
ExtraCC: Improving Performance of Secure NVM
with Extra Counters and ECC

Zhengguo Chen∗, Youtao Zhang† and Nong Xiao‡
∗School of Computer, National University of Defense Technology, Changsha, China
†Department of Computer Science, University of Pittsburgh, Pittsburgh, USA

‡School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
Email: zgchen.nudt@foxmail.com, zhangyt@cs.pitt.edu, xiaon6@mail.sysu.edu.cn

Abstract—Emerging non-volatile memories (NVMs), while ex-
hibiting great potential to be DRAM alternatives, are vulnerable
to security attacks. Adopting counter mode AES based encryption
and authentication schemes help to protect memory security
but tend to incur non-negligible performance overhead in order
to keep data consistency between counters and user data. In
particular, counters are associated with logical addresses such
that counters of hot data may overflow frequently, incurring
lifetime and performance overhead in secure NVM system. The
recently proposed ACME scheme mitigates the issue by associat-
ing counters with physical addresses and leveraging underlying
wear-leveling schemes. While it stores and updates data and
counters together, it destroys counter locality and introduces
large read overhead during integrity check.

In this paper, we propose ExtraCC to address the performance
and lifetime losses in secure NVMs. We keep an extra counter and
enhance the ExtraCC with logical-addressed-physical-associated
(LAPA) counter scheme and two-tiered ECC to not only keep the
counter locality but also effectively reduce write overhead. Our
experimental results show that it achieves 15.2% performance
improvement and 20.5% write traffic reduction over the state-
of-the-art, with about 8.4% storage overhead.

Index Terms—non-volatile memories, security, ECC

I. INTRODUCTION

Emerging non-volatile memories (NVMs) have high poten-
tial to be alternatives to DRAM due to low power, high density
and scalability, e.g., ReRAM, PCM and STT-RAM [15], [16].
However, modern computer systems that integrate NVMs are
vulnerable to classic security attacks, including confidentiality
and integrity attacks [14]. The former includes bus snooping
and memory scanning attacks [3], [23] while the latter includes
splicing, spoofing and replay attacks [2], [9]. A traditional
secure memory system often adopts Galois Counter Mode
(GCM) [7] based encryption and authentication schemes [17],
which use counter mode AES algorithm to encrypt plaintext,
and builds a Merkle tree (MT) [10] on MACs (message
authentication code) to protect data integrity. To mitigate the
storage overhead on storing the Merkle tree, Yitbarek et al.
proposed to exploit MAC as ECC (error correcting codes)
[20], which effectively reduces storage overhead at the cost of
limiting the error correction capability. Costan et al. proposed
Bonsai Merkle Tree (BMT) [10] that builds the merkle tree
on counters instead of MACs to reduce MT overhead.

It is challenging to secure NVMs — a secure NVM memory
system stores security data in four areas that hold ciphertext,

counters, MACs, and MT nodes, respectively. To keep data
consistency, updates to the memory lead to multiple write
operations to the NVM devices, which not only degrades
the system performance but also shortens the NVM chip
lifetime. Conventional GCM encryption associates counters
with logical addresses such that the counters of hot data may
overflow frequently [12]. To address this issue, Swami et
al. proposed ACME [12] to associate counters with physical
addresses and leverage underlying wear-leveling schemes. The
write performance was improved as counters are saved along
with ciphertext, which reduces the number of NVM writes at
runtime and effectively improves the write performance.

However, ACME complicates the hardware address map-
ping as well as the data transfers, in particular, the data to be
written are transferred in 9 beats instead of 8 beats in DRAM
standards. ACME focuses on solving counter overflow and
improving write performance [12], which destroys the counter
locality and slows down the read performance. For a system
that enforces both confidentiality and integrity protection,
the system needs to load consecutive counters to compute a
checking hash. The non-consecutive storing of counters tends
to introduce more read operations and degrades the system
performance. On the other hand, Osiris [19] exploits ECC to
mitigate counter update overhead to reduce write overhead.
However, it utilizes split-counter scheme [17] and logical-
address associated counters to keeps counter locality. Thus it
still suffers from counter overflow [12]. In conclusion, existing
designs cannot solve counter overflow issue while keeping
high performance and low write overhead.

In this paper, we first identify the challenges in secure
NVM — while ACME mitigates the counter overflow issue, it
breaks the counter locality and thus increases counter access
overhead. We then propose ExtraCC that saves two counters to
solve counter overflow issue and speed up both read and write
operations. For the two counters, one is stored together with
other counters for consecutive memory lines while the other
occupies a part of the ECC of each memory line to improve
write performance. We utilize LAPA counter scheme to solve
counter overflow issue meanwhile keep counter locality. And
we adopt a two-tiered ECC that splits the error detection and
error correction capability so that saving extra counters does
not complicate either the address mapping or the data transfers.
We evaluate ExtraCC and compare it with the state-of-the-art.

Our experimental results show that ExtraCC achieves 15.2%
performance improvement and 20.5% write traffic reduction
over the state-of-the-art, with about 8.4% storage overhead.

II. BACKGROUND AND MOTIVATION

A. Threat Model

When designing a secure system, it is a common practice
to assume a trusted computing base (TCB) and define a set
of valid threats that constitute the threat model of the secure
system, as shown in Figure 1. Under the traditional trusted
computing setting, the TCB includes the processor only, i.e.,
off-chip components, such as memory buses and memory
modules are vulnerable to security attacks. Core parts of the
OS are also secure.

Similar as the secure memory designs in the literature [10],
[17], we are to enforce three types of protections: (1) we
are to encrypt the user data and code to protection data
confidentiality; (2) we are to authenticate the user data to
prevent attackers compromising the data; (3) we are to check
the overall data integrity to prevent data splicing, spoofing,
and replay attacks.

CPU

Cache

Mem Ctrl

Processor

Mem

Bus
Ctrl Logic

Memory

Secure

Unsecure

NVM

NVM

NVM

NVM

Fig. 1. Threat Model.

B. GCM based Encryption and Authentication

Most encryption and authentication schemes adopt Galois
Counter Mode (GCM) [7] to protect memory security of
traditional DRAM memory. Figure 2 shows the procedure
of counter mode encryption and message authentication code
(MAC). The encryption is at cache line granularity, i.e., 64B.
To encrypt, the system generates a one-time pad (OTP) by
applying AES encryption on a seed that includes the data ad-
dress, a counter value (Ctr), and a constant encryption initial-
ization vector (EIV). The system then generates the ciphertext
(plaintext) by XORing the OTP with the plaintext (ciphertext)
for encryption (decryption). Same OTP will incur security risk
of information leakage [10], [12], [17]. Accordingly, a limited-
size counter, e.g., 32 bits, is attached to each memory line so
that each line update increments the counter, which avoids
generating the same OTP for encryption/decryption. When
any counter overflows, the system needs to change the EIV
and re-encrypt all cache lines, which incurs large overhead.
To reduce storage and overflow overhead of counters, split-
counter scheme [17] encodes counter as a concatenation of a
large major counter and a small minor counter, as shown in
Figure 3(a). Then a counter cacheline packs a 64-bit major
counter and 64 7-bit minor counters. When a minor counter
overflows, it will increment the major counter, reset all 64
minor counters, and update corresponding 64 ciphertexts as
well as their metadata.

To prevent data replay attacks, the system generates one
MAC for each memory line using GHASH [17], builds a MT

(a)

AES Engine

Addr EIV

OTP

Plaintext
(Ciphertext)

Ciphertext
(Plaintext)

Ctr

GF
Mul，

Ciphertext

MACAES Engine

Addr AIVCtr

(b)

Fig. 2. Procedure of encryption and decryption (a) and MAC (b).

on MACs, and checks the secure root before each memory
read access [2], [9]. As shown in Figure 2(b), the MAC is
generated from the ciphertext together with the data address,
the counter and an initialized vector (AIV). A MAC is usually
128 bit long. The root of the Merkle tree is stored on chip
that is secure. Given one memory line can store four MACs,
enforcing memory authentication tends to introduce significant
storage overhead. As shown in Figure 3(b), BMT proposed
to build the Merkle tree on counters rather than MACs by
iteratively computing a 8B hash for 64B data until to the BMT
root. a 64B memory line can store 64 counters with split-
counter scheme [19], which reduces the height of the tree.
In addition to ciphertext, the security metadata, i.e., counters,
MT nodes, and MACs, are also stored in memory.

…

8-ary

h0 h1…h7 …

Level 0

Level 1

(64B)Counter

Hashes

8-ary

… …
Root

…Level n

blocks

(8B)
MC

Major Ctr
C0 C1 C63....

Minor Ctr

Ctr = MC | C1
(a) (b)

MC C0 C1 C63....

Fig. 3. Procedure of split-counter scheme (a) and BMT (b).

C. Secure NVMs

Secure NVMs, while we may adopt existing secure memory
designs, faces new challenges. In particular, NVM often needs
to enforce data persistence so that a power failure shall not
leave the system in inconsistent state. For this reason, updating
user data results in updating both the ciphertext and the
security metadata to NVM at the same time, which converts a
user write request to four NVM writes that update ciphertext,
counter, MAC, and MT node, respectively.

Figure 4(a) shows the basic secure NVM structure with
ciphertext and metadata saved in four different regions [19].
Normally, we cache metadata on-chip to avoid extra memory
access [19]. A read memory access needs to (1) read the
counter to generate the OTP; (2) read the ciphertext to decrypt;
(3) read the MAC to ensure the ciphertext is not compromised;
(4) read the MT to regenerate the secure root to prevent
replay attack. All metadata read will access cache first and
only access NVM on cache miss. In this paper, we restrict to
BMT that combines split-counter scheme. Given the counter
are stored together, reading one counter brings in the counters
of neighboring memory lines. While the decryption just needs
one counter to generate the OTP, building the BMT uses the
whole line. This is beneficial as keeping more counters in the
leaf node of the MT results in a small tree. A write memory
access needs first decrypts the ciphertext as read operation.
Then considering persistence, it writes updated ciphertext and

metadata in both cache and NVM. We assume the secure root
is kept in a secure non-volatile register [19]. STASH [14]
proposed to avoid writing through MT nodes to NVMs during
data update. Given the secure root is saved, the tree can be
rebuilt with up-to-date counters. Thus, by updating the MT
nodes in cache during data update, a write request results in
three NVM writes, e.g., ciphertext, counter, MAC.

Conventional GCM encryption associates counters with log-
ical addresses. However, counters associated with hot data tend
to overflow frequently [12], incurring non-negligible overhead.
To address this issue, ACME proposed to leverage underly-
ing Start-Gap wear-leveling scheme to realize counter write
leveling, which associates counters with physical addresses
[12]. As shown in Figure 4(b), ACME stores counters along
with their respective data (ciphertext), where Ctr3 and Ctr4
are associated to physical addresses 3 and 4, respectively.
When the gap line exchanges with the logical ciphertext D
due to wear-leveling scheme, Ctr3 and Ctr4 keep unchanged.
Accordingly, the D uses Ctr4 to produce OTP in the future
instead of Ctr3. In this way, all the counters can ‘wear’ evenly
after wear-leveling. Thus, they can use short-sized counters,
e.g., 24 bits.

(a)

Ctr cache

Memory

BMT Root

MT Cache

L
LC...

NVM

MT

Data

4

CPU

2

1

+

Controller

AES

Ctr

Physical address

4
D

4 GapLine

2 C

0 A
1 B

Ctr0
Ctr1
Ctr2
Ctr3
Ctr4

After

N writes

D
GapLine

C

A
B

Logical address (data)
Counter

3
4

2

0
1

(b)

Ctr0
Ctr1
Ctr2
Ctr3
Ctr4

AES

3 Ctr3

EIV

OTP

OTP

changes
AES

4 Ctr4

EIV

OTP

3

MAC Cache MAC

3

Fig. 4. Basic secure NVM architecture (a) and ACME (b).

D. Motivation

In this paper, we target at providing a full fledged secure
NVM system. The baseline adopts GCM based encryption
and authentication and builds BMT enhanced by split-counter
scheme. However, a secure NVM is both memory read and
write intensive, making it challenging to speed up with existing
schemes. For example, ACME [12] saves counters together
with their ciphertext, shown in Figure 4. However, it destroys
counter locality. It becomes difficult to build a BMT with
the new data allocation — given a 32-bit counter, a naive
implementation would need to read 16 memory lines to collect
16 counters. In addition, saving 512b ciphertext and 32-bit
counter together complicates the address mapping as well
as the memory control logic. Due to low counter locality,
ACME reads cannot full exploit counter cache so that the read
performance is usually lower than the baseline. We compare
the number of counter read from NVM when adopting ACME
in secure NVM system. The numbers are normalized to the
baseline. As shown in Figure 5, ACME increases counter reads
by 74.4× on average. This is because baseline keeps counter
locality with split-counter scheme and lots of counter reads hit
in cache.

Another issue is counter update. For each memory write
request, ACME writes counter and ciphertext together in 9-
beats instead of 8 beats in DRAM standards, which needs
hardware support. Osiris utilizes ECC to recover counters and
only updates counters in cache. However, it still needs to write
counter to NVM in every 4 updates due to recovery overhead
[19]. And it suffers from counter overflow because it associates
counters with logical addresses [12]. To summarize, it remains
a challenging task to speed up a full fledged secure NVM that
enforces encryption, authentication, and integrity protection.

a s t b w a b z i c a l g a m g c c g r o h 2 6 4 h m m l b m o m n p o v t o n
M i x 0 M i x 1 M i x 2 M i x 3 - -

A V G0 . 1

1

1 0

1 0 0

No
rm

ali
ze

d #

of
co

un
ter

 re
ad

 B a s e l i n e A C M E

Fig. 5. Normalized number of counter read from NVM.

III. EXTRACC DESIGN

In this section, we present the detailed design of ExtraCC.
We elaborate the different access scheme and discuss the
system security and availability.

A. Overview of ExtraCC

Figure 6(a) presents the overview of ExtraCC scheme.
Each memory line in ExtraCC saves two 32-bit counters: a
permanent counter is saved in a reserved area together with
counters of the neighboring memory line; and a working
counter is saved together with the memory line but occupies a
portion of the ECC space. The permanent counters are similar
to those in the baseline and Osiris that keep counter locality
while the working counters are similar to those in ACME.
Accordingly, we adopt a two-tier ECC design that splits the
ECC of data to two parts. A 16-bit T1EC that is responsible
for error detection and a 64-bit T2EC that is responsible for
error correction. Also, we propose LAPA counter scheme
that uses logical address to locate counter but the counter
is associated with physical address of data (ciphertext). This
scheme combines ACME principle to solve counter overflow
and meanwhile keeps counter locality. Same to baseline, the
last level cache (LLC) and relative metadata caches hold the
plaintext, preloaded counters, MACs and MT nodes.

We next briefly describe how to perform secure NVM read
and write requests. As described in section II-C, conventional
secure scheme needs read 4 kinds of security metadata for
serving a read request while incurs three instant writes to
NVM and one write back of MT nodes for serving a write
request. Figure 6 highlights special counter access scheme
in ExtraCC. To read a memory line from the secure NVM,
ExtraCC reads ciphertext as well as the metadata. Note that it
gets two counters belong to the requested ciphertext: one from
working counter and the other one from the permanent counter
region. Actually, ExtraCC only read permanent counter block
(64B) instead of working counters into counter cache. As

shown in Step 1 of Figure 6, it gets all needed counters for
decryption/integrity check by reading the counter block (64B)
in the permanent counter area. Again, it reads the counter
cache line first. If the needed counter hits in the cache, it
overlaps the OTP generation with the reading of other data. In
ExtraCC, it stores complete 32-bit counters instead of using
split-counter scheme. Thus each counter line in permanent
counter area has 16 counters.

For a memory write, ExtraCC need finish read operation first
to decrypt accessed ciphertext, e.g., D0 in Figure 6(a). Then it
updates D0 and all its metadata. Here, ExtraCC updates both
of the two counters, i.e., the working counter (Ctr0) in ECC
area and the permanent counter of D0 in counter cache, as
shown in Step 2. Updated counter cache line will be marked
as dirty and write to permanent counter area in NVM during
eviction. Then it updates D0 and MAC in NVM, and updates
MT nodes in MT cache as well as BMT root. ExtraCC need
not update permanent counter in NVM instantly, so that it
will not incur extra NVM write. In this way, both of the
counter cache and the working counter keep the latest counter.
When ExtraCC reads a counter cache line for serving a read
request, if it hits the cache, it can read the latest counter cache
line. Otherwise, it has been evicted and the permanent counter
area in NVM keeps the latest version. With the existing ECC
bus, for write operation, ExtraCC incurs two instant writes to
NVM, i.e., one for D0+Ctr0 and one for MAC, and results in
two write back updates of counter cache line and MT nodes.
Note that system crash may lead to inconsistency of working
counters and permanent counters. However, ExtraCC can go
through the working counters to recover permanent counters.In
the case of power failure, if data in counter area and MT nodes
area are not updated in time, it will not influence the system
availability, which is discussed in subsection III-D.

In conclusion, ExtraCC combines the advantages of conven-
tional secure scheme and ACME. It keeps the counter locality
by reading the counter cache line and gets all needed counters
for integrity check in one memory read. Also it reduces instant
memory writes by writing ciphertext and respective counter
together with existing ECC bus. Then we propose two-tiered
ECC to arrange existing ECC and LAPA counter scheme to
address counter overflow issue.

Ctr cache

Memory

BMT Root

MT Cache

L
LC...

MT

CPU

1

+

Controller

AES

MAC Cache

NVM

Data

Ctr

D0
D1

Ctr0
Ctr1

E
C

C

MAC

2
Ctr

16b 32b

64b

T2EC

CtrECC

16b

T1ECData

MAC

ECC

NVM

(a) (b)

Fig. 6. Overview of ExtraCC (a) and two-tiered ECC (b).

B. Two-tiered ECC

A traditional ECC chip provides SEC-DED (single error
correction, double error detection) capability through parity

codes, e.g., Hamming and Hsiao [21]. In this paper, we adopt
a two-tiered ECC design [21], [22] to enable saving counters
in the ECC chip without changing the memory architecture.

Generally, it uses 64-bit ECC for a 512-bit ciphertext. Yoon
et al. [22] proposes two-tiered ECC and constructs a T1EC
for detection and a T2EC for correction. Assigning a 16-bit
T1EC for a single cache line can detect at most 31-bit errors
with no correction ability [22]. Thus, ExtraCC adopts the 16-
bit T1EC to detect errors in ciphertext while adopts 64-bit
conventional ECC as T2EC to provide SEC-DED. Figure 6(b)
presents the detail of two-tiered ECC. The T1EC and a 32-
bit counter are stored in original ECC area while T2EC is
stored alongside respective MAC. In other words, we move
the original ciphertext ECC and make room for extra counter
and T1EC. Note that the T1EC only detect errors in respective
ciphertext and itself without the extra counter. Thus, the
remained 16 bits can construct a small counter ECC (CtrECC)
to protect the extra counter and provide SEC-DED.

When serving a write request, T1EC, T2EC and the CtrEcc
will be updated instantly. In this scenario, T1EC, counter and
CtrECC can be written together with ciphertext to NVM while
T2EC can be written together with MAC in one NVM write.
Thus, two-tiered ECC will not incur additional NVM writes.
However, when serving a read request, only T1EC are read
with respective ciphertext and detect whether errors occur
in the ciphertext. Only when T1EC detects some errors, we
read T2EC to correct. Subsection III-D will discuss how the
proposed two-tiered ECC collaborates with MAC to protect
the system availability.

C. LAPA Counter Scheme

Memory accesses often exhibit significant imbalance, in
particular, a few logical addresses are likely to be accessed ex-
tremely frequently. Given the schemes that associate counters
with logical addresses are likely to have counter overflows,
we associate the counters with the physical addresses of
data. However, two counters in ExtraCC makes it complicate.
Referring to ACME scheme [12], we propose LAPA scheme
to solve counter overflow issue.

D
GapLine

C

A
B

After N writes
C

A
B

Ctr080

3
4

2

0
1

3
4

2

0
1

Permanet counter area

D
GapLine

Ctr0
Ctr1
Ctr2
Ctr3
Ctr4

Ctr0
Ctr1
Ctr2
Ctr3
Ctr4

Physical address
Logical address (data)

Working counter (stored in ECC area)

Ctr1 Ctr2 Ctr3 Ctr4 Ctr080 Ctr1 Ctr2 Ctr4 Ctr3
Mapping

changes

(b) AES

3 Ctr3

EIV

OTP

OTP

changes
AES

4 Ctr4

EIV

OTP

(a)

Fig. 7. LAPA counter scheme during wear leveling.

Figure 7 elaborates the LAPA scheme. we store the counters
from consecutive physical memory lines together in permanent
counter area while we associate a working counter in the freed
ECC space from the two-tiered ECC design. All working
counters are associated with physical addresses. Permanent

counter area is addressed by logical address, e.g., initially the
first four consecutive counters Ctr0∼Ctr3 refer to data A∼D
whose logical addresses are consecutive. Then The Start-Gap
wear-leveling scheme [8] exchanges the Gapline with D. Same
to principle of ACME, D will use Ctr4 as its counter in future
to realize counter write leveling and solve counter overflow
(shown in Figure 7(b)). However, we exchange Ctr3 and Ctr4
in permanent counter area, since logically the fourth counter
in this area is belong to D (shown in Figure 7(a)). Thus,
after wear leveling, the permanent counters still keep locality
meanwhile we solve counter overflow.

When reading a memory line, we read the counter either
from the copy in the counter cache, or the permanent counter
area in NVM. When writing a memory line, we update the
working counter in NVM and the permanent counter copy
in the counter cache. The permanent counter keeps the stale
copy in NVM until the cached copy is flushed. If a power
failure leads to loss of the cached copy, after system reboots,
the system will go through all memory lines to check if the
working counter is the same as the permanent counter.

D. System Security and Availability

Compared to conventional secure NVM schemes, ExtraCC
uses two counters and two-tiered ECC. Given ExtraCC does
not change the GCM encryption and authentication process
and the BMT structure, it maintains the same security level as
that in the baseline. If a power failure leaves the two counters
in inconsistent state, ExtraCC ensures that the working counter
is always up-to-date so that there is no ambiguity.

No
Error

1-bit
Error Error

No
Error

No
Error

No
Error

No
Error

No
Error

64b

1-bit

No
Error

No
Error

No
Error

No
Error

No
Error

CtrECC: detect, correct

1-bit
Error

No
Error

No
Error

No
Error

No
Error

No
Error

Ctr

1st:T1EC:detect;1-bit
Error 2nd:T2EC: detect, correct

(1)

(2)

(3)

1st: T1EC: detect
2nd: T2EC: correct

1-bit
Error

No
Error

No
Error

No
Error

Error
No

Error
1-bit CtrECC:detect, correct

(4) n-bit
Error Error

n-bit n-bit
Error Error

n-bit n-bit
Error Error

n-bit
Error
n-bitn-bit

Error

No
Error

Error
n-bit 1st:T1EC:undetected;

2nd:MAC match fail
CtrECC: undetected;

Ciphertext

Fig. 8. Potential errors.
We next elaborate how the two-tiered ECC collaborate with

MAC to keep system secure and available. We discuss the
two-tiered ECC scheme in two situations: normal access and
security attack. In the case of normal access, we only consider
at most 1-bit error every 64 bits. Otherwise, it will exceed the
correction ability of normal ECC. Figure 8 shows four kinds
of errors. In the first case, if it occurs at most one-bit error in
every 64-bit data block, T1EC can detect the error. Then it will
read T2EC to correct the errors. In the second case, an error
occurs in the extra counter, the CtrECC can detect and correct
the error. In the third case, if both of the ciphertext and the
extra counter occurs errors, T1EC detects errors in ciphertext
and CtrECC detects and corrects the error in counter. Then it
also reads T2EC to correct errors in ciphertext.

In the situation of security attack, both of T1EC and CtrECC
fail to detect and correct errors. Thus, the ciphertext will be
considerred as correct. However, failure in MAC match and
following integrity check will distinguish the security attack.

In conclusion, extra counter and two-tiered ECC will not
influence the system security and availability.

IV. EXPERIMENT

In this section, we present experimental results under vari-
ous workloads and evaluate the effectiveness of ExtraCC.

A. Experimental Methodology

To evaluate the effectiveness of our scheme, we compare
our scheme to the stat-of-the-art using a trace-driven in-
house simulator. We use the PIN tool [1] to collect traces of
SPEC CPU2006. We run all the benchmarks for 400 millions
instructions after skipping the warm up phase.

Table I shows the details of the settings. The simulator
models a full memory hierarchy, including 2-level caches
with LRU cache replacement scheme. We select PCM as an
example of NVMs. We use NVSim [4] to simulate energy
consumption of each read and write operation. We also mix
some workloads for better evaluations. And we set the OTP
generation latency of 128-bit AES engine as 72ns [11], [12].
In this paper, we compare the following four schemes:

—Baseline. It uses conventional store organization that
stores data, counters, MACs and MT nodes in specific area. It
utilizes GCM and BMT to protect confidentiality and integrity.

—ACME. It stores counters alongside their respective ci-
phertext as a single memory block. During a data transfer, it
uses nine data beats to read and write ciphertext and respective
counter together.

—Osiris. It enhances the baseline with Osiris scheme [19]
that utilizes ECC to mitigate counter update overhead. During
memory write, it only updates counters in cache and writes to
NVM in every 4 updates to reduce recovery overhead [19].

—ExtraCC. It deploys extra counters and ECC, and follows
the store scheme described in this paper.

Both of Baseline and Osiris utilize split-counter [17]
scheme.

TABLE I
CONFIGURATIONS [12], [15], [19] AND MIXED WORKLOADS

CPU 4 cores single issue in-order CMP, 4GHz
L1 I/D-cache Private, 32KB, 2-way, 64B block, 2 cycles

L2 cache Shared, 2MB, 4-way, 64B block, 10 cycles
Counter Cache Shared, 128KB, 4-way, 64B block, 2 cycles
MAC Cache Shared, 32KB, 4-way, 64B block, 2 cycles
MT Cache Shared, 16KB, 4-way, 64B block, 2 cycles

PCM
memory

8GB, 1 channel, 2 ranks, 8 banks/rank,
8-entry write queue/bank,

Latency: Read: 100ns, Set: 200ns , Reset: 100ns,
energy: Read: 1.49 nJ, Set:6.76 nJ, Reset: 6.73 nJ

Workload Benchmarks
Mix0 astar, bwaves, bzip2, calculix
Mix1 bwaves, calculix, gcc, gamess
Mix2 lbm, h264, tonto, gromacs
Mix3 hmmer, lbm, omnetpp, povray

B. Storage Overhead and Recovery Time

ExtraCC removes original ECC for ciphertext to MAC area
as T2EC and introduces additional storage overhead of extra
counters and T1EC. It adds additional 64 bits for each 512-bit
ciphertext. Taking 4GB ciphertext for example, it needs 1GB

MAC, 256MB counters, approximate 22MB MT nodes and
675MB ECC for security metadata. ExtraCC involves 512MB
additional storage overhead of extra counters and T1EC, which
incurs about 8.4% storage overhead. During recovery after
system crashes, ExtraCC will go through the working counters
to recover counters in permanent counter area. For 8GB NVM
in this paper, it takes only 14.3s, close to 13.7s of Osiris.

C. Performance

We first compare the performance of all schemes. Figure 9
shows the normalized execution time. Compared to Baseline,
ACME and Osiris improve the performance by 12.8% and
13.9% on average, respectively. ACME solves the counter
overflow issue while it breaks the counter locality. On the
contrary, Osiris keeps the counter locality while it suffers from
counter overflow. However, ExtraCC realizes averagely 16.1%
and 15.2% performance improvement than ACME and Osiris.
This is because ExtraCC solves counter overflow meanwhile
keeps counter locality with LAPA counter scheme. Also,
ExtraCC reduces NVM write of counter update and further
improves performance, which will be discussed next.

D. Read Response Time

Figure 10 compares the normalized read response time in
different schemes. Both of Osiris and ExtraCC are very close
to baseline. However, ACME increases the read response time
by 49.9%. Counter locality affects the counter cache hit rate
during decryption and integrity check, which plays a key role
in read response time. Both of Osiris and baseline utilize split-
counter scheme to keep counter locality while ACME stores
counters along with ciphertext, breaking the counter locality
totally. However, ExtraCC reads counters in counter area to
keep the spatial locality. It fetches multiple counters in one
read, which significantly reduces memory reads.

a s t b w a b z i c a l g a m g c c g r o h 2 6 4 h m m l b m o m n p o v t o n
M i x 0 M i x 1 M i x 2 M i x 3 - -

A V G0 . 0

0 . 4

0 . 8

1 . 2 B a s e l i n e A C M E O s i r i s E x t r a C C

ex
ec

uti
on

 tim
e

No
rm

ali
ze

d

Fig. 9. Normalized execution time in various schemes.

a s t b w a b z i c a l g a m g c c g r o h 2 6 4 h m m l b m o m n p o v t o n
M i x 0 M i x 1 M i x 2 M i x 3 - -

A V G0 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0 B a s e l i n e A C M E O s i r i s E x t r a C C

No
rm

ali
ze

d
rea

d r
es

po
ns

e t
im

e

Fig. 10. Normalized read response time in various schemes.

E. Write Traffic

Figure 11 shows the normalized number of NVM writes
in various schemes. Compared to Baseline, averagely ACME
and ExtraCC reduce the NVM writes by 40.7% and 40.6%,
respectively. This is because both of them update counter and
ciphertext in one NVM write during memory write (ACME
stores counter alongside ciphertext and ExtraCC writes work-
ing counter with ECC bus). However, ExtraCC still have to
write dirty counter cache line to permanent counter area during
eviction, which introduces slightly more NVM writes than
ACME. Compared to Osiris, ExtraCC achieves 20.5% NVM
write reduction. This is mainly because Osiris suffers from
counter overflow that incurs extra NVM writes. Also, Osiris
updates dirty counter cache lines to NVM periodically [19].
Thus, ExtraCC improves the system lifetime effectively.

a s t b w a b z i c a l g a m g c c g r o h 2 6 4 h m m l b m o m n p o v t o n
M i x 0 M i x 1 M i x 2 M i x 3 - -

A V G0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2 B a s e l i n e A C M E O s i r i s E x t r a C C

No
rm

ali
ze

d #
 of

NV

M
wr

ite
s

Fig. 11. Normalized number of NVM writes in various schemes.

F. Energy Consumption

Figure 12 shows the energy consumption of NVM in
different schemes. In our experiment, we observe that NVM
write operation is much more than NVM read. This is because
many read operations hit the on-chip caches. However, many
writes including ciphertext and metadata updates are issued to
NVM due to persistence. Thus, energy consumption mainly
depends on write traffic, which has similar tendency with
Figure 11. To summarize, ExtraCC reduces up to 31.9% (lbm)
and 1.5% (omn) of energy consumption over the Osiris and
ACME.

a s t b w a b z i c a l g a m g c c g r o h 2 6 4 h m m l b m o m n p o v t o n
M i x 0 M i x 1 M i x 2 M i x 3 - -

A V G0 . 0 0
0 . 0 1
0 . 0 2
0 . 0 3

0 . 4
0 . 6
0 . 8
1 . 0

co
ns

um
pti

on
No

rm
ali

ze
d e

ne
rgy

 R e a d E n e r g y W r i t e E n e r g y

B a s e l i n e
A C M E
O s i r i s

E x t r a C C

Fig. 12. Normalized read and write energy consumption of different schemes.

V. RELATED WORK

Many related solutions have been proposed for secure
NVMs [6]. DEUCE [23] and SECRET [13] proposed to
improve encryption according to data content. SuperMem
[25] and [18] utilized persistent domain in memory controller
to reduce counter update overhead. These techniques are
excellent to reduce encryption and counter update penalty, but
they only consider confidentiality attacks. ExtraCC focuses on
confidentiality attacks and integrity attacks together and it is

compatible to these techniques. Zubair et al. proposed Anubis
to reduce recovery time of TB-level NVM [24]. Liu et al. [5]
proposed to relax persisting counters for non-persistent data
and the effectiveness depends on ratio of non-persistent data
[19].

VI. CONCLUSION

In this paper, we proposed ExtraCC to address the chal-
lenges in designing a secure NVM system. ExtraCC uses two
counters to speed up both read and write operations when
performing security checks. Our experimental results show
that ExtraCC achieves 15.2% performance improvement and
20.5% write traffic reduction over the state-of-the-art (Osiris),
with about 8.4% storage overhead. Also, it improves the
performance by 16.1% than ACME.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China under Grant NO.
2019YFB1804502, the National Natural Science Foundation
of China under Grant NO. 61832020, 61802418, the Natural
Science Foundation of Guangdong Province under Grant No.
2018B030312002, the Major Program of Guangdong Basic
and Applied Research under Grant No. 2019B030302002,
the Program for Guangdong Introducing Innovative and En-
trepreneurial Teams under Grant NO. 2016ZT06D211, Key-
Area Research and Development Program of Guangdong
Province under Grant No. 2019B010107001. The authors
thank the anonymous reviewers for their constructive com-
ments.

REFERENCES

[1] “Pin tool,” https://software.intel.com/en-us/articles/pintool.
[2] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses

for memory bus side channel,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 2, pp. 94–106, 2017.

[3] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “Obfusmem: A low-
overhead access obfuscation for trusted memories,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
2017, pp. 107–119.

[4] Q. Hu, G. Sun, J. Shu, and C. Zhang, “Exploring main memory design
based on racetrack memory technology,” in Proceedings of the 26th
edition on Great Lakes Symposium on VLSI, 2016, pp. 397–402.

[5] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” in 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2018, pp. 310–323.

[6] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory sys-
tems,” in 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2019, pp. 143–156.

[7] D. McGrew and J. Viega, “The galois/counter mode of operation (gcm),”
submission to NIST Modes of Operation Process, vol. 20, p. 10, 2004.

[8] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in 2009 42nd Annual IEEE/ACM
international symposium on microarchitecture (MICRO). IEEE, 2009,
pp. 14–23.

[9] J. Rakshit and K. Mohanram, “Assure: Authentication scheme for secure
energy efficient non-volatile memories,” in Proceedings of the 54th
Annual Design Automation Conference 2017, 2017, pp. 1–6.

[10] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007). IEEE,
2007, pp. 183–196.

[11] W. Shi, H.-h. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
efficiency counter mode security architecture via prediction and precom-
putation,” in 32nd International Symposium on Computer Architecture
(ISCA’05). IEEE, 2005, pp. 14–24.

[12] S. Swami and K. Mohanram, “Acme: Advanced counter mode encryp-
tion for secure non-volatile memories,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[13] S. Swami, J. Rakshit, and K. Mohanram, “Secret: Smartly encrypted
energy efficient non-volatile memories,” in Proceedings of the 53rd
Annual Design Automation Conference, 2016, pp. 1–6.

[14] S. Swami, J. Rakshit, and K. Mohanram, “Stash: Security architecture
for smart hybrid memories,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[15] R. Wang, L. Jiang, Y. Zhang, and J. Yang, “Sd-pcm: Constructing
reliable super dense phase change memory under write disturbance,”
ACM SIGARCH Computer Architecture News, vol. 43, no. 1, pp. 19–
31, 2015.

[16] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Under-
standing the trade-offs in multi-level cell reram memory design,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2013, pp. 1–6.

[17] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Im-
proving cost, performance, and security of memory encryption and
authentication,” ACM SIGARCH Computer Architecture News, vol. 34,
no. 2, pp. 179–190, 2006.

[18] F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No compromises: Secure
nvm with crash consistency, write-efficiency and high-performance,” in
2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
2019, pp. 1–6.

[19] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories.” Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2018.

[20] S. F. Yitbarek and T. Austin, “Reducing the overhead of authenticated
memory encryption using delta encoding and ecc memory,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[21] D. H. Yoon and M. Erez, “Flexible cache error protection using an ecc
fifo,” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. IEEE, 2009, pp. 1–12.

[22] D. H. Yoon and M. Erez, “Memory mapped ecc: low-cost error
protection for last level caches,” in Proceedings of the 36th annual
international symposium on Computer architecture, 2009, pp. 116–127.

[23] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient encryp-
tion for non-volatile memories,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 1, pp. 33–44, 2015.

[24] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 157–168.

[25] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-
transparent secure persistent memory with low overheads,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 479–492.

