HMEH: write-optimal extendible hashing for hybrid
DRAM-NVM memory

Xiaomin Zou!, Fang Wangl*, Dan Fengl, Janxi Chen', Chaojie Liu!, Fan Li! and Nan Su?
"Wuhan National Laboratory for Optoelectronics, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, China

2State Key Laboratory of High-end Server & Storage Technology, Shandong Massive Information Technology Research Institute

Abstract—Emerging non-volatile memory (NVM) is expected
to coexist with DRAM as a hybrid memory to fully exploit
the complementary strengths of DRAM’s low read-write latency
and NVM’s high density, persistence, and low standby power.
However, existing hashing schemes cannot efficiently reap the
benefits of such a hybrid memory. In this paper, we present a hy-
brid DRAM-NVM write-optimal and high-performance dynamic
hashing scheme, named HMEH (Hybrid Memory Extendible
Hashing). In our design, key-value items are persisted in NVM
while the directory is placed in DRAM for faster access. To
rebuild the directory upon recovery, HMEH also keeps a radix-
tree-structured directory in NVM with negligible overhead.
Furthermore, HMEH proposes a cross-KV strategy to write back
items through natural eviction, which can ensure data consistency
with no performance degradation from persist barriers. Experi-
mental results show that HMEH outperforms the state-of-the-art
NVM-based hashing structures by up to 2.47x. And concurrent
HMEH also delivers superior performance and high scalability
under YCSB workloads with different search/insertion ratios.

Index Terms—hybrid DRAM-NVM memory, dynamic hashing,
data consistency, write optimization

I. INTRODUCTION

The past few years have witnessed the rapid development
of emerging non-volatile memory (NVM) devices, such as
3D XPoint [1], phase-change memory (PCM) [2] , and spin-
transfer torque memory (STTRAM) [3]. The byte-addressable
NVMs are promising candidates for replacing DRAM with
the disk-like durability and near-DRAM access performance.
However, current NVM technologies still suffer asymmetric
read-write latencies and limited write endurance [4]. As a
result, NVM is expected to coexist with DRAM to form a
hybrid DRAM-NVM memory [4]-[7].

The changes in memory features and architectures have
rendered legacy indexing structures inefficient because they
ignore data consistency and do not fully exploit the byte-
addressable properties of NVM. A large body of prior research
has been done to improve tree-based indexing structures for
the systems equipped with NVM [5], [6], [8]-[11]. Due to
hash-based indexing structures’ constant time complexity, i.e.,
O (1), for point accesses, which is superior to the tree-based
structures, hashing variants have been proposed recently for
NVM-oriented memory, such as PFHT [12], path hashing [13],
level hashing [14] and CCEH [15]. However, it is a commonly
held belief that NVM will not replace DRAM overnight and

will instead coexist with DRAM for a foreseeable future. To
the best of our knowledge, there is no study on hash-based
indexing structures for hybrid DRAM-NVM memory systems
where such structures can be greatly beneficial, particularly if
the complementary advantages of DRAM and NVM are fully
leveraged. To this end, we devote to effectively improving the
hash-based structure for the hybrid DRAM-NVM memory.

Most NVM-oriented hashing schemes focus on static hash-
ing structures [12]-[14], but they are limited by two inherent
weaknesses. First, the size of hash table must be estimated
in advance for allocating adequate memory space. However,
it is almost impossible given the dynamic nature of most
applications. Second, the rehashing operation of static hashing
is complicated that needs to create a bigger or smaller hash
table, typically twice or half as large, and rehash all items
in the old table into the new table. It not only incurs massive
extra writes but also blocks all foreground user query requests,
drastically degrading application performance. In terms of
NVM-based memory with relatively high latency and low
endurance, it suffers a higher performance penalty and even
exacerbates the wear-out problems.

Fortunately, extendible hashing [16] can grow and shrink
gracefully according to the data size, which has been widely
applied in file systems and database systems [17]-[19]. It is
a dynamic hashing scheme that consists of a set of buckets
and an array of bucket addresses, called directory. The unique
characteristics of NVM force extendible hashing to make some
changes, as reduction of NVM writes and data consistency
should be taken into consideration. Most of existing researches
apply persist barriers to guarantee consistency. However, these
instructions are proved to incur performance degradation [6],
[11]. In this paper, we present a write-optimal and consistent
extendible hashing called HMEH (Hybrid Memory Extendible
Hashing), which significantly reduces the overhead of data
consistency and delivers high performance.

HMEH stores key-value items in NVM for directly persist-
ing and places flat-structured directory in DRAM to improve
overall system performance, since extra accesses to the di-
rectory are in the critical path and the read/write latencies
of DRAM is much lower than NVM. However, because of
residing in volatile DRAM, the flat-structured directory cannot
recover from system failures or normal shutdowns,so we

maintain a radix-tree-structured directory in NVM to resolve
this problem since updates of radix tree do not incur extra
NVM writes and are easy to ensure consistency. To guarantee
data consistency with low overhead, we leverage a cross-KV
strategy to rearrange key and value of an item into multiple
failure-atomic 8-byte slices and they are written back to
NVM by natural evictions without expensive persist barriers.
Furthermore, we exploit delayed flush to reduce the overhead
of data persistence when splitting segments.
In summary, the main contributions of this paper are:

e We design our HMEH consisting of a flat-structured
directory in DRAM and hash table in NVM to fully
exploit the advantages of hybrid memory. To rebuild
flat-structured directory from system crashes or normal
shutdowns, we keep a radix-tree-structured directory in
NVM which only incurs negligible overhead but realizes
a fast recovery.

o« We propose a cross-KV strategy that alternately stores
4 bytes of key and 4 bytes of value, and the like, to
form multiple 8-byte units. We can leverage the hash
key to verify the correctness of the 8-byte units in case
of unexpected system failures, ensuring data consistency
without memory fence and cache line flush instructions.

« We elaborate on the process of failure-atomic segment
split that carefully enforces the ordering of modification
to guarantee data consistency without costly logging or
CoW. And to mitigate the overhead of data persistence,
we leverage a delayed flush method which only persists
the split segment when a new node of the radix-tree-
structured directory is created.

o We implement HMEH and conduct extensive evaluations
to show the efficiency of these designs. The experimental
results demonstrate that the write latency of HMEH is
up to 1.49x and 2.47x shorter than that of state-of-
the-art CCEH [15] and level hashing [14] respectively.
The concurrent HMEH also shows best performance and
high scalability under YCSB workloads with different
search/insertion ratios.

The rest of this paper is organized as follows. Section
IT describes the background and related work. Section III
presents the detail designs and implementation of HMEH. In
Section IV we implement a concurrent and consistent HMEH
in hybrid memory. The performance evaluation is shown in
Section V. Finally, Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION
A. Extendible Hashing

Extendible hashing is a dynamic hashing technique opti-
mized for time-sensitive applications, which can dynamically
allocate and deallocate hash buckets on demand [16]. It
consists of multiple buckets each of which stores a fixed
number of items, and a resizable array, called directory, where
each entry stores a pointer to the bucket.

As Figure 1 illustrates, extendible hashing distributes items
to buckets by hash keys, and uses the trailing (least significant)

Hash key: h(key)%2® | 1010.. 11101000 |

—
—_—
—_—

Direct =
ebp 00 [0L [10 [11 |

|55 / N rm%.

1100...11101000 0101...01110001 1110...11010011
0111...00010100 1010...11001001 0011...00110111
1010...00110010 0010...11100011
0011...10101110

Bucket 00/10

Bucket 01 Bucket 11

Fig. 1. Extendible hashing structure.

bits of the hash key to index the directory. The directory has
2GD entries, where GD is the global depth of the directory
and determines the maximum number of buckets. A suffix
corresponding to the trailing GD bits of the hash key is used
to index directory. To improve memory efficiency, the number
of buckets does not require to be the same as the number of
directory entries. Hence, each bucket also keeps a local depth
(LD) which expresses the number of the common bits in the
bucket. When a bucket is only pointed by one directory entry,
LD equals to GD. And if n directory entries point to a bucket,
LD = GD-logsn. Taking an example in Figure 1, bucket 1 is
pointed by two directory entries and GD is 2, so the LD of
bucketl is 1.

As shown in Figure 1, suppose that we insert a new item
into bucketl in which there is no empty slots. And the local
depth of bucketl is smaller than the global depth which means
bucketl is pointed by multiple directory entries. Therefore,
we can directly split bucketl into two buckets and modify
directory entrylO to point to new split segment. Next, the
LDs of two buckets are increased to 2. However, if bucket3
whose LD is equal to GD overflows, we first need to resize
the directory, creating a double-sized directory and migrating
all entries in the old directory to the new one. And then we
perform a bucket split.

B. Hashing Index Structure in NVM

The hash-based indexing structures support constant-
complexity point query operations, widely used in key-value
stores [20]-[22] and main memory databases [23]-[25]. Re-
cently several hashing-based structures have been proposed
to efficiently adapt to NVM. PFHT [12] is a PCM-friendly
cuckoo hashing variant which only allows one cuckoo dis-
placement to avoid cascading NVM writes and designs a
chained stash to store conflicting items. Path hashing [13] is
a write-friendly hashing that logically organizes storage cells
as an inverted binary tree and exploits position sharing to
solve hash collisions. However, neither of them takes data
consistency issues into account and do not provide a constant-
level lookup.

TABLE I
THE LLC CACHE MISS RATES OF DIRECTORY IN CCEH.
Number of Indexed Items | 0.16 million 1.6 million 16 million
Directory size 8KB 64KB 512KB
LLC cache miss 16.14% 74.31% 98.77%

Level hashing [14] proposes a sharing two-level hash table
where the top level is addressable for items and the bottom
level is used to deal with hash collisions. When the hash table
needs to resize, the items in the old bottom level are rehashed
to a new 4x larger hash table and the previous top level can
be reused as the new bottom level. The evaluation presents
that level hashing significantly outperforms PFHT and path
hashing. But actually, the rehashing overhead of level hashing
is similar to other hashing schemes [15].

The mentioned NVM-based hashing schemes are all static
hashing schemes with unacceptable resizing latencies. CCEH
[15] is a variant of extendible hashing that dynamically
splits and merges hash buckets as needed to overcome the
shortcoming of full-table or 1/3-table rehashing. It employs a
three-level structure to balance access performance against the
directory size. Furthermore, CCEH has two versions which are
different in the way of segment splits. In-place CCEH reuses
old segment and updates items in place, while CoW CCEH
creates two new segments and performs CoW splits.

The main disadvantage of CCEH is that every insertion or
search needs an extra access to the directory. To measure its
overhead, we use the PAPI library [26] to count the LLC
cache miss rate of the directory under different workloads. As
illustrated in table 1, with the increase of data size, a bigger
directory leads to a higher cache miss rate, even up to 98%.
In terms of NVM whose read latency is much higher than
DRAM, the extra accesses to the directory are in the critical
path, drastically diminishing the system performance.

C. Data Consistency for Hashing Schemes in NVM

When NVM complements or substitutes DRAM as the
main memory in the computer system, it is a fundamental
requirement to ensure data consistency, i.e., data recoverability
and correctness. Because when a system failure occurs, data
in volatile CPU cache will be lost, but incomplete data
modifications still exist in non-volatile memory, causing an
inconsistent issue. To guarantee data consistency, it is essential
to make NVM writes become durable in a desired order [5],
[8], [10]. However, memory writes may be reordered by CPU
or memory controller for better performance. Consequently,
we have to use persist barriers to form ordered memory writes
as existing schemes [9], [10], [14]. Specifically, memory fence
instructions (MFENCE), e.g., mfence and sfence, stall thread
until all its preceding operations are finished, and Cache line
flush instructions (CLFLUSH), e.g., clflush, clflushopt and
clwb, write back dirty cache lines to memory [27].

Different from block-based storage devices, the failure-
atomic unit of NVM is only 8 bytes [5], [6], [10], [11].
Thus, updates with larger size may be partially written after

unexpected system failures. Existing works exploit logging or
copy-on-write (CoW) to ensure the atomicity of data larger
than 8 bytes [8], [28], [29]. But these techniques cause sub-
stantial extra NVM writes and implicitly aggravate ordering
overhead, e.g., the write ordering constraints of data blocks
during committing a log.

In light of NVM-based hashing schemes, most of them
exploit a sequence of persist barriers to guarantee data consis-
tency [14], [15]. For example, when inserting a new item into
a hash bucket, they write the value first, call MFENCE, store
the key, and then call CLFLUSH. This ordering ensures that
the key is not written to NVM ahead of the value. Therefore,
after a system failure, they can identify the partially written
items if its key is not valid for the hash bucket.

g
i

B w/ persist barriers
U77] wio persist barriers

Throughput(Ops/usec)
Y

o
)

& I

o
=)

LINP LEVL cucK

Fig. 2. The insertion throughputs of different hashing schemes.

However, persist barriers are expensive and their overhead
is proportional to the amount of NVM writes. To quantify
their cost, we measure the average insertion throughputs in
common hashing schemes, (a) linear probing [30] and (b)
cuckoo hashing [31], (c) level hashing [14], a state-of-the-
art NVM-based static hashing, (d) CCEH [15], a recently
proposed dynamic hashing, with and without persist barriers
(referred as w/ persist barriers and w/o persist barriers respec-
tively). The details of the experimental setup are presented in
Section V-A. As shown in Figure 2, without persist barriers,
the throughputs of these hashing schemes are improved by
20.3% to 29.1%. These persist barriers significantly deteriorate
system performance. Therefore, it is more important to reduce
the number of persist barriers.

III. HMEH DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of HMEH, a write-optimal and flexible extendible hashing
for hybrid DRAM-NVM memory. As shown in Figure 3, we
place flat-structured directory in DRAM for fast access and
place hash table in NVM for persistence. To instantaneously
recover flat-structured directory, we also maintain a radix-tree-
directory in NVM. Similar to previous work [15], [16], [32],
we introduce an intermediate segment layer to balance the
directory size and access performance. As Figure 2 shows, a
segment consists of multiple buckets and a stash for colliding
items. For better CPU cache efficiency, we exploit cacheline-
sized buckets. And we use the most significant bits (MSB) of

the hash key to index segments and exploit the least significant
bits (LSB) as the bucket index.

NVM [0Z0700000000 | DRAM
Bucket 1 Hash key
011011111111 _\ 1010 ... 11111111
0100...11111111 s Index /
Stash egment Index / Bucket Index
Segment 1 /
Radix-tree-
. 1010...11101000 i
____________ Flat-structured directo
structured directory 1000 11101000 ry
| 1070 T1TTIIIT |
1011...11111111 4
Stash
Segment 2

Fig. 3. Architecture of HMEH.

A. Two Structures of Directory

As we know, for existing extendible hashing in NVM,
the access to the directory is in the critical path which
significantly increases the latency of operations. Since the
write/read latency of DRAM is much lower than that of NVM,
we keep a flat-structured directory (FS-directory) in DRAM
while storing hash table in NVM to leverage the performance
characteristics of hybrid memory. DRAM-based FS-directory
offers two benefits: First, as mentioned before, it delivers faster
access that can significantly improve the overall performance.
Second, we do not require to guarantee its crash consistency.

However, after a system crash or normal shutdown, FS-
directory in volatile DRAM will be lost. Thus, we design
a secondary directory in NVM to recover FS-directory. For-
tunately, we found that the characteristics of radix tree can
be efficiently utilized in NVM. Specifically, the radix tree
structure is determined by the prefix of the inserted key
which coincides with segment indexes (the MSB bits of hash
keys). And when expanding size, it reuses the old nodes and
directly adds a new node without modifying any other existing
nodes, which can be completed with an atomic 8-byte update
operation.

Hence, we retain a radix-tree-structured directory (RT-
directory) in NVM to rebuild FS-directory upon recovery.
Figure 4 shows the corresponding relationship between two
directories. We set the size of RT-directory node as a cache
line for high CPU cache efficiency. When a segment splits,
we first update the corresponding entries in its RT-directory
node and then modify FS-directory. The experimental results
in Section V-B show the RT-directory only causes negligible
overhead but achieves an instantaneous recovery.

B. Cross-KV Mechanism

As described in Section II-C, to guarantee data consistency,
existing hashing schemes for NVM exploit persist barriers to
enforce the order of NVM writes, which incurs significant
overhead.

Therefore, we propose a state-of-the-art cross-KV strategy
to bypass persist barriers in most situations. Since modern

RT-directory

\ ¢ ¥

TR v
FS-directory| 000 [oo1 [010 | 011 [100 [101 | 110 | 111 | GD=3

N

Fig. 4. The relationship of two directories.

processors support 8-byte atomic write, we split an item
into several pieces, and then alternately store key and value
as several 8-byte atomic slices. Figure 5 shows the storage
structure of cross-KV. Suppose the sizes of key and value are
both 8 bytes. We divide key (value) into key1 and key2 (valuel
and value2), next we combine keyl and valuel as cross-KV1,
the same to cross-KV2. If a power loss or system crash occurs
during writing an item, we fetch out the key from cross-KVs
and recalculate its hash key to check whether the same segment
and bucket can be indexed. If not, it indicates the key is not
valid, and also means the value is partially written.

A key-value pair| Keyl | Valuel] | KeyN | ValueN |
~—————— ;'—/
Cross-KV1(8 byte) 8 byte

Fig. 5. The storage structure of cross-KV.

However, there is a special case that cross-KV can not
guarantee data consistency. That is, partially written items
may still index the same segment and bucket. Thus, the key
cannot prove whether the value is correctly persisted to NVM.
To address this issue, before insertion, we form all possible
partially written keys that may be produced by a system crash.
And then we calculate the hash values of these keys to check
if they can index the same position where the item will be
stored. If one of them can, we insert the target item by persist
barriers. In practice, the probability of this case is very low,
so the cross-KV mechanism is still efficient.

Though HMEH leverages a unique cross-KV structure to
avoid the overhead of persist barriers in most cases, it also
sacrifices a little performance. First, when searching a key,
we require to read the entire item unlike other hashing indexes
that only need to read the key. However, this read overhead
can be ignored since we employ cacheline-sized buckets and
a single access can prefetch multiple cross-KVs belong to the
same item. Second, we require to check the above special
case. Fortunately, the calculation overhead only incurs minor
overhead and is much less than the overhead of persist barriers.
To support variable-length key and value sizes, like previous
researches, we store key-value pairs outside the hash table and
place their pointers and the short summary of the key in the
hash table [14], [33].

C. Low-overhead In-place Segment Split

To reduce NVM writes and mitigate the overhead of seg-
ment split, we propose a low-overhead in-place segment split
mechanism. The basic idea of our segment split mechanism
is to reuse the old segment and rehash items to a new-created
segment, whose data consistency can be ensured by persist
barriers without logging or CoW.

RT-directory [000 [001 [010 [011100 101]110] 111] GD=3

o] Jou] . [

LD=3 I
010011...00000000
010010...00000000

LD=2
100011...00000000
101001...00000000

101001...00000000

010001...11111110| (010101...11111110 .11111101| |{101010...11111101

101010..
010101...11111110 100110...11111110
010010...11111110| (010101...11111111| [100001...11111111
010101...11111111 100000...11111111
segmentl segment2 segment3 segment4

(a) Stepl: create new segment (radix tree node) and migrate records
to new segment

RT-directory | 000 | 001 \ 010 [011100101 [110 [111 | GD=3

m-mnmwa \g\\\\

LD 4 LD:4 LD=3 LD=3
010011...00000000 100011...00000000 |101001...00000000
010010...00000000 101661--06000000
010001...11111110| {010101...11111110| r161616--+111i164) |101010..11111101
010161 —11111116 100110...11111110
010010...11111110(|010101...11111111| (100001...11111111| |{101011...11111111
010101 —111iitis 100000...11111111

segmentl segment2 segment3 segment4

(b) Step2: split and lazy deletion
Fig. 6. Examples of failure-atomic segment split.

Two Examples of In-place Segment Split. We use two
examples of Figure 6 to elaborate on the process of segment
split. Since we do not need to guarantee FS-directory con-
sistency, Figure 6 only shows the updates of RT-directory.
In the first example (marked in red), with the given key
101011...11111111(2), we use the leftmost 3 bits of the hash
key to index FS-directory and then find segment3, but there
are no free slots in segment3. Therefore, we require to create a
new segment. Since the LD of segment3 is 2 smaller than GD,
we do not need to resize RT-directory in advance. As Figure
6(a) shows, HMEH creates a new segment4 and copies the
items with prefix 101 from segment3 to it. To reduce NVM
writes, we do not delete those migrated items in segment3,
because they become invalid with the modification of LD, and
subsequent inserted items will overwrite them directly.

Next, we need to update the RT-directory entry of segment4
and LDs of two segments in a particular order. As illustrated
in Figure 6(b), we firstly change the LD and the pointer
for segment4, then we modify LD of segment3. If these
updates are out of order, we cannot recover our hash table
from a system failure. Therefore, we exploit persist barriers
to constrain the ordering of these updates. Moreover, we also

support segment merge which is an inverse process of segment
split.

The other example of segment split involves the expansion
of directories, as depicted in Figure 6 (marked in blue). When
splitting segmentl, we require to increase the size of RT-
directory, since the LD of segment1 is equal to GD. Thanks to
the structure of radix tree, we only need to allocate a new RT-
directory node instead of doubling the entire directory. Then
we create a new segment2 and rehash items of segment 1 into
segment 2. In the next step shown in Figure 6(b), we also
ensure the ordering of RT-directory updates to survive system
failures. That is, (1) we update the entries of the new RT-
directory node and modify LD for segment2. Second, (2) we
change entry010 to the pointer of the new RT-directory node.
Finally, (3) we update LD of segmentl to 4.

Reducing the Persistency Overhead. Traditionally, when
a segment splits, to identify invalid items in case of system
failures, we also need to write back items of the new split
segment to NVM with expensive CLFLUSH instructions.
Since our cross-KV can distinguish partially written items
upon recovery, in order to alleviate the overhead of data
persistence, we use a delayed flush method that exploits
normal cache evictions to write back the new split segment
and leverages unique RT-directory structure to flush segments
regularly, which prevents certain cache lines from residing in
the cache for a long time.

The normal cache evictions may cause inserted data loss.
For example, item tl is stored in segment s1, and it is rehashed
to segment s2 because of sl’s split. Then another item t2 is
inserted to sl, and overwrite tl. If a system failure occurs
before rl in s2 is written back to nvm, we cannot find tl
anymore. To resolve this problem, we make some changes:
when a segment split incurs the creation of a new RT-directory
node, we write back this segment to NVM directly and make
it non-addressable. Then we create two new segments and
rehash all items of the old segment into them. Thus, each
RT-directory node has a non-addressable segment, and we
can recover the data from it after a system failure. Different
from previous schemes flushing each new segment, in our
way, on average we split 8 segments but use CLFLUSH to
flush one segment because an RT-directory node contains eight
segment addresses. Therefore, this method mitigates the cost
of data persistence, meanwhile, ensures data consistency. The
performance gained by this design is shown in Figure 8.

D. Improvement of Load Factor

The load factor is another essential parameter for hashing
structures in memory and caches with limited space, and a
higher load factor means more items can be stored. However,
extendible hashing schemes can only split segments to resolve
hash collisions even if there are lots of free buckets in old
segments, leading to a low load factor. In this section, we
present our method to improve the load factor.

Several previous studies attempted to address the hash
collisions. For example, chained hashing [34] stores colliding
items in linked lists. But it requires frequent memory allocation

and pointer access, resulting in low CPU cache efficiency.
Cuckoo hashing [31] exploits several hash functions and
allows multiple cuckoo evictions, but it suffers from cascading
writes which induce high insertion latency. Linear probing
[30] scans the following buckets until it finds empty slots
to store conflicting items. Thus, it is cache-friendly and we
can sequentially access items. However, as the load factor
increases, finding target keys needs to traverse plenty of slots,
which degrades lookup performance.

In HMEH, we resolve hash collisions by combining linear
probing and stash schemes.The default probing distance is four
buckets (256 bytes), which is based on a recently released
technique report that Intel Optane DC Persistent Memory is
accessed by 256-byte block granularity [35]. When a hash
collision occurs, we first probe the following four buckets to
find a proper slot, and if fails, we insert the target item to stash.
Specifically, the stash is array-structured secondary storage
that is non-addressable and used to store colliding items. Every
segment has a stash that all buckets in this segment share it.
Therefore, we can obtain a higher load factor in a simple but
efficient way.

E. Recovery of Two Directories

In this section, we describe the recovery of two directories
after a normal shutdown and system crash.

Recovery after a normal shutdown. In the case of a normal
shutdown, HMEH flushes RT-directory to NVM, and then
stores a flag to indicate a normal shutdown. When rebooting,
HMEH only reads the RT-directory and rebuilds FS-directory
in DRAM. We first get the global depth (GD), and then do a
breadth-first search for RT-directory to retrieve the local depth
(LD) and the starting position in FS-directory of each segment.
As Figure 4 shows, with GD and LD, we can calculate the
reference count which indicates the number of contiguous
entries pointing to the same segment. At last, we rebuild
the entries of FS-directory according to starting positions and
reference counts.

Recovery after a system crash. For a system crash, HMEH
first requires to recover RT-directory. We exploit the global
depth of RT-directory and the local depth of segments to
check the entry consistency. As discussed in Section III-C,
if LD is smaller than GD, there are several RT-directory
entries pointing to the same segment. And if LD equals to
GD, one entry corresponds to one segment. Therefore we can
calculate the reference count of each segment and check if the
corresponding entries are equal.

Since data consistency problems only happen in leaf nodes
of RT-directory, we just need to recover leaf nodes. Algorithm
1 presents the pseudo-code of recovering an RT-directory node.
We recover RT-directory nodes from left to right. We first
access the leftmost entry to obtain LD and GD, and calculate
the reference count, denoted as RefCount. Then we compare
the LD of first entry with that of the following entries in the
same reference count sequentially. If the LD of latter entry
is different, we make this entry equal to the first entry, i.e.,
between line 5 and line 7 in Algorithm 1. We iteratively detect

Algorithm 1 RT-directory Node Recovery
1: for i« 0; i<RT-directorynode.capacity; i<—i+1 do
2: Depth <— NodeSlot[i].LD;
Stride « 2(GD—Depth).
Buddy < i+Stride;
for j < Buddy-1; i<j;j < j-1 do
if NodeSlot[j].LD != Depth then
NodeSlot[j] < NodeSlot[i];

i < Buddy-1;

e A

the inconsistencies of leaf nodes until the recovery of RT-
directory is completed. At last, we rebuild FS-directory from
RT-directory as mentioned before.

IV. CONCURRENT AND CONSISTENT HMEH

Multi-threaded concurrency is a key issue to enhance pro-
gram performance in modern multi-core systems. To achieve
better performance and high scalability, HMEH applies differ-
ent concurrency schemes for specific situations.

Mutex and Version Number for Directories. We apply
mutex to protect two directories from being updated inconsis-
tently. And during FS-directory doubling, we must atomically
update the global depth and the pointer to the FS-directory.
Suppose that when GD is updated but the pointer is not, the
index calculated by new GD and hash key may be out of the
range of FS-directory. Conversely, if the pointer is swapped
but GD is old, we probably access wrong segments, resulting
in data loss or search failures. We can simply use cmpxchgl6b
instruction [36] to update two metadata, but this instruction is
expensive and in the critical path. Hence, we apply version
number to determine whether they are consistent. We store
version numbers into the rightmost six bits of FS-directory
pointer and the leftmost six bits of GD. Then, before indexing
segments, we first check whether the version numbers are the
same. If not, we will load them repeatedly until they have the
same value. In our evaluation, the version number scheme has
much better scalability.

Fine-grained Lock for Segment split and lock-free read.
We use the segment-level lock to protect hashing table expan-
sion. Generally, before splitting a segment, we must acquire
the lock first, and other threads cannot modify the segment
until the split is finished. Since the directory entries of the
split segment remain unchanged, we can release the lock of
the split segment after preparing a new segment to improve
scalability. However, in this circumstance, an insertion should
verify whether the key is belonging to the old segment, if
not, this insertion will be repeated until succeeds. As for
read operations, we implement a lock-free search but need to
verify the local depth of the target segment. Specifically, after
finishing the search, we will check whether the LD has been
modified, and if so, we require to retry the query operation.
That is because the updated LD indicates the target segment
has been split, therefore, the target item might be invalid as
the concurrent write might have modified it.

20

g 27} insert
splittime

S 15
]
o
)
= 10
£
=)
3 05 //
= %
= %

0.0

2568 1KB 4KB 16KB

Segment Size for HMEH

(a) Insertion throughput

64KB 256KB

g8 8 5 8
ment split time(usec)

8

9-Seg

o
Av

Throughput (Ops/usec)

» o
wn o

©w
o

P
o

NN

o
o

;
2
2

256B

search

100%

insert

= search

load factor

16KE B4KB 25
Segment Size for HMEH

(b) Search/deletion throughput

6KB

Fig. 7. Throughput of different segment sizes.

probing distance) I g
7 0.20 g 3 4
Z 015 % 2:
% 010 'g %2

% 2 2 oioo < E

80%

60%

40%

20%

FEEEEE

0 1 4 8 12 16
Stash Size for HMEH (buckets)

(c) Insertion throughput

0%

Maximum Load Factor

Compare-and-swap (CAS) Instructions for Slots of Buck-
ets. We apply CAS to protect slots in every bucket. For
example, when a write transaction inserts an item to a bucket,
we first search for a free slot. Then we use CAS instructions to
mark the leading 8 bytes of item (cross-KV1 in our scheme) as
a sentinel that indicates the operation to be performed. So that
other write transactions will find other vacant slots. Hence, we
can implement the lock-free write in a slot of buckets.

V. PERFORMANCE EVALUATION
A. Experimental Setup

We evaluate the performance of HMEH against the state-
of-the-art NVM-based hashing indexes on Intel Optane DC
Persistent Memory Module (DCPMM). All experiments are
conducted on a 2-socket, 36-core Linux server (kernel version
5.0.0) equipped with 1.5 TB DCPMM, 186GB DRAM, and
32MB Last Level Cache(LLC). We use the ext4-DAX file
system and the APP Direct mode of Optane DC to perform all
experiments. We apply cl/wb [37] for cache line flushes, which
is more efficient than clflush and clflushopt.

We compare our HMEH with existing hashing schemes, i.e.,
CCEH, Level hashing, persistent linear hashing and persistent
cuckoo hashing (referred to as CCEH, LEVL, P-LINP, P-
CUCK). We use the libvmem library from PMDK [38] to
support traditional allocation interfaces on a volatile memory
pool built on a memory-mapped file. In our experiments, the
initial hash table of every scheme is sized for 2048 key-value
items. And we use 160 million random integers as workload,
whose key and value are both set to 8 bytes. We also measure
the scalability of our concurrent HMEH in mixed workloads
of YCSB [39], the industry standard for evaluating key-value
indexes. In the experimental results, each value is the average
of five executions.

B. Experimental Results and Analysis

1) Sensitivity Analysis of HMEH Design: To find the opti-
mal configuration of HMEH, we devise several experiments
to measure the designs of HMEH. First, we quantify the
performance effects with different segment sizes which are
varied from 256B to 256KB. The bucket size is fixed to a
cache line, and we allow to probe 4 buckets to resolve hash
collisions. To eliminate the effect of stash on the experimental
results, we set the size of stash to 0.

Figure 7(a) illustrates the average throughput of inserting
160 million random items in HMEH with different segment
sizes. Small segments that store fewer items will incur frequent
segment splits, increasing the entire execution time. However,
small segments only require to flush fewer cache lines into
NVM, which minimizes the latency of a single segment split.
As shown in Figure 7(a), the insertion throughput improves as
the segment size grows. But the average latency of segment
split sharply increases, and it even reaches 441 usec when
the segment size is 256KB. From the experimental results, to
balance average insertion throughput and latency of segment
split, the reasonable segment size is in the range of 4KB to
16KB.

Generally, a search operation only requires to accesse one
bucket to find the target item. However, the methods to address
hash collisions increase the number of bucket accesses. In
Figure 7(b), the average probing distance means the average
number of extra bucket accesses when an item is searched. It
decreases from 0.23 buckets to 0.021 buckets as we increase
the segment sizes. This is because HMEH with larger segment
size can leverage more bits to determine which bucket is
accessed per query, thus it avoids probing more buckets to find
the target items. As Figure 7(b) shows, due to the decrease of
the average probing distance, the average search throughputs
increase.

Next, we investigate the performance of HMEH with dif-
ferent stash sizes. The segment size is set to 16KB, and we
vary stash sizes from 1 bucket to 16 buckets. And we also
evaluate their load factors which are closely related to stash
configuration. As Figure 7(c) shows, with the increase of stash
size, the search performance degrades slowly but the maximum
load factor linearly grows. From aforesaid observations, the
optimal stash size is between 1 bucket and 8 buckets.

2) Comparative Performance: According to the experimen-
tal results of HMEH design, we set the segment size as 16KB
with a stash whose size is 4 buckets for the rest of the
experiments. We first analyze the performance gains brought
by the designs of our HMEH. We insert 160 million random
items and break down the average latency of inserting an item
into maintaining directory time (denoted as directory), and
other time spent in segment (denoted as segment). We apply
persistent extendible hashing as our experimental baseline. As

Figure 8 shows, the design of hybrid memory yields significant
performance gains, and the overhead of hybrid directories is
smaller than that with FS-directory in NVM. This is because
RT-directory can reuse the old nodes and the operations on
FS-directory are executed in DRAM.

20

g =] directory

g = [sgent |

E 7

F 10} .

8

D g % % %

2

< 0.0 T T T 7
Bestin® o102 DyD’l"'Ds A\

Fig. 8. Insertion Latency of HMEH when adding different designs. (Baseline:
persistent extendible hashing; D1: the changes of structure; D2: cross-KV for
insertion; D3: delayed flush; All: HMEH that uses D1+D2+D3+stash).

20— : : : .
§ | Erean _
2 181 P Awrite B

(]

£ 12t

}—

g osf 7

>

1]

S 04}

>

< 0.0 T T

Fig. 9. Insertion Latency of different hashing schemes.

Then, we compare the average insertion latency of our
HMEH against those of other state-of-the-art hashing schemes.
We also break down the average latency of inserting an item
into the write time (denoted as write), and the rehashing time
(denoted as rehash). For P-CUCK, we allow its insertion to
try 16 evictions before rehashing. P-LINP performs full-table
rehashing when the load factor achieves 95%. For LEVL, we
optimize the bucket size as a cache line which can leverage
high cache efficiency. For CCEH, we exploit the in-place
version which can reuse the split segment, outperforming the
copy-on-write version.

As shown in Figure 9, HMEH exhibits the best insertion
performance. Compared with CCEH, P-CUCK, LEVL, and P-
LINP, we observe that HMEH speeds up the insertions by over
1.49x, 2.37x, 2.47x, and 1.91x. HMEH and CCEH show
low rehashing overhead because they are dynamic hashing
schemes in which rehashing is an incremental operation.
LEVL presents the highest rehashing latency. The reason is
that level hashing requires to delete all items of the bottom
level in the old table via clwb during rehashing, unlike other
hashing schemes which can simply deallocate old hash tables
without extra deletion overhead.

3) Maximum Load Factor: To evaluate the maximum load
factor, we insert 1 million items into empty HMEH, CCEH,

and LEVL to calculate load factors after every insertion, then
we pick out the maximum one. P-LINP and P-CUCK do not
have a fixed load factor, thus they are not taken into consid-
eration in this experiment. Since HMEH performs segment
split when buckets accessed by linear probing and stash have
no empty slots, we measure HMEH with different probing
distances and different stash sizes. For a fair comparison, we
also evaluate CCEH in the same way.

LEVL has a two-level structure and each bucket has several
slots. Furthermore, it uses two hash functions and allows one
cuckoo eviction. Hence, there are multiple sharing slots to
store collision items in LEVL. As shown in Figure 10, the
maximum load factor of LEVL can achieve up to 92%. As
linear probing distance and stash size grow, the max load
factors of HMEH increase stably and all exceed 74%. Note
that HMEH has a higher load factor than CCEH with the same
number of sharing buckets. This is because HMEH employs
two mechanisms working in different positions of segments
and stash can be fully shared by all buckets in a segment.
However, with the increase of probing distance and stash size,
we require to access more buckets when inserting or searching
an item. Thus, we can choose different probing distances and
stash sizes to meet the requirements of different cases.

Maximum Load Factor

Fig. 10. Maximum load factors of hash tables. (# in the NAME-x/y# indicates
the linear probing distance and the size of stash in buckets.)

4) Concurrent performance: We compare the concurrent
performance of different concurrent hashing schemes. We
first evaluate the scalability under an increasing number of
threads, including a single thread, 2, 4, 8, 16 threads. We
use YCSB to generate three workloads: 100% insert, 50%
insert and 50% search, and 100% search workloads which all
have 160 million items. We compare our concurrent HMEH
with CCEH, LEVL, P-LINP, and libcuckoo [40], a state-of-
the-art concurrent cuckoo hashing scheme. For libcuckoo, we
use its open-source C++ implementation [41]. Furthermore, as
CCEH and HMEH can employ the same concurrent strategy,
we improve CCEH in our way as described in Section IV,
denoted as CCEH-M.

The average throughputs of the insert-only workload are
shown in Figure 11(a), our concurrent HMEH shows the
highest throughput and best scalability. We see that CCEH-
M obtains significant performance improvement than CCEH.
This is because our multi-thread control decreases the waiting

[
(=]

8 T | 15 . T
— = HMEH — = HMEH ~ = HMEH
§§ CCEH-M ﬁ 12 CCEH-M § 251 |-~ CCEHM .
36 |-0—CCEH 3 —O— CCEH 5 ol —O— CCEH
Q| lo-Lev 2 gl [oLew | 401 |o-LevL
o P-LINP = ¢) P-LINP 2 }Oj15 | P-LINP -
g4 libcuckoo = " libouckoo . J 5 libcuckoo)
£ e - 4 Bl T
S 2 o Y - ——o— J 3 = =
g e 23 . A £ st - P
[R SR x__— - S]
= o] e S E— = : ,
o 2 4 8 16 o 4 16 1 2 4 8 16
Number of Threads Number of Threads Number of Threads

(a) Scalability on YCSB: 100%insert

(b) Scalability on YCSB: 50%insert-50%search

(c) Scalability on YCSB: 100%search

Fig. 11. Scalability on YCSB workloads.

time of operations in other threads when segments split, de-
scribed in Section IV. To prevent multi-thread from modifying
a slot at the same time, libcuckoo requires to lock an entire
cuckoo path, blocking all operations in other threads that
access the slots in this cuckoo path. Therefore, libcuckoo
suffers from frequent locking operations and has a worst
performance. Note that the throughputs of LEVL and P-LINP
do not scale with the increase of threads. The main reason is
that their full-table rehashing operations incur high latencies
and block all insertions in other threads.

1 |

LEVL
HMEH
CCEH
P-LINP
libcuckoo
CCEH-M

CDF

—_——

0 5 10 5 2 25
Insertion Latency(s)

Fig. 12. Insertion Latency CDF.

Figure 11 also shows the average throughputs of 50% insert-
50% search, and 100% search workloads. Getting benefits
from hybrid memory and lock-free read, HMEH still performs
best under all workloads. Note that P-LINP has good search
performance, only behind HMEH. This is because P-LINP
places collision items in the following buckets and one mem-
ory access can prefetch several adjacent buckets to CPU cache,
which efficiently reduces memory accesses.

We also measure the tail latency of concurrent insertion.
Figure 12 illustrates its cumulative distribution functions
(CDF). Since static hashing schemes require to lock the
whole hash table during rehashing, which blocks substantial
concurrent queries and incurs dramatic tail latency, the CDF
graphs of LEVL, LINP, and libcuckoo have several flat regions
that indicate the time they take for each rehashing. As Figure
12 shows, the maximum latency of LEVL is 21.7 sec and is

much higher than that of HMEH, 1.6 sec.

5) Negative Search Throughput: This subsection evaluates
the search throughputs of different hash tables with different
ratios of positive/negative searches. The positive search means
the target item exists in the hash table, and negative search
is the opposite. As Figure 13 shows, HMEH has a higher

3.0 T T T
D sl V72 HMEH N LEVL

' CCEH P-LINP
3 (I
2 20l % B33 libcuckoo
a3 %)
o) 7 %
215_ \ % N % _
910} N BN
§05' § B g § B g § =2 1

90/10
Positive/Negative Search Ratio(%)

70/30

Fig. 13. Average throughput of positive and negative searches.

negative search throughput than CCEH. Because the FS-
directory of HMEH stored in DRAM has lower access latency
than that of CCEH placed in NVM. Since HMEH requires to
lookup the extra stash when failing to find the target item,
the search performance of HMEH decreases as the negative
search ratio grows. To obtain better lookup performance, we
can set the stash size to be smaller. LEVL employs two
functions, multi-slots and two-level structure all of which
increase search overhead of non-existent keys. Interestingly,
the search throughputs of level hashing and libcuckoo hardly
decline as the radio of negative search increases. Because they
are both based on cuckoo hashing which is optimized for
read-intensive workloads. We also investigate that the search
throughput of P-LINP drops dramatically with the increase of
negative search ratio. The main reason is that P-LINP requires
to scan the successive buckets to find the target item when
performing a negative search.

6) Recovery Time of directories: At last, we evaluate the
recovery time of two directories after a system failure with
one thread. The recovery consists of two steps, recovering
RT-directory and rebuilding FS-directory from RT-directory.
We vary the number of inserted items from 16 million to
160 million and deliberately inject faults. Table 2 shows the
recovery time of different workload sizes with one thread. We

TABLE II
RECOVERY TIME FOR DIFFERENT WORKLOAD SIZES.

Number of Indexed Items 1.6 million | 16 million | 160 million
RT-directory Recovery Time(ms) 0.47 6.3 50.1
FS-directory Rebuild Time(ms) 2.5 21.8 172.2

see that the recovery time of RT-directory only takes 0.47
msec and 50.1 msec if there are 1.6 million and 160 million
items in HMEH. And the rebuild time of FS-directory spends
2.5 msec and 172.2 msec. Compared to the whole execution
time, the recovery time is at the millisecond level which can
be negligible. Therefore, directories of HMEH can achieve an
instantaneous recovery.

VI. CONCLUSION

In this paper, we propose HMEH, a high-performance
variant of extendible hashing for the hybrid DRAM-NVM
memory. HMEH places a flat-structured directory in DRAM
to obtain faster access, and keeps a radix-tree structure
in NVM to rebuild FS-directory upon recovery. Moreover,
HMEH leverages cross-KV and delayed flush schemes to
reduce the overhead of persist barriers. We also implement
concurrent HMEH that efficiently supports multi-thread opera-
tions. Experimental results present that HMEH achieves lower
latency of querying than state-of-the-art hashing schemes. And
concurrent HMEH also shows highest performance and good
scalability under mixed workloads of YCSB.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program
of China NO.2018YFB1003305, NSFC No. 61832020, No.
61821003, Natural Science Foundation of Shandong Province
(No. ZR2019LZHO012). We thank anonymous reviewers for
their comments. We thank Hong Jiang for the discussions.

REFERENCES

[1] Intel and Micron, “Intel and micron produce breakthrough memory
technology,” https://newsroom.intel.com/news-releases/, 2015.
S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam,
“Phase-change random access memory: A scalable technology,” IBM
Journal of Research and Development, vol. 52, no. 4.5, pp. 465-479,
jul 2008.
[3] T. Kawahara, “Scalable spin-transfer torque RAM technology for
normally-off computing,” IEEE Design & Test of Computers, vol. 28,
no. 1, pp. 52-63, jan 2011.
[4] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proceedings of the 36th annual international symposium on Computer
architecture (ISCA) (2009).
I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “FPTree:
A hybrid SCM-DRAM persistent and concurrent B-tree for storage
class memory,” in Proceedings of the 2016 International Conference
on Management of Data (SIGMOD) (2016).
J. Yang, Q. Wei, C. Chen, C. Wang, and K. L. Yong, “Nv-tree:
Reducing consistency cost for nvm-based single level systems,”
in Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST) (2015). [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2750482.2750495

[2

—

[5

=

[6

=

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid
index key-value store for dram-nvm memory systems,” in 2017
USENIX Annual Technical Conference (USENIX ATC) (2017), pp.
349-362. [Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/xia

S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proceedings of the VLDB Endowment (PVLDB), pp. 786797, feb 2015.
D. Hwang, W. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” in 16th USENIX
Conference on File and Storage Technologies (FAST) (2018),
pp. 187-200. [Online]. Available: https://www.usenix.org/conference/
fast18/presentation/hwang

S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT:
Write optimal radix tree for persistent memory storage systems,’
in 15th USENIX Conference on File and Storage Technologies
(FAST) (2017). Santa Clara, CA: USENIX Association, Feb. 2017,
pp. 257-270. [Online]. Available: https://www.usenix.org/conference/
fast]17/technical-sessions/presentation/lee-se-kwon

S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-
addressable memory,” in 9th USENIX Conference on File and Storage
Technologies (FAST) (2011), pp. 61-75. [Online]. Available: http:
/lwww.usenix.org/events/fast1 1/tech/techAbstracts.html\#Venkataraman
B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu,
“Revisiting hash table design for phase change memory,” in Proceedings
of the 3rd Workshop on Interactions of NVM/FLASH with Operating
Systems and Workloads (INFLOW) (2015).

P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-volatile
memory systems,” in Proceedings of the 33rd International Conference
on Massive Storage Systems and Technology (MSST) (2017).

P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in I3th USENIX
Symposium on Operating Systems Design and Implementation (OSDI)
(2018). Carlsbad, CA: USENIX Association, Oct., pp. 461-
476. [Online]. Available: https://www.usenix.org/conference/osdil8/
presentation/zuo

M. Nam, H. Cha, Y. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in 17th USENIX Conference
on File and Storage Technologies (FAST) (2019). Boston, MA:
USENIX Association, Feb. 2019, pp. 31-44. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/nam

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible
hashing-a fast access method for dynamic files,” ACM Transactions on
Database Systems, pp. 315-344, sep 1979.

S. Patil and G. A. Gibson, “Scale and concurrency of GIGA+: file system
directories with millions of files,” in 9th USENIX Conference on File and
Storage Technologies (FAST) (2011), pp. 177-190. [Online]. Available:
http://www.usenix.org/events/fast11/tech/techAbstracts.html\ #Patil
ORACLE, “Architectural overview of the oracle
zfs storage appliance, 2018,” https://www.oracle.
com/technetwork/server-storage/sun-unified- storage/
documentation/o14-001-architecture-overviewzfsa-2099942.pdf.
“Postgresql,” http://www.postgresql.org/.

“Memcached,” https://memcached.org/, 2018.

“Redis,” https://redis.io/, 2018.

S. Li, P. Dubey, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, and S. Lee, “Architecting to achieve a
billion requests per second throughput on a single key-value store server
platform,” in Proceedings of the 42nd Annual International Symposium
on Computer Architecture (ISCA) (2015).

H. Garcia-Molina and K. Salem, “Main memory database systems: an
overview,” IEEE Transactions on Knowledge and Data Engineering, pp.
509-516, 1992.

H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: dependably fast
multi-core in-memory transactions,” in Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD) (2017).
O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the walkers: Accelerating index traversals for in-
memory databases.” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (2013).

C. D. Philip J Mucci, Shirley Browne and G. Ho, “Papi: A portable
interface to hardware performance counters,” in In Proceedings of the
department of defense HPCMP users group conference, vol. 710, 1999.

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]

[40]

[41]

“Intel corporation intelr 64 and ia-32architectures software de-
veloper’s manual,” http://www.intel.com/content/www/us/en/processors/
architectures-software-developermanuals.html.

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems
(EuroSys) (2014). ACM Press, 2014.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: lightweight persis-
tent memory,” in Proceedings of the sixteenth international conference
on Architectural support for programming languages and operating
systems (ASPLOS) (2011).

B. Pittel, “Linear probing: The probable largest search time grows
logarithmically with the number of records,” Journal of Algorithms,
vol. &, no. 2, pp. 236-249, jun 1987.

R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122-144, may 2004.

H. Mendelson, “Analysis of extendible hashing,” IEEE Transactions on
Software Engineering, no. 6, pp. 611-619, nov.

B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation ({NSDI}), 2013, pp. 371-384.

L. R. Johnson, “An indirect chaining method for addressing on secondary
keys,” Communications of the ACM, pp. 218-222, may 1961.

J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST
20). Santa Clara, CA: USENIX Association, Feb. 2020, pp. 169-182.
“Intel64 software developers manual (vol 2, ch 3.2),” 2013.

“Intel architecture instruction set extensions programming reference.”
https://software.intel.com/sites/default/files/managed/69/78/319433-
025.pdf.

“Pmdk,” The libvmem library. https://pmem.io/vmem/libvmem/.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing (SoCC) (2010).

X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic
improvements for fast concurrent cuckoo hashing,” in Proceedings of the
Ninth European Conference on Computer Systems (EuroSys) (2014).
“Libcuckoo library,” https://github.com/efficient/libcuckoo.

