (1)

As shown in Equation 1, FastCDC uses fewer operations

to generate rolling hashes through a small random integer

table G[] to map the values of the byte contents b, called

Gear-based hashing, to achieve higher chunking throughput

than other rolling hash algorithms [31]. The Gear hash is also

weak, but compared with Adler32 it only represents the hash of

several bytes because of “rolling”, and thus has a high collision

ratio if we directly use the Gear hash as the weak hash for

an 8KB chunks. Fortunately, according to our observation on

FastCDC-based data deduplication, Gear hash in FastCDC can

be improved to achieve similar hashing efficiency as the classic

adler32 used in rsync.

Therefore, to reduce Gear hash collisions, we develop

FastFp, a novel and fast weak hash, as shown in Figure 7.

The length of the sliding window is set to 32 Byte. According

to the Equation 1, the original Gear hash is only relevant

to the content that is 32-Byte away from the cut point due

to the shift operation for “rolling”. To make the Gear hash

representative of the global content, we can combine the

Gear hash of different windows through a particular operation,

say “+” as an example (operation “⊕” will be compared

and evaluated later as well in Section V-B), to generate

a new hash called “FastFp”. Specifically, the fingerprint of the

sliding window will be added every time the window slides

over a certain distance, say 16Bye as an instance, and different

distances will also be evaluated and study later in Section V-B.

Sliding window [i](32Byte)

Sliding window [n]
Offset i Bytes

Data Chunk

Data Chunk

FastFP

Gear

......

GearHash SlidingWindow n([])
Coverage of the sliding window

Coverage of the whole chunk
GearHash SlidingWindow j

j

n

([])
/

16
0

16

GearHash(SlidingWindow[0])

 +GearHash(SlidingWindow[16])

 +GearHash(SlidingWindow[32])

 +GearHash(SlidingWindow[48])

 +· · · · · ·

Fig. 7. A schematic diagram of FastFp using Gear hash.

The most significant difference between FastFp and Gear

hash is that Gear is only related to a very limited range of

the chunk (i.e., the size of the sliding window) while FastFP

is related to all the contents of the chunks by using an extra

operation ‘+’ to combine many Gear hashes into one hash

value (as illustrated in Figure 7). These addition operations

are so lightweight as not to influence the overall performance

of FastCDC. In this way, FastFp is relevant to the data of the

whole chunk.

Therefore, based on the original FastCDC, FastFp is very

fast since it only adds one addition (“+”) operation after each

time the sliding window moves 16 bytes.

D. Client/Server Communication Protocol

In this subsection, we propose a novel communication

protocol to reduce the compute overhead while simultaneously

minimizing the network traffic.

Reducing strong hash compute overhead. According to our

observation of FastCDC-based Dsync prototype, as shown in

Figure 6, Dsync can reduce the compute of strong hash on the

data chunks whose weak hash values mismatch. Therefore, the

strong hash values computed on the clients are essentially not

needed in the pre-treatment phase. Based on this observation,

we establish a new delta sync protocol that minimizes the

compute overhead for strong hash values. The new protocol

is shown in Figure 8 with several improvements on the three

phases of Dsync as follows:

• In Phase 1, Dsync splits the client file f ’ into several

chunks via FastCDC with their weak hash (FastFp) values

generated. Then FastFp hash values and the lengths of

chunks are packed into the Checksum List (no longer

strong hash SHA1 now) and sent to the server.

• In Phase 2, upon receiving the Checksum List, the server

splits the file f into chunks by FastCDC and also obtains

these chunks’ FastFp. After that, the server searches the

Checksum List for the weak hash values of chunks in f.

If the weak hash value of a chunk is matched, the server

computes the SHA1 hash value of the matched chunk in

file f for further confirmation by sending Match Tokens

Client Serverfile: f’

Reconstructing

Generate DeltaBytes

Calculating
Running FastCDC;

Running FastCDC;

/Compare

f + delta = f‘

2. Matching

1. Pre-treatment

file: f

Calculating

Calculating SHA-1;

FastFP;

FastFP;

Calculating/Compare

FastFP & SHA-1;
MatchToken

ChecksumList

DeltaBytes

Ack

3. Reconstructing

Fig. 8. The redesigned protocol of Dsync to minimize the strong hash
calculation.

(including all the matched chunks indices of file f ’ and

the SHA1 values of the matched chunks in file f) to

the client. Then the client checks the SHA1 values of

the weak-hash-matched chunks of file f ’ according to the

Match Tokens.

• In Phase 3, the mismatched chunks, together with their

indices, form Delta Bytes, are then sent to the server.

Finally, the server reconstructs the client file f ’ according

to the server file f and Delta Bytes from the client.

Compared with the preliminary FastCDC-based Dsync pro-

tocol in Figure 6, the client does not calculate the SHA1

value until it receives the Match Tokens from the server. In

consequence, the task of searching SHA1 values is shifted to

the client. Moreover, only the weak-hash-matched chunks will

be calculated SHA1 for confirming duplicates; thus, the SHA1

calculation is minimized in Dsync, as shown in Figure 8.

Reducing network traffic. Inspired by the widespread ex-

istence of redundancy locality observed by many dedupli-

cation studies [29], [35], which states the observation that

the duplicate chunks say, A, B, and C, in a file appear in

approximately the same order throughout multiple full backups

or similar files with a very high probability, we believe that this

redundancy locality can also be exploited in Dsync for network

traffic reduction. Precisely, the consecutive chunks (potentially

duplicate) matched by their weak hashes can be collectively

regarded as a much larger chunk, which can significantly

reduce the metadata traffic (i.e., the number of Match Tokens)

in Dsync.

Figure 9 shows how we merge several consecutive weak-

hash-matched chunks into a larger one in Dsync. Upon re-

ceiving the Checksum List of the client file, the server also

chunks and fingerprints the server file f with weak hash as

the client does. After that, the server compares the weak hash

of its file with that contained in the Checksum List. The

consecutive weak-hash-matched chunks will be treated as a

single larger chunk to compute strong hash, which will be

sent back to the client later and compared. If the strong hash

fingerprint of merged single one chunk does not match that

of the client, we will transfer the strong hash fingerprints of

the constituent chunks when the merged chunk is beyond a

predefined threshold (we set it up as 800KB). Otherwise, the

mismatched chunk will be directly transferred to the server.

Collision probability. The implementation of merging

chunks is based on the assumption that the chunks with the

same weak hash value are likely to have the same strong hash

value with a very high probability. To make this clear, as

we did earlier, we suppose that the probability of weak hash

collision is p1. It can be argued that the main reason for the

hash collision of a merged chunk is that the weak hashes of

modified chunks among those constituting the merged chunk

are the same as their corresponding weak hashes before their

modifications. That is to say, hash collision happens on all

modified chunks. If the merged chunk contains n chunks of

which m are modified, the conditional probability of hash

collision of the merged chunk with modifications to exactly

m constituent chunks is thus (p1)
m. The final hash collision

probability of the merged chunk is the weighted mean of the

hash collision probabilities under all modification conditions,

and we assume that the probability of any m chunks being

modified is cm. Since 1 ≤ m ≤ n, the probability of a merged

chunk with n constituent chunks to be falsely considered

matched (false positive) can be computed as

PCollision =

n∑

m=1

cm(p1)
m, (2)

where

n∑

m=1

cm = 1, 0 ≤ cm ≤ 1. (3)

According to Equation 2, we can find that the probability of

a false positive for detecting a matched merged chunk is the

linear combination of the collision probabilities under different

modification conditions. Here cm represents the probability of

the various number of colliding chunks occurrence. Whatever

cm is, the collision probability always satisfies:

(p1)
n ≤ PCollision ≤ p1. (4)

In other words, the probability of the hashes of the merged

chunks colliding is lower than or equal to the hash collision

probability of a single chunk, which is acceptably low for our

design.

Benefit of merging chunks. Based on the locality of duplicate

chunks (redundancy locality), we can merge the weak-hash-

matched chunks together to reduce the amount of metadata

transmitted. In this scheme, there will be only one strong

hash to send for consecutively weak-hash-matched chunks.

Specifically, if the file is as large as 10MB and only modified

on one data chunk (with avg. chunk size of 8KB for CDC in

Dsync), the merged chunk, however, only sends about 60B

SHA1 (three chunks, two duplicates, one unique) because

there will be only three chunks after merging; while the

unmerged chunks will send about 25KB SHA1 (about 427×

reduction by Dsync).

Solution to tackle chunk collision. If the strong hash of the

merged chunk mismatches, there are two options to handle this

problem. One is to compare the strong hashes of the individual

chunks of the merged chunk and then transmit the strong-hash-

unmatch chunks, and the other is to transmit all the constituent

chunks of a merged chunk directly. Our scheme chooses the

... ...

... ... Checksum List

from client

Weak hash of f

on server

Weak hash

comparing

Match Token

Hash [i-2] Hash [i-1] Hash [i] Hash [i+1] Hash [i+2]

Hash’[j-2] Hash’[j-1] Hash’[j] Hash’[j+1]Hash’[j+2]

... ...Hash’’[k-1] Hash’’[k-1] Hash’’[k+1]

Strong hash calculation

Fig. 9. Merging several consecutive weak-hash-matched chunks into one
chunk to reduce metadata overhead.

Chunk 1

Length

Chunk 1

FastFp

Chunk

Number

Chunk 2

FastFp
...Chunk 2

Length

Chunk n

FastFp

Chunk n

Length

Chunk 1

Match data

Match

Chunk

Number

Match Token:

Patch File:

Checksum List:

...

...

Chunk 2

Match data

Chunk n

Match data

First

Unmerged

Chunk Index

Merged

Chunk

Number

SHA1

Fingerprint

Chunk 1

Information

Chunk 2

Information

Chunk n

Information

Chunk

Numbers

Chunk 2

Index

Chunk 2

Length

Chunk 2

Data

Fig. 10. The detailed format of data transferred in the three network
interactions in Dsync.

latter since the hash collision probability of a merged chunk

is very low, as discussed above.

Finally, the communication between the client and server is

based on the WebSocket protocol. The protocol regulates a per-

message-deflate compression extension [33], and most of the

mainstream Web browsers support it and the data transmitted

is usually compressed by default.

E. Other Implementation Issues

In this subsection, we will discuss other implementation

issues in Dsync for better understanding of its design.

Cross-platform based implementation. Dsync is designed as

a lightweight Web-based synchronization service accessible on

most devices without requiring client buffer. The Web browser

is one of the most prevailing accesses to the Internet and a

Web-based service has the advantage to be cross-platform,

while the PC or portable device clients have to be compiled

and maintained for different operating systems. The applica-

tion scenario of Dsync includes but is not limited to devices

with low compute capacity (i.e., many resource-constrained

systems, such as Mobile phone, IoT devices and et cetera).

Note that data compression is a common practice to reduce

the network traffic, and both Dsync and WebR2Sync+ enable

the default compression of sync message supported by the

Web browser. In general, the data compression is an attempt

to trade-off between network traffic size and CPU overhead.

Compression slows down the overall synchronization under

sufficiently high bandwidth but makes it faster when network

is insufficient. It is observed that default compression makes

Dsync faster only if the network is below 100 Mbps.

Data structures for interactions. Figure 10 shows how

data transferred in the corresponding three key interactions is

formatted in Dsync (see Figure 8). In Phase 1, the Checksum

List starts with the total number of chunks, followed by the

weak hash and length of chunks one by one. In this phase,

the data index is not attached, but the chunk sequence is

stored on the server. In Phase 2, the Match Token indicates

the matched chunks and starts with the total number of chunks

(note that here each chunk is merged from the consecutive

matched chunks), followed by the metadata of each chunk. The

metadata of each chunk is composed of three parts, the first

unmerged chunk index, the number of the constituent chunks

of a merged chunk and strong-hash fingerprint. In Phase 3, the

data also starts with the number of unique chunks , and it is

followed by the detailed information of these unique chunks.

The chunk information is composed of its index, length, and

content. Note that the index mentioned above refers to the

sequence number of the chunk in Checksum List.

V. EVALUATION

In this section, we first introduce the experimental setup

for Dsync. And then we conduct a sensitivity study of Dsync.

Besides, an overall comparison between Dsync and the state-

of-art rsync-based WebR2sync+ [32] and deduplication-

based solution [23], [31] is evaluated and discussed.

A. Experimental Setup

Experimental Platform. We run the experiments on a quad-

core Intel i7-7700 CPU, 16GB memory PC with Windows 10

operating system and a 6GB RAM, 64GB ROM mobile phone

with Huawei honor V10. The PC client runs on Chrome v76.0

(windows) while the mobile phone client is on Chrome v74.0

(Android). Besides, the server runs on node v12.8 with a quad-

core virtual machine @3.2GHz (installed Ubuntu Server 16.04

with 16GB memory and 128GB disk). To simulate actual

network status, we tune the bandwidth to be 100Mbps and

rtt to be 30ms.

Performance Metrics. We evaluate delta sync approaches in

terms of two main metrics: sync time and sync traffic. The sync

time metric refers to the time spent on the whole sync process.

The sync traffic metric measures the total amount of data

transmitted, including the Checksum List, Match Token, and

Delta Bytes, as discussed in Section IV (see Figure 8). Note

that, although the transmitted data is compressed by default

by the Web browsers, the sync traffic measured and evaluated

in this paper is the volume of data traffic before compression.

For each data point reported we run the experiment five times

to obtain a statistically meaningful average measure for the

delta sync performance.

Delta Sync Configurations. We build our Dsync on top

of the open-sourced WebR2sync+ [32]. Dsync is written in

a total of ∼2000 lines of JavaScript and ∼200 lines of C

code. The deduplication-based delta sync solution (Dedup

for short) is based on LBFS [23] except that we use

the latest FastCDC [31] to replace the Rabin-based CDC

for higher chunking speed. Therefore, we use open-sourced

WebR2sync+ [32] and FastCDC-based Dedup as baselines

for performance comparison with Dsync. To be fair, all the

experiments enable the default compression since the original

WebR2Sync+ also employs that [32]. In the evaluation, we

use the average chunk size of 8KB, which is also used in

WebR2sync+ [32] and LBFS [23].

Benchmark Datasets. Silesia [10] is a widely acknowl-

edged dataset for data compression [11] covering typical data

types that are commonly used, including text, executables,

pictures, htmls and et cetera. According to several published

studies on real-world and benchmark datasets [24], [30], the

file modifications are made at the beginning, middle, and

end of a file with a distribution of 70%, 10%, and 20%

respectively [24]. Similar to the operations in QuickSync [8]

and WebR2sync+ [32], modifications in the forms of ‘cut’,

‘insert’, and ‘inverse’ are also made on the original data, where

‘inverse’ represents flipping the binary data (e.g., inversing

10111001 to 01000110). To generate the benchmark datasets,

we cut 10MB out of Silesia corpus and make modifications

to the file with the modification size of 32B, 256B, 2KB,

16KB, 128KB and 1MB on it respectively. Three types of

file modifications are made following the pattern described

above, and each fraction for the file modifications takes 256B

at most. In our benchmark datasets, under 10% modification

with each modification of 256B, over 90% of the data chunks

will be unique if we use the average chunk size of 8KB for

delta synchronization.

Real-World Datasets. In addition to the synthesized datasets

above, we use the following four real-world datasets to eval-

uate the performance of the delta sync approaches:

• PPT. We collect 48 versions of a PowerPoint docu-

ment from personal uses in the cloud storage (totalling

467MB).

• GLib. We collect the GLib source code from versions

2.4.0 through 2.9.5 sequentially. The codes are tarred,

and each version is of almost 20MB, totalling 860 MB.

• Pictures. We use a public picture manipulation

dataset [7], which contains 48 pictures in the ‘PNG’

format (totalling 280 MB) with no lossy compression

and the manipulation pattern is to paste a certain area

of a photo in another place.

• Mails. We collect some mails from a public mail

dataset [2] and each mail contains the past replies. The

mails are tarred with two versions by time, and the total

size is about 1839 MB.

B. Performance of the Weak Hash FastFp

Hashing speed and hash collision ratio are the two most

important metrics for evaluating the effectiveness of weak hash

FastFp. In this subsection, to evaluate the hash collision, we

generate five files consisting of random numbers for the given

size of 1GB, 10GB, and 100GB (totalling 15 files). Since

the sync service is implemented in JavaScript (our evaluation

environment), we run FastFp, Gear, and Adler32 via node.js

on the Chrome browser of the PC with i7-7700 CPU. As has

been stated in Section IV-C, the operation includes “XOR”

TABLE II
THROUGHPUT AND COLLISION RATIO COMPARISON. HERE FASTFP IS

EVALUATED WITH DIFFERENT CONFIGURATIONS: “⊕” IS FOR “XOR”, “+”
IS FOR “PLUS”, WINDOW SLIDING DISTANCE IS OF 8B, 16B, 32B.

Algorithms
Thpt

(MB/s)

Hash collision ratio under
different random file size

100GB 10GB 1GB

Adler32 295.6 2.3× 10
−10

2.3× 10
−10

2.4× 10
−10

Gear 527.8 6.8× 10
− 7

6.8× 10
− 7

6.8× 10
− 7

FastFp(⊕ 8B) 460.0 2.2× 10
−10

2.2× 10
−10

3.1× 10
−10

FastFp(⊕16B) 459.2 2.3× 10
−10

2.3× 10
−10

1.5× 10
−10

FastFp(⊕32B) 460.4 2.2× 10
−10

2.4× 10
−10

3.1× 10
−10

FastFp(+ 8B) 396.9 2.3× 10
−10

2.4× 10
−10

2.8× 10
−10

FastFp(+16B) 397.5 2.3× 10
−10

2.2× 10
−10

1.8× 10
−10

FastFp(+32B) 409.6 2.3× 10
−10

2.3× 10
−10

4.0× 10
−10

and “PLUS” while the sliding window is applied with the

operation every time it slides over 8B, 16B and 32B, totalling

6 different configurations. The Gear hash here refers to the

hash value of the sliding window using FastCDC when the

boundary of a chunk is found during chunking.

Table II shows the averaged hashing speeds and collision

ratios of Adler32, Gear, and FastFp with different configu-

rations. The evaluation is to calculate the hashes of chunks

with an average chunk size of 8KB on the random number

workloads, which is often used for evaluating hash efficiency.

The metric collision ratio listed in Table II is calculated based

on Equation 5 as defined below, which is the total combination

of two unique chunks with identical weak hash fingerprint

divided by the combination of picking any two chunks from

all the chunks.

pcollision =

∑n

i=2
niC

2

i

C2
n

(5)

Here i represents the number of collision occurrences for

a given weak hash while ni corresponds to the number of

such i-times colliding weak hash fingerprints (e.g., if ten

different chunks are sharing the same weak hash and there

are seven such weak hash fingerprints, then i equals to 10

and ni equals to 7). The results exactly prove the uniformity

of our FastFp. Essentially speaking, picking two colliding

chunks is equivalent to finding a new chunk that has the

same weak hash fingerprint as the given one. Therefore, the

probability is supposed to be 1/232 if the output of the

hash function is uniformly distributed, which is consistent

with our experiments. For a small file, say 100MB (12800

chunks in total and according to table II, colliding probability

is 2.3 × 10−10 at maximum), the maximum colliding-chunk

number is calculated as only 0.04 (according to Equation 5,

we can get the biggest colliding-chunk number when ni = 0 if

i 6= 2) when chunked with FastFp at an average size of 8KB,

indicating a quite low possibility for collision occurrence.

Table II suggests that under the different file sizes, the hash

speeds of FastFp reaches almost 400-460MB/s, about 50%

higher than Adler32. Besides, FastFp using “⊕” is faster than

using “+” while the sliding distance nearly does not influence

the hashing throughput. The fast speed of FastFp is due to

that FastFp (running on the top of Gear) consumes fewer

0.2

0.4

0.6

0.8

1.0

1.2

32B 256B 2KB 16KB 128KB 1MB

T
ra

ff
ic

 R
a
ti
o

Modification size

Cut Insert Inverse

Fig. 11. Total traffic ratio as a function of the modification size,
after/before applying the Dsync protocol that merges consecutive weak-
hash-matched chunks.

instructions for the rolling hash comparing with Adler32 [31].

For the collision ratio issue, it can also be seen that the bigger

the dataset is, the higher the probability of hash collision

will be (i.e., finding the two different chunks have the same

weak hash). Here we can observe that FastFp and Adler32

have almost identical hash collision ratios that are about three

orders of magnitude lower than the original Gear, while the

operation type and sliding distance has almost no influence

on the collision ratio. The high collision ratio of Gear stems

from the fact that it only involves the sliding window of

contents in the chunk boundary. It is worth noting that the

hash collision ratio is acceptably low since our synced files

are usually smaller than 1GB.

In summary, FastFp (CDC + weak hash), a new hash

function utilizing the byproduct of (hash values generated

by) FastCDC, is 1.5X faster but no weaker than the widely

acknowledged Adler32 weak hash used in rsync. To achieve

the best performance, we choose FastFp with ”XOR” operated

every time the window slides over 16B as default for other

experiments.

C. Performance of the Redesigned Protocol

Our redesigned sync protocol in Dsync aims to compute as

little strong hash (i.e., SHA1) as possible while minimizing

the amount of metadata transmitted over the network.

Figure 11 shows the ratio of total traffic over the network

after/before applying our Dsync protocol that merges con-

secutive weak-hash-matched chunks. When there are fewer

modifications (e.g., only inserting 32B), the total traffic is

reduced by 70% ∼ 80% in Dsync. As the size of modifications

grows, this ratio approaches 100%, and the trends for the three

types of modifications are almost identical. This is because, as

more modifications are made to the file, the traffic is gradually

dominated by the Delta Bytes since fewer, if any, weak-hash-

matched chunks will be found. Specifically, for a 10MB file

using the average chunk size of 8KB, the transmission of

almost 1280 chunks’ SHA1 values, i.e., totalling 25KB of

metadata, will be eliminated. However, the reduced metadata

will be far overshadowed by the much larger amount of Delta

Bytes transmitted from the client to the server if too many

modifications are made to the file.

Figure 12 shows the sync time spent on the client as a

function of the modification size in WebR2sync+ and Dsync

(with the improved sync protocol) respectively. The bulk of the

client time is spent on generating Checksum List in the pre-

treatment phase and Delta Bytes in the reconstructing phase.

Thus, the sync time for both delta sync approaches is almost

the same because both of them must calculate the strong

hashes of all chunks. As the size of modifications grows, the

client time of our improved protocol decreases significantly

starting at 16KB. This is because when more modifications

are made to the client file, Dsync detects fewer weak-hash-

matched chunks, leading proportionally fewer SHA1 circu-

lations of unmatched chunks. Note that, unlike the rsync

protocol where the matching process is based on the technique

of the aforementioned Verbatim-based Chunking, the matching

process in Dsync has been greatly simplified by using the

FastCDC technique. That is, the strong hash calculations of

mismatched chunks on the client are eliminated owing to the

advantages of the CDC approach used in our Dsync design.

In summary, the redesigned protocol in Dsync can not only

effectively reduce the metadata transmitted over the network

but also reduce the compute overhead on the client-side.

D. Putting It All Together

In this subsection, we evaluate the overall performance of

Dsync. The evaluation includes the sync time breakdown of

Dsync, the impact of file size on Dsync performance, and the

capacity of supporting multiple clients and et cetera.

In essence, introducing a CDC technique in an rsync-

like synchronization service can reduce the CPU overhead for

weak hash lookups. Figure 13 shows Dsync’s improvement

in searching and comparing hash values over WebR2Sync+.

When comparing weak hashes, the server constructs and

searches a hash table according to the Checksum List. In

the next stage, the client only compares the strong hashes of

the weak-hash-matched chunks. The curves show a consistent

trend under three file modification patterns. The dash lines

show the numbers of the weak hash lookups, which suggests

that Dsync is almost four orders of magnitude lower than

WebR2Sync+, indicating that the CDC approach can greatly

reduce the weak hash lookups.

The solid lines in Figure 13 show the results of strong-

hash comparisons. The number of strong hash comparison

operations represents the number of matched chunks. The

more matched chunks we find, the more strong-hash com-

parisons have to be executed. When file modifications are

minor, Dsync compares fewer strong hash fingerprints because

of our merging strategy and WebR2Sync+’s ability to find

more chunks than Dsync. However, when modification size is

1MB, it’s hard to find unmodified chunks for WebR2Sync+,

since the distance between two modifications is almost 8KB

while Dsync may find the matched chunks smaller than 8KB

(the chunk sizes are variable by CDC), as has been stated in

Section V-A. Therefore, Dsync has more matched chunks at

1MB modification, which thus needs to compare more strong

hashes. Even if WebR2Sync+ may compare fewer strong hash,

 50

 100

 150

 200

 250

32B 256B 2KB 16KB 128KB 1MB

S
y
n
c
 t
im

e
 o

n
 c

lie
n
t
(m

s
)

Modification size

WebR2Sync+
Dsync

(a) Cut.

 50

 100

 150

 200

 250

32B 256B 2KB 16KB 128KB 1MB

S
y
n
c
 t
im

e
 o

n
 c

lie
n
t
(m

s
)

Modification size

WebR2Sync+
Dsync

(b) Insert.

 50

 100

 150

 200

 250

32B 256B 2KB 16KB 128KB 1MB

S
y
n
c
 t
im

e
 o

n
 c

lie
n
t
(m

s
)

Modification size

WebR2Sync+
Dsync

(c) Inverse.

Fig. 12. The sync time spent on client as a function of modification size in WebR2sync+ and Dsync.

32 256 2K 16K 128K 1M
Modified file size (bytes)

100

102

104

106

108

of
 e
xe
cu
te
d
op

er
at
io
ns

DsyncStrongHash
DsyncWeakHash
WebR2Sync+StrongHash
WebR2Sync+WeakHash

(a) Cut.

32 256 2K 16K 128K 1M
Modified file size (bytes)

100

102

104

106

108

of
 e
xe
cu
te
d
op

er
at
io
ns

DsyncStrongHash
DsyncWeakHash
WebR2Sync+StrongHash
WebR2Sync+WeakHash

(b) Insert.

32 256 2K 16K 128K 1M
Modified file size (bytes)

100

102

104

106

108

of
 e
xe
cu
te
d
op

er
at
io
ns

DsyncStrongHash
DsyncWeakHash
WebR2Sync+StrongHash
WebR2Sync+WeakHash

(c) Inverse.

Fig. 13. Numbers of hash-comparing operations of Dsync and WebR2Sync, including both strong and weak hashes.

 0

 500

 1000

 1500

 2000

W D W D W D W D W D W D

S
y
n

c
 t
im

e
(m

s
)

Modification size

Client
Network
Server

1MB128KB16KB2KB256B32B

(a) Cut.

 0

 500

 1000

 1500

 2000

W D W D W D W D W D W D

S
y
n

c
 t
im

e
(m

s
)

Modification size

Client
Network
Server

1MB128KB16KB2KB256B32B

(b) Insert.

 0

 500

 1000

 1500

 2000

W D W D W D W D W D W D

S
y
n

c
 t
im

e
(m

s
)

Modification size

Client
Network
Server

1MB128KB16KB2KB256B32B

(c) Inverse.

Fig. 14. Sync time breakdown of WebR2sync+ and Dsync as a function of modification sizes.

Dsync calculates fewer hashes and has lower CPU overhead

because the strong hash calculation for some chunks is not

necessary for the CDC approach (see Section V-C).

Then we evaluate the breakdown of Dsync’s sync time com-

paring with WebR2sync+, as shown in Figure 14. Compared

with WebR2sync+, the time consumed by both the server and

the client has been greatly reduced and the time spent on the

client has been reduced as well, especially when the size of

modifications is larger than 128KB. Note that the necessary

time for Delta Bytes transmission (i.e., network time) cannot

be reduced by both Dsync and WebR2sync+, we target at

providing a lightweight delta sync solution with low compute

overhead in this paper.

Figure 15 shows the sync time as a function of the modifica-

tion size of the three sync approaches. Overall, while Dsync

consistently outperforms the other two sync approaches, all

three approaches exhibit identical performance trends as the

modification size increases. When the modification is light

(e.g., less than 2KB), the advantage of Dsync is obvious. As

the modification size increases, Dsync’s advantage becomes

pronounced, outperforming WebR2Sync+ by a factor of two.

The dedup-based approach is slower than WebR2Sync+ when

modification size is small. Nevertheless, if more modifications

are made, Dedup outperforms WebR2Sync+ since it can more

effectively handle low-matching scenarios via CDC technique

(see Figure 4(b)).

Next, we evaluate the scalability of these approaches in

terms of the ability to support multiple clients simultaneously

by the measure of CPU utility, with results shown in Figure 16.

To support multiple clients synchronizing files simultaneously,

we run the client code on nodejs on PC instead of web

browsers. In this evaluation, the file modifications are executed

 0

 500

 1000

 1500

 2000

32B 256B 2KB 16KB 128KB 1MB

S
y
n
c
 t
im

e
(m

s
)

Modification size

DSync
Dedup
WebR2sync+

(a) Cut.

 0

 500

 1000

 1500

 2000

32B 256B 2KB 16KB 128KB 1MB

S
y
n
c
 t
im

e
(m

s
)

Modification size

DSync
Dedup
WebR2sync+

(b) Insert.

 0

 500

 1000

 1500

 2000

32B 256B 2KB 16KB 128KB 1MB

S
y
n
c
 t
im

e
(m

s
)

Modification size

DSync
Dedup
WebR2sync+

(c) Inverse.

Fig. 15. Sync time of the three delta sync approaches as a function of the modification size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

50 100 150 200 250 300 350 400

C
P

U
 u

ti
lit

y
(1

0
0
%

)

Number of clients

Dsync
WebR2sync+
Dedup

(a) Cut.

 0

 20

 40

 60

 80

 100

 120

 140

 160

50 100 150 200 250 300 350 400

C
P

U
 u

ti
lit

y
(1

0
0
%

)

Number of clients

Dsync
WebR2sync+
Dedup

(b) Insert.

 0

 20

 40

 60

 80

 100

 120

 140

 160

50 100 150 200 250 300 350 400

C
P

U
 u

ti
lit

y
(1

0
0
%

)

Number of clients

Dsync
WebR2sync+
Dedup

(c) Inverse.

Fig. 16. Multiple clients supported by the three delta sync approaches on a single VM server instance.

TABLE III
SYNC PERFORMANCE OF THE THREE APPROACHES ON BOTH WINDOWS/ANDROID CLIENT ON FOUR REAL-WORLD DATASETS. NOTE THAT

WINDOWS/ANDROID PLATFORMS HAVE THE SAME SYNC TRAFFIC IN THE LAST THREE COLUMNS SINCE THEY ONLY DIFFER IN THE COMPUTE CAPACITY.

Sync Time(Seconds) (Windows/Android) Sync Traffic(MB) (Windows/Android)

Dataset Dsync WebR2sync+ Dedup Dsync WebR2sync+ Dedup

Pictures 17.49/ 53.45 20.27/ 83.90 20.61/ 59.74 94.3 105.3 104.4

PPT 11.14/ 44.69 20.81/ 84.22 15.22/ 56.39 162.2 162.4 164.0

Mail 27.19/117.40 90.46/271.74 48.67/160.06 635.4 638.0 637.6

GLib 41.98/157.46 75.05/299.74 52.03/186.88 497.8 455.4 532.7

every 10 seconds on each client, and then the clients send the

delta sync request. To get the statistical error bounds, we run

the experiment 5 times for each point on the graph. Note that in

this evaluation, the lower the CPU utility an approach has, the

more scalable the approach is. The results indicate that Dsync

has the lowest CPU utility consistently among the three sync

approaches, making it the most scalable approach. In other

words, while Dsync is shown to support delta sync of about

370 clients, WebR2Sync+ and Dedup can only support about

250-300 clients concurrently.

Finally, we run our tests on four real-world datasets. In

this evaluation, in addition to the PC client (Windows), we

also test the three delta sync approaches on the Web browser

of the Mobile phone client (Android). Table III shows the

results of the Dsync, WebR2sync+, and Dedup schemes. First

of all, the sync services on the mobile phone client are running

much more slowly than on the PC client (3×-4× slower),

which is because a PC that is installed with Windows has

a much more powerful CPU than an Android mobile phone

device. Second, the sync time comparison among the three

approaches shows the consistent advantages of Dsync over

WebR2sync+ and Dedup on both PC and mobile phone clients

(about 1.5-3.3× faster). Third, the sync traffic volumes of the

three approaches are almost the same. Note that the sync traffic

for the Mail dataset is almost the same as that of the original

file because the size of a single mail and the modifications are

too small and the fully dispersed modifications lead to a very

low probability of chunk matching. Therefore, the CDC-based

approach is indeed more effective than rsync-based approach

and Dsync consistently and notably outperforms Dedup and

WebR2sync+.

In summary, Dsync runs 1.5×-3.3× faster than the state-

of-the-art rsync based WebR2Sync+ and Dedue-based ap-

proach. The processing time of Dsync on both the client and

server sides has been greatly reduced compared with the latest

rsync based WebR2Sync+.

 0

 20

 40

 60

 80

 100

 120

500MB 1GB

S
yn

c
tim

e(
s)

FullSync
Dsync
Dedup
WebR2sync+

(a) Modification ratio of 1%.

 0

 100

 200

 300

 400

 500

500MB 1GB

S
yn

c
tim

e(
s)

FullSync
Dsync
Dedup
WebR2sync+

(b) Modification ratio of 30%.

Fig. 17. Sync time of the four sync approaches for the large files in the
high-bandwidth environment.

E. High Bandwidth and Large Files

In this subsection, we evaluate Dsync performance on

the large files under the Gigabit network environment, as

shown in Figure 17. Here we add the FullSync approach

(without calculating the delta data) for better evaluating the

other three delta sync approaches. As mentioned earlier, the

chunk-matching process is very time-consuming in the rsync

based approaches, the results shown in Figure 17 suggest

that rsync-based WebR2sync+ spends 5×-8× more sync

time comparing with Dsync, and even much slower than the

FullSync approach. This is because WebR2sync+ spends too

much time on the process of byte-by-byte chunk-matching

on large files while the time spent on the network has been

reduced by using a high-bandwidth environment. Meanwhile,

Dsync runs much faster than FullSync since it not only

reduces the transmission of redundant data but also simplifies

the chunk-matching process, which well caters for the delta

sync demand of the future cloud storage services with high

bandwidth and large files. Note that our client is on the Web

browser and server is on a VM server. Thus only about 30%

of the total Gigabit bandwidth is consumed in this evaluation.

VI. CONCLUSION

The traditional rsync-based approaches will introduce

the heavy computation overhead in the chunk matching

process for high-bandwidth cloud storage services. At the

same time, CDC-based deduplication simplifies the chunks

matching process but brings new challenges of the additional

computation overhead and low redundancy detection ratio.

In this paper, we propose Dsync, a deduplication-inspired

lightweight delta synchronization approach for cloud storage

services, to address the above challenges facing combining

CDC technique with the traditional rsync-based approaches.

The critical contributions of Dsync are to develop a fast,

weak hash called FastFp by piggybacking on hashes generated

from the chunking process of FastCDC and redesigning the

delta sync protocol by exploiting deduplication locality and

weak/strong hash properties, which makes CDC simplify the

delta sync process for cloud storage services, especially for the

large file synchronization and high-bandwidth environment.

Evaluation results, driven by both benchmark and real-world

datasets, demonstrate that our solution Dsync performs 2×-

8× faster and scales to 30%-50% more concurrent clients than

the state-of-the-art rsync-based WebR2sync+ and the latest

deduplication-based approach.

VII. ACKNOWLEDGMENTS

We are grateful to our shepherd Philip Shilane and

the anonymous reviewers for their insightful comments

on this work. This research was partly supported by

NSFC No. 61972441, No. 61822205, No. 61902093,

the Open Project Program of Wuhan National Lab-

oratory for Optoelectronics No. 2018WNLOKF008, the

Shenzhen Science and Technology Program under Grant

No. JCYJ20190806143405318, Key Technology Program

of Shenzhen, China (No. JSGG20170823152809704), Key

R&D Program for Guangdong Province under Grant

No.2019B010136001, Shandong Provincial Natural Science

Foundation (No. ZR2019QF014), and the US National Science

Foundation under Grant CCF-1704504 and CCF-1629625.

Wen Xia is the Corresponding author (xiawen@hit.edu.cn).

REFERENCES

[1] Dropbox. https://www.dropbox.com/.

[2] Enron mail dataset. https://bit.ly/2XSUbu2/.

[3] GoogleDrive. https://www.google.com/drive/.

[4] iCloud. https://www.icloud.com/.

[5] rsync. https://rsync.samba.org/.

[6] Seafile: Enterprise file sync and share platform with high reliability and
performance. https://www.seafile.com/en/home.

[7] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou. An
evaluation of popular copy-move forgery detection approaches. IEEE

Transactions on Information Forensics and Security, 7(6):1841–1854,
2012.

[8] Yong Cui, Zeqi Lai, Xin Wang, and Ningwei Dai. Quicksync: Improving
synchronization efficiency for mobile cloud storage services. IEEE

Transactions on Mobile Computing, 16(12):3513–3526, 2017.

[9] Teodosiu Dan, Nikolaj Bjorner, Joe Porkka, Mark Manasse, and Y. Gure-
vich. Optimizing file replication over limited-bandwidth networks using
remote differential compression. Microsoft Research, 2006.

[10] Sebastian Deorowicz. Silesia Corpus. https://bit.ly/2xN3hgZ.

[11] Sebastian Deorowicz. Universal lossless data compression algorithms.
PhD thesis, Silesian University of Technology, 2003.

[12] Idilio Drago, Enrico Bocchi, Marco Mellia, Herman Slatman, and Aiko
Pras. Benchmarking personal cloud storage. In Proceedings of the

2013 conference on Internet measurement conference, pages 205–212,
Barcelona, Spain, October 2013. ACM.

[13] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin
Sadre, and Aiko Pras. Inside dropbox: understanding personal cloud
storage services. In Proceedings of the 2012 Internet Measurement

Conference, pages 481–494, Boston, MA, USA, November 2012. ACM.

[14] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C
Snoeren, George Varghese, Geoffrey M Voelker, and Amin Vahdat.
Difference engine: Harnessing memory redundancy in virtual machines.
Communications of the ACM, 53(10):85–93, 2010.

[15] Barron C Housel and David B Lindquist. Webexpress: A system for
optimizing web browsing in a wireless environment. In Proceedings

of the 2nd annual international conference on Mobile computing and

networking, pages 108–116, Rye, New York, USA, November 1996.
ACM.

[16] James Wayne Hunt and M Douglas MacIlroy. An algorithm for

differential file comparison. Bell Laboratories Murray Hill, 1976.

[17] Richard M Karp and Michael O Rabin. Efficient randomized pattern-
matching algorithms. Ibm Journal of Research and Development,
31(2):249–260, 1987.

[18] David G Korn and Kiem-Phong Vo. Engineering a differencing and
compression data format. In Proceedings of the 2002 USENIX Annual

Technical Conference, pages 219–228, Monterey, California, USA, June
2002. USENIX.

[19] Zhenhua Li, Cheng Jin, Tianyin Xu, Christo Wilson, Yao Liu, Linsong
Cheng, Yunhao Liu, Yafei Dai, and Zhi-Li Zhang. Towards network-
level efficiency for cloud storage services. In Proceedings of the

2014 Conference on Internet Measurement Conference, pages 115–128,
Vancouver, BC, Canada, November 2014. ACM.

[20] Zhenhua Li, Christo Wilson, Zhefu Jiang, Liu Yao, Ben Y. Zhao, Jin
Cheng, Zhi Li Zhang, and Yafei Dai. Efficient batched synchronization
in dropbox-like cloud storage services. Lecture Notes in Computer

Science, 8275:307–327, 2013.
[21] Josh MacDonald. File system support for delta compression. Master’s

thesis, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley, CA, USA, 2000.

[22] Irfan Mohiuddin, Ahmad Almogren, Mohammed Al Qurishi, Moham-
mad Mehedi Hassan, Iehab Al Rassan, and Giancarlo Fortino. Secure
distributed adaptive bin packing algorithm for cloud storage. Future

Generation Computer Systems, 90:307–316, 2019.
[23] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-

bandwidth network file system. In Proceedings of the Eighteenth ACM

Symposium on Operating Systems Principles, pages 174–187, Banff,
Alberta, Canada, October 2001. ACM.

[24] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff
Kuenning, and Erez Zadok. Generating realistic datasets for dedupli-
cation analysis. In Proceedings of the 2012 USENIX Annual Technical

Conference, pages 261–272, Boston, MA, USA, June 2012. USENIX.
[25] Dimitre Trendafilov, Nasir Memon, and Torsten Suel. zdelta: An efficient

delta compression tool. http://cis.poly.edu/tr/tr-cis-2002-02.pdf, 2002.
[26] Andrew Tridgell and Paul Mackerras. The rsync algorithm. https://

rsync.samba.org/tech report/tech report.html, 1996.
[27] Andrew Tridgell, Paul Mackerras Richard Brent, and Brendan McKay.

Efficient Algorithms for Sorting and Synchronization. Phd thesis, The
Australian National University, 1999.

[28] Suzhen Wu, Longquan Liu, Hong Jiang, Hao Che, and Bo Mao.
PandaSync : Network and Workload aware Hybrid Cloud Sync Op-
timization. In Proceedings of the 39th International Conference on

Distributed Computing Systems, pages 1–11, Dallas, Texas, USA, July
2019. IEEE.

[29] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of
the past, present, and future of data deduplication. Proceedings of the

IEEE, 104(9):1681–1710, Sep. 2016.
[30] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun

Zhou. Ddelta: A deduplication-inspired fast delta compression approach.
Performance Evaluation, 79:258–272, 2014.

[31] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu,
Qing Liu, and Yucheng Zhang. Fastcdc: A fast and efficient content-
defined chunking approach for data deduplication. In 2016 USENIX

Annual Technical Conference, pages 101–114, Denver, CO, June 2016.
USENIX Association.

[32] He Xiao, Zhenhua Li, Ennan Zhai, Tianyin Xu, Yang Li, Yunhao Liu,
Quanlu Zhang, and Yao Liu. Towards web-based delta synchronization
for cloud storage services. In Proceedings of 16th USENIX Conference

on File and Storage Technologies, pages 155–168, Oakland, CA, USA,
February 2018. USENIX Association.

[33] Takeshi Yoshino. Compression Extensions for WebSocket. RFC 7692,
December 2015.

[34] Quanlu Zhang, Zhenhua Li, Zhi Yang, Shenglong Li, Shouyang Li,
Yangze Guo, and Yafei Dai. Deltacfs: Boosting delta sync for cloud
storage services by learning from NFS. In Proceedings of 37th IEEE

International Conference on Distributed Computing Systems, pages 264–
275, Atlanta, GA, USA, June 2017. IEEE.

[35] Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system. In Proceedings

of USENIX Conference on File and Storage Technologies, pages 269–
282, San Jose, California, USA, February 2008. USENIX Association.

