
LightKV: A Cross Media Key Value Store with
Persistent Memory to Cut Long Tail Latency

Shukai Han, Dejun Jiang, Jin Xiong
SKL Computer Architecture, ICT, CAS; University of Chinese Academy of Sciences

{hanshukai, jiangdejun, xiongjin}@ict.ac.cn

Abstract—Conventional persistent key-value stores widely
adopt LSM-Tree to manage data across memory and disk.
However, expensive write ahead logging, inefficient cross-media
indexing and write amplification are three limitations faced by
LSM-Tree based key-value store. Thanks to the development
of non-volatile memory (NVM), persistent key-value stores can
exploit NVM-based persistent memory (PM) to directly persist
data avoiding costly logging. With this design choice, we propose
LightKV a cross media key-value store with persistent memory.
To support efficient cross-media indexing, we design a global
index Radix-Hash Tree (RH-Tree) consisting of the upper-layer
radix tree and hash table based leaf nodes. We explore the
specific features of real PM product to balance the persistency
and performance of RH-Tree. Meanwhile, replying on the range
partition of RH-Tree, LightKV organizes key-value pairs with the
same key prefix into SSTables within the same partition. LightKV
then conducts partition-based data compaction with carefully-
controlled compacted data volumes. By doing so, LightKV greatly
reduces write amplification. We evaluate LightKV against state-
of-the-art PM-based key-value stores NoveLSM and SLM-DB as
well as LevelDB and RocksDB. The experiment results show
that LightKV reduces write amplification by up to 8.1x and
improves read performance by up to 9.2x. Due to the reduced
write amplification, LightKV also reduces read tail latency by
up to 18.8x under read-write mixed workload.

Index Terms—key-value store, persistent memory, tail latency,
log-structured merge tree

I. INTRODUCTION

Persistent key-value (KV) stores have become an important
part of storage infrastructure in data centers. They are widely
used in various web services such as search engines [8],
[24], social networking [14], e-commerce platform [11], and
more. Moreover, some file systems [21], [35] and relational
databases [12] use KV stores as either metadata store or
storage engine. KV stores usually serve data with small
granularity, such as from tens or hundreds of bytes to a few
kilo bytes. Thus, KV stores are latency-critical applications.
Nowadays, tail latencies, such as 99th and 99.9th percentile
latencies, are especially important to guarantee quality of
services [11], [37].

Log-Structured Merge Tree (LSM-Tree) [32] is a funda-
mental component for existing persistent KV stores, such
as BigTable [8], LevelDB [17], RocksDB [14] and Cassan-
dra [25]. LSM-Tree maintains an in-memory write buffer
(namely MemTable in LevelDB and RocksDB) to receive
incoming writes. Any insert/update/delete operation is written
into this buffer in an append-only way without in-place updat-
ing. When the write buffer is full, LSM-Tree flushes KV pairs

in the buffer into underlying disks in a batch to achieve high
write performance. However, LSM-Tree requires to conduct
data compaction to reclaim KV pairs.

LSM-Tree based KV stores face challenges when providing
low tail latency. We observe that the 99th and 99.9th percentile
read latencies reach up to 13x and 28x compared to average
read latency for LevelDB under read-write mix workloads. The
tail latency is affected by the inefficient cross-media indexing
and level-based data compaction of existing LSM-Tree based
KV stores. On the one hand, existing KV stores adopt skiplist
and embedded index block to separately index in-memory KV
pairs and on-disk KV pairs. This brings slow data read. For
example, when searching a KV pair, the embedded index block
is first read into memory to locate the target key. Then, the
data block including the target KV pair is read into memory.
On the other hand, data read latency further increases when
conducting level-based data compaction. Currently, LSM-Tree
logically organizes data into multiple levels. The number of
SSTables at an upper level is usually 10X than that at a
lower level [30]. When compacting SSTable(s) from lower
level to upper level, the compaction process usually involves
all SSTables in the upper level. This brings significant write
amplification. The extra data writes in background further
affect the front-end data reads, and results in heavy tailed read
latency.

Recently, SILK [6] is proposed to adopt an I/O scheduler
to carefully conduct resource allocation and preemption-based
scheduling between client and internal operations (flushing and
data compaction). In such doing, SILK can prevent latency
spikes. Thanks to the development of byte-addressable and fast
non-volatile memories (NVMs), such as PCM [39], ReRAM
[5], and 3D XPoint [1], persistent memory (PM) is proposed
by placing NVM in memory bus to serve persistent data
directly. Thus, in this paper, we explore the tail latency issue
from an different perspective by revisiting data index and data
organization and meanwhile exploiting PM.

A few recent works propose to adopt PM to optimize LSM-
Tree. For example, both NoveLSM [23] and SLM-DB [22]
build persistent MemTable based on PM to reduce the costs
of write ahead log and (de-)serialization of KV pairs. Similar
to previous works [13], [22], [23], we adopt PM in KV stores
to serve as persistent write buffer, which can avoid write log
overhead and reduce write latency in critical paths. Moreover,
we take the following two insights for building persistent KV
stores. First, a global index structure is required to efficiently



locate cross-media data. By building an efficient global index
that both manages KV pairs in PM and SSD at the same time,
we can effectively reduce read amplification, thereby reducing
device IO, improving read performance, and reducing tail read
latency.

Secondly, one can reduce tail latency by carefully organiz-
ing KV items and controlling the key ranges involved in a
data compaction. For example, assuming the key size is 1
byte and there exist three SSTables with key ranges of (a,
g), (h, n), and (o, q) separately. Note that, since SSTable
is sorted, the key range of an SSTable is represented by its
starting key and ending key within a parentheses. In case of
compacting an SSTable having the key range of (c, p) with
these three SSTables, all the three SSTables need to be read
and compacted. Their valid KV pairs are then re-written to
disks again, which results in write amplification. If one can
control the key range of an SSTable, the number of SSTables
required by a data compaction can be reduced. For example,
we partition the key range of (a, q) into three partitions that
are (a, g), (h, n), and (o, q) respectively. One decides the
belonging partition of a KV pair according to its key. KV
pairs belonging to the same partition are first buffered together
and then written into SSTables. Thus, the key range of a
compacting SSTable only overlaps with the SSTables within
the same partition. When conducting compaction, one can
compact SSTables belonging to the same partition. This greatly
reduces the number of SSTables involved in the compaction.

In this paper, we first propose Radix Hash Tree (RH-Tree),
an index consisting of the upper-layer Radix tree and hash
table based leaf nodes. RH-Tree acts as the global index to
locate data across persistent memory and disk. Compared to
separate cross-media indexes, the global RH-Tree allows to
quickly locate KV pairs either in PM or disk. Moreover, the
upper-layer radix tree stores keys according to their prefixes.
Each branch of the upper-layer Radix tree clusters KV pairs
with the same key prefix into a partition. As a result, the KV
pairs indexed by a leaf node belong to the same partiton.
The leaf node exploits the fast accessing of hash table to
support efficient single-point operations. We then propose
partition-based data compaction for reclaiming invalidate KV
pairs on underlying disks. We conduct compaction in a per-
partition way. This allows us to carefully control the number
of SSTables involved in compaction and thus reduce write
amplification.

We finally build LightKV, a cross media KV store adopt-
ing RH-Tree to index cross-media data and partition-based
compaction to reduce tail latency. We conduct extensive ex-
periments to evaluate LightKV against state-of-the-art KV
stores NoveLSM and SLM-DB as well as the widely used
LevelDB and RocksDB. The experiment results show that
LigthKV outperforms these KV stores by 33.0x and 9.2x
for random writes and random reads separately. Moreover,
LightKV reduces write amplification by up to 8.1x and reduce
read tail latency by up to 18.8x.

In summary, this paper makes the following contributions:
• We propose Radix Hash Tree (RH-Tree), a cross-media

MemTable
Immutable

MemTable

Level 0

SSTable SSTable

Level K ……

Level 1

Level 2

Level K-1
…… ……

KV data

(sorted )

Metadata
(bloom filter, index, 

etc)

SSTable

insert KV pair

LOG

Manifest

2

1

3

4

5

5

5

Fig. 1: LevelDB architecture, (1) Writing Ahead Log; (2)
Inserting key-value pair into MemTable; (3) Converting full
MemTable to Immutable; (4) Immutable MemTable is flushed
to disk to become a SSTable file; (5) Compaction between
Leveli to Leveli+1.

index based on DRAM and PM, which can effectively
manage data both in PM and SSD.

• We propose the partition-based compaction, which or-
ganizes KV pairs with the same prefix in one partition
and performs well-controlled compaction to reduce write
amplification.

• We implement LightKV based on RH-Tree and partition-
based compaction. We conduct extensive experiments to
confirm the efficiency of LightKV.

II. BACKGROUND AND MOTIVATION

A. Log-Structured Merge Tree

Log-Structured Merge Tree (LSM-Tree) is the fundamental
organization for persistent KV stores. As for write-intensive
workloads, LSM-Tree merges random write into sequential
write for disk. We use the widely used LevelDB [17] to explain
the architecture of LSM-Tree. Figure 1 shows the architecture
of LevelDB. It maintains a write buffer (MemTable) in DRAM.
The MemTable is indexed using skiplist. To handle a write
request, the KV pair is first written to the log on disk. Then,
it is written to the MemTable. When the MemTable is full, a
new MemTable is created. The full MemTable is modified to
an Immutable MemTable and flushed to disk in the form of
SSTable file by a background thread. The manifest file is used
to record information of the KV store metadata.

The on-disk SSTables are organized into multi-levels. Ex-
cept for Level 0, the key ranges of SSTables within the
same level do not overlap. Unfortunately, the key ranges of
SSTables from different levels may overlap. The maximum
number of SSTable files on each level is fixed. When the
number of SSTables on the low level reaches certain threshold,
the background threads merge the SSTables from leveli to
leveli+1. This process is called compaction. Since LevelDB
uses append write to delete or update KV pairs, compaction
also recycles invalid KV pairs.



0

2

4

6

1 101 201 301 401 501

L
a
te

n
c
y
 (

m
s
)

Time (×10 seconds)

avg P99 P99.9

0

300

600

900

1200
D

is
k
 I

O
 (

M
B

/s
) read write

t1 t2

Fig. 2: Read tail latency results and disk read/write
bandwidth in real-time. This figure shows the average, 99th

and 99.9th percentile read latencies and disk read/write rate
for LevelDB in different workloads. We run a read-write mixed
workload of random read and random write during the t1 time
period, and run random read workload during the t2 time
period.

B. Limitations of persistent KV store

Inefficient indexing for cross-media data. Persistent KV
store needs to manage data cross memory and underlying
disk. On one hand, LSM-Tree adopts skiplist to index in-
memory data. On the other hand, LSM-Tree builds manifest
files to record key range of each on-disk SSTable. Each
SSTable contains an index block such that one can apply
binary search to locate keys. For serving single-point query,
LSM-Tree requires at least two disk IOs to fetch index block
and data block separately1.
Heavy tailed read latency under mixed workload. In order
to provide high write throughput, LSM-Tree adopts append
write for both new inserts, updates and deletes. This results in
background garbage collection. LSM-Tree logically organizes
on-disk SSTables into multiple levels. However, LSM-Tree
does not control the key range of an SSTable. If the key
range of a compacting SSTable at the lower level (e.g. level
0) overlaps with all SSTables at the upper level (e.g. level 1),
all SSTables from the upper level are read and re-written for
compaction purpose. Since the number of SSTables at an upper
level (e.g. level 1) is usually 10X than that at a lower level
(e.g. level 0). This results in significant write amplification.
Previous studies show that the write amplification of LSM-
Tree with K levels exceeds 10*K [30].

Since SSD has asymmetric read and write latency, the
critical reads are affected by long writes when serving read-
write mixed workloads. This is exacerbated when background
data compaction is conducted. We conduct experiments to
show the heavy tailed read latency. We first warm up LevelDB

1Note that, manifest files are usually cached in memory.

… …

… …… …
3. Main Data Store

4. compaction

Partition1 PartitionN

…

…

Partition2

SSTable

…

2. Persistent Write Buffer

DRAM

Persistent Memory

SSD

flush

1. Radix Hash Tree

Segment

Fig. 3: LightKV architecture. This figure shows the LightKV
architecture. (1) Radix Hash Tree (RH-Tree) is a global index
across DRAM-PM, which is used to index all KV items in PM
and SSD. (2) The Persistent Write Buffer (PWB) is used to
receive temporarily written data and transfer it to the SSD in
segments. (3) Data in SSD is organized and partitioned in the
manner of Sort String Table (SSTable). (4) These SSTables use
partition-based data compaction to handle garbage collection
and improve indexing efficiency

with 100 GB data. Then, we run a mixed workload of
randomly reading 50 GB existing data and randomly inserting
another 50 GB data. We measure the average latency as
well as 99th and 99.9th percentile read latencies every 10
seconds. Figure 2 shows the read tail latency results and disk
read/write bandwidth. During t1 time period, when the disk
write bandwidth increases (e.g. LevelDB executes background
compaction), the 99th and 99.9th percentile read latencies
correspondingly increase. The maximum 99th and 99.9th

percentile read latencies can reach 13 and 28 times than
the average read latency. Starting from t2 time period, the
mixed workload finishes, and we run read-only workload.
However, at the beginning of t2 period, the heavy tailed
read latency is still observed as previous compactions do not
end. After the compaction finishes, the read tail latency is
significantly reduced. Thus, the disk write spikes caused by
data compaction is a key factor increasing read tail latency.
Similar to the key range overlapping issue, this also motivates
us to reduce write amplification during data compaction.

C. Non-Volatile Memory

Non-Volatile Memories (NVMs), such as 3D XPoint [1],
Phase Change Memory (PCM) [39], and Resistive Memory
(ReRAM) [5], provide low latency and byte addressable fea-
tures. Especially, NVM can persist data after power off. Thus,
NVM can reside on memory bus to serve as persistent memory
(PM). Recently, a few works adopt PM to reduce the cost of
write ahead log as well as data (de-)serialiation [22], [23].



The first PM product, Intel Optane DC Persistent Memory
(PM), was announced [19] in April 2019. We measure the
performance of Optane DC PM, and observe the following
features: the write latency of Optane DC PM is close to
DRAM, while its read latency is 3 to 4 times that of DRAM.
The write and read bandwidths of Optane DC PM are around
2GB/s and 6.5GB/s, which is about 1/8 and 1/4 that of DRAM
separately. These observed features are similar as reported
in [20], [29]. The specific performance features of Optane
DC PM is different from the previous assumptions about
NVM performance. NVMs were expected to have read latency
similar to DRAM and longer write latency than DRAM. Thus,
this motivates us to explore the usage of PM when using its
persistency for data and index durability and meanwhile taking
its specific latencies into account. For example, when locating
KV pairs stored in PM, the index is desirable to be placed in
DRAM instead of PM itself to achieve fast querying.

III. LIGHTKV DESIGN

A. System overview

In this section, we present the design of LightKV. Figure 3
shows the system architecture of LightKV. It mainly consists
of three parts: a global index Radix Hash Tree (RH-Tree)
indexing cross-media data, NVM-based persistent write buffer
(PWB), and SSD-based main data store.

RH-Tree is a tree-like structure consisting of Radix tree with
hash table based leaf nodes. The PWB consists of multiple
segments, each of which is indexed by a leaf node of RH-Tree.
KV pairs with different prefix paths are written into different
segments in an append-only way. According to PM specific
performance feature, RH-Tree is placed across DRAM and
PM, with parts of leaf nodes placed in PM. When a leaf node
is fulfilled, the KV pairs in its indexing segment are flushed
into SSD in the form of String Sorted Table (SSTable) [17].
After that, a new hash leaf node is generated to hold further
incoming index entries. The hash leaf nodes with the same
prefix paths are linked as a list.

Since KV pairs are written into SSD in an append-only way,
LightKV also conducts compaction to collect invalid KV pairs.
As shown in Figure 3, SSTables are logically organized into
partitions, and KV pairs in the same partition have the same
key prefix. LightKV conducts partition based data compaction,
allowing data volume involved in each round of compaction
to be carefully controlled. In such doing, LightKV greatly
reduces write amplification caused by data compaction.

B. Radix Hash Tree Structure

Radix Hash Tree is the key component of LightKV to index
both data and metadata. In conventional LSM-Tree based KV
stores [14], [17], the MemTable is indexed using skiplist, and
meanwhile the SSTables are indexed using index blocks and
bloom filters. In such doing, when serving read requests, one
needs to first look up the MemTable, and then search SSTables.
This results in slow read performance. Previous works propose
to use large persistent write buffer to reduce the costs of write-
ahead log and (de-)serialization but still using skiplist to index

prefix search tree

HashTable HashTable……

Radix Hash Tree structure

HashTable structure

cache kv offsetkv offset

hashing bucket structure (64B)

prefix search tree structure

……

……

……
……

……

……

[0,32] [128,255]

[0,64] [228,255]

prefix search tree structure

……

……

……

[0,32] [128,255]

[0,64] [228,255]

normal bucket extra bucketnormal bucket extra bucket

signature

4B * 4 4B * 4 8B * 4

Fig. 4: Radix Hash Tree architecture. Radix Hash Tree (RH-
Tree) consists of Radix tree with hash table based leaf nodes.
The index entries of the same prefix KV pairs are divided into
the same leaf node. Due to the Radix tree structure, the leaf
nodes are in order.

buffered data [23]. This suffers from degraded performance
when the buffered data increase. This motivates us to design a
global index to mange KV pairs in both PWB and SSD store.

In this paper, we propose Radix Hash Tree (RH-Tree), a
tree-like structure combining Radix tree and hash table. The
upper-layer of RH-Tree is Radix tree to execute prefix search
for keys. Compared to B+-tree, all operations on Radix tree
have the complexity related to the key length but independent
of the key numbers in a dataset. This feature is attractive when
holding large volume of KV pairs. However, Radix tree with a
large fanout suffers from large space consumption. To balance
the search complexity and space utilization, we do not build
a full Radix tree to index all KV pairs. Instead, we let each
leaf node of RH-Tree use a hash table to store the keys with
the same prefix. We name the leaf node in RH-Tree as hash
leaf node.

As shown in Figure 4, each hash leaf node is composed of
multiple buckets. A bucket has three types of slots, including
4 signature slots, 4 cache slots, and 4 offset slots. A signature
slot contains a 32-bit (4B) signature referring to the hashed
key of a KV pair2. A cache slot is used to cache 32-bit (4B)
characters of the key. It is used for RH-Tree splitting without
directly accessing the actual key, thereby avoiding additional
IO overhead. An offset slot contains a 64-bit (8B) value
indicating the offset of a KV pair within either the PWB or
an SSTable file. Note that, RH-Tree only stores the addresses
of KV pairs in offset slots. The KV items are actually stored
in PWB in PM or main data store in SSD. Since the size of a
bucket is 64B (one cache line size), RH-Tree can get a bucket
with one memory access.

To address a KV pair in RH-Tree, one first finds the hash
leaf node in RH-Tree using the key prefix. Then, the hash value
of the target key is used to locate the bucket. Once the bucket
is located, one needs to compare all signature slots in this

2Note that, since the KV pairs indexed by a hash leaf node have the same
prefix, few hash collision occurs when using 32-bit signature.



normal split

IN1

LN1

IN1

LN2LN2 LN1 LN3

(a) normal split operation

level split

IN1

LN1 ……

IN1

……
IN2

LN1 LN2

(b) level split operation

Fig. 5: Split operation in RH-Tree. In this figure, LN 1, LN
2 and LN 3 refers to leaf nodes 1, 2, and 3 respectively. IN 1,
IN 2 refers to inner node 1, 2 respectively.

bucket with the hash value. In case of finding a matching slot,
one uses the address in the corresponding offset slot to obtain
the KV pair. Since the signature slot only stores hash values
of keys, a full-key comparison is required after obtaining the
KV pair. RH-Tree returns the KV pair only after a successful
full-key comparison.

The leaf nodes in RH-Tree handle hash collisions to in-
creases the load factor in the two ways. First, RH-Tree adopts
two hash functions to select the bucket. Secondly, RH-Tree
adds an extra bucket within a hash leaf node as shown in
Figure 4. When there are no empty slots in the bucket selected
by the two hash functions, the key is sequentially stored in
the extra bucket. RH-Tree applies linear search to locate keys
stored in the extra bucket. Note that, the extra bucket only adds
5% extra space to a hash table. This allows RH-Tree to achieve
high load factor but without losing too much performance. We
observe the average load factor of leaf nodes in RH-Tree is
0.9 when the leaf node is unable to handle a conflict.

A leaf node becomes full when its normal bucket and extra
is fulfilled. At this time, RH-Tree starts to grow through
splitting (Section III-C) or generating linked leaf nodes (Sec-
tion III-D).

C. RH-Tree split

Conventional Radix tree consists of two types of nodes:
inner nodes and leaf nodes. An inner node is usually an array
of 2s pointers, which maps the s bits of the key. The 2s pointers
referring to 2s child nodes. Given a key length k, Radix tree
has dk/se levels. However, RH-Tree does not build full Radix
tree. Thus, it does not have pre-defined levels. Initially, RH-
Tree has only one inner node (root node)3 and N leaf nodes.
The inner node also maps the key prefix of s bits. We further
divides the key prefix into N parts. We assign each part to a
hash leaf node. For example, assuming the parameter s is 8
and N is 2. We use the digits 0 to 255 to represent the values of
8 bits key prefix. The two hash leaf nodes map key prefixes
0 to 127 and 128 to 255 separately as shown in Figure 5a.
When the hash table of any leaf node (including both normal
buckets and extra bucket) is full, RH-Tree split occurs. RH-
Tree adopts two splitting strategies as follows: normal split
and level split.
Normal split. When split occurs, RH-Tree prefers to first split
the value range mapped by current leaf nodes. RH-Tree adds

3Note that, the root node is considered as the first inner node.

a new hash leaf node, and assigns a half of the values mapped
by a current leaf node to the new one. This is called normal
split in RH-Tree. For example, as shown in Figure 5a, hash
leaf node 1 (LN1) initially maps values 0 to 127. When a
normal split is executed, a new hash leaf node 3 (LN3) is
added. This leaf node 3 is responsible for mapping values 64
to 127. Instead leaf node 1 only maps values 0 to 63. The
index entries corresponding to values 64 to 127 stored in leaf
node 1 are then moved to leaf node 3.

After a normal split, the index entries in a leaf node
(e.g. LN1 in Figure 5a) are moved to another (e.g. LN3 in
Figure 5a). Assuming the depth of the current leaf node is D,
RH-Tree only needs to use the Dth character of a given key to
decide whether the related entry needs to be mored or not. RH-
Tree designs a 4 B cache slot to store 4 consecutive characters
of a key. In such doing, the entry movement can be decided
by comparing cache slot in CPU cache without accessing full
key in PM. This helps to reduce splitting overhead.
Level split. We set a threshold T normal for normal split to
be the least number of values that are mapped by a hash leaf
node. When executing split, RH-Tree checks what the number
of values mapped by the new leaf node will be if normal split
occurs. In case of being less than T normal, RH-Tree turns
to execute level split. Instead of adding new hash leaf node
having the same prefix path with current ones, level split adds
a new inner node to map next s bits of the key. For example,
assuming T normal is 4, inner node 1 (IN1) maps the first
s bits (e.g. 8 bits) of the key, and leaf node 1 already maps
values 0 to 3 as shown in Figure 5b. In such case, when leaf
node 1 needs to split, RH-Tree executes level split by adding
new inner node 2 (IN2). The inner node 2 maps next 8 bits of
the key, and initially has 2 hash leaf nodes. The index entries
stored in the leaf nodes with the first 8 bits key prefix are
moved to the two new leaf nodes according to the values of
next 8 bits of the key.

Similar to normal split, level split also exploits cache slot
to avoid in-PM full key access when deciding index entry
movement. However, since level split involves the growth of
key prefix, RH-Tree renews the 4 B cache slot with another 4
consecutive characters after performing four level splits.
Slot reuse. When deleting KV pairs, RH-Tree simply marks
the corresponding signature and offset slots as invalid. Instead
of reclaiming the invalid slots in leaf nodes, these slots are
reused to serve newly coming KV pairs.

D. RH-Tree leaf nodes

RH-Tree grows with increasing KV pairs accompanied with
either normal split or level split. Both normal split and level
split generates new leaf nodes. In order to balance operation
performance and space consumption due to the increased
leaf nodes, we define a threshold MAX LEAF NODES as the
maximum number of leaf nodes in RH-Tree. Once the number
of leaf nodes exceeds MAX LEAF NODES, both normal split
and level split are stopped. Instead, we handle data growth by
adding linked leaf nodes.



DRAM

PM

SSD

LN1'

LN2

SSTable

index

LN1

Segment 1

LN1

LN1'

SSTable

LN2link

index

Segment 2

LN1

LN1'

SSTable

LN2link

index

Segment 2

Stage 1 Stage 2 Stage 3

Segment 1 Segment 2

Fig. 6: Linked hash leaf node. In this figure, LN 1, LN 2 and
LN 1’ refers to leaf nodes 1, 2, and 1’ respectively. When a
leaf node is fulfilled, the data stored in a segment is converted
to an SSTable which is flushed to SSD. At the same time, the
corresponding leaf node is persisted to PWB.

Figure 6 shows the generation process of linked hash leaf
nodes. In stage 1, leaf node 1 (LN1) indexes KV pairs
stored in the PWB segment 1. When leaf node 1 becomes
full and meanwhile the total number of leaf nodes exceeds
MAX LEAF NODES, we generate a new hash leaf node 2
(LN2) to serve new indexes as shown in stage 2. Meanwhile,
a new empty segment 2 is used to store new KV pairs indexed
by leaf node 2. Leaf node 1 is linked behind leaf node 2
for serving KV pairs in segment 1. Then, we apply copy-
on-write to leaf node 1 to generate a persistent copy of leaf
node 1 in PWB (leaf node 1’). The KV pairs in segment 1
are sorted to generate an Sort String Table (SSTable), and
the SSTable is asynchronously flushed into underlying SSD.
During the flushing process, the indexes in leaf node 1 are
correspondingly modified to refer to the KV location in SSD.
Note that, leaf node 1 still indexes KV pairs in segment 1
for serving incoming requests. Finally, after the SSTable is
flushed, leaf node 2 links to leaf node 1’ instead of leaf node
1. The original leaf node 1 is deleted, and leaf node 1’ acts as
a new persistent leaf node referring to KV pairs in SSTable
file.

The above process is repeated again when leaf node 2 is
fulfilled. The number of linked leaf nodes under each prefix
path is controlled to avoid unnecessary data compaction, which
is illustrate in Section III-F

E. RH-Tree placement

So far, RH-Tree is able to index data in both PWB and SSD.
Previous works usually place indexes in PM [22] to achieve
persistency. However, according to the performance features
of PM product in latest evaluation [20], [29], the read latency
of Optane PM is 3 to 4 times that of DRAM. Thus, placing the
whole RH-Tree index in PM affects the query performance,
especially for locating KV pairs in PWB. Moreover, placing
whole index in PM requires costly persistency operations (e.g.
guaranteeing crash consistency for RH-Tree splits). On the
contrary, placing the whole RH-Tree in DRAM is able to

PWB Persistent Memory

…

…

……

SSTable

Partition 1 Partition 2 PartitionN Main Data Store

…

DRAM

prefix search tree

… … …

…

Radix Hash Tree

top leaf node

leaf node

SSD

segment

…

Fig. 7: The index method of LightKV. This figure shows the
index placement of LightKV. The top leaf node is the topmost
index node located in the RH-Tree leaf node which is used to
index the data in PWB. The remaining leaf nodes are the data
of the SSTable in SSD. Leaf nodes except top leaf node are
persisted in NVM.

achieve high performance but losing the persistency. Once KV
store is restarted, the whole index requires costly re-building.

To balance the query performance and index persistency, we
design a cross-media layout for RH-Tree as shown in Figure 7.
We place the prefix search tree as well as the top leaf node
(the latest one) within each linked leaf node list in DRAM.
As illustrated in Section III-D, a top leaf node always indexes
KV pairs in PWB. In such doing, RH-Tree provides fast prefix
search due to the lower DRAM latency and quickly locates
data in PWB. The rest leaf nodes within a linked leaf node are
placed in PM. These leaf nodes index KV pairs in SSD. Since
the read latency of SSD is at least two orders of magnitude
slower than that of PM, accessing KV pairs in SSD by using
indexes in PM is acceptable.

Note that, the prefix tree and top leaf nodes are not persisted.
One needs to scan all the segments in PWB to rebuild this part
of RH-Tree. We illustrate the recovery issue in Section V.

F. Partition-based data compaction

Conventional LSM-Tree conducts data compaction when an
lower level is fulfilled with SSTables. Moreover, since the key
range involved in a compaction may spread over all SSTables
within the upper level, this usually results in large number
of data read and re-write. This further results in significant
write amplification. Thanks to the prefix radix tree of RH-
Tree, it helps to guarantee KV pairs indexed under a hash leaf
node (namely partition) have same key prefix. This allows
LightKV to conduct data compaction in a per-partition way.
Thus, we propose partition-based data compaction to well
control the involved data volume. We define two parameters
compaction size (CS) and compaction weight (CW) to control



S5 (1)

S2 (0)

S1 (0)

S3 (0)

S4 (0)

S7 (0)

S6 (0)

S8 (0)

S9 (0)

S7 (0)

S6 (0)

S8 (0)

S9 (0)

S7 (0)

S6 (0)

S8 (0)

S9 (0)

S12 (0)

S11 (0)

S13 (0)

S14 (0)

S12 (0)

S11 (0)

S13 (0)

S14 (0)

S12 (0)

S11 (0)

S13 (0)

S14 (0)

S5 (1)

S10 (1)

S17 (0)

S16 (0)

S18 (0)

S19 (0)

S17 (0)

S16 (0)

S18 (0)

S19 (0)

S17 (0)

S16 (0)

S18 (0)

S19 (0)

S10 (1)

S15 (1)

S5 (1)

S15 (1)

S20 (1)

S5 (1)

S10 (1)

S21 (2)

t1 t2 t3 t4 t5 t6

Fig. 8: A example of compaction in one partition. This
figure shows the compaction process of flushing 16 SSTables
within a partition. At time t1, t2, t3, and t4, four SSTables are
flushed into SSD respectively.

partition-based data compaction. Compaction size refers to the
number of SSTables within a partition that execute compaction
each time. Compaction weight instead refers to the number of
compactions incurred by KV pairs in an SSTable. For each
compaction, LightKV only compacts CS SSTables with the
same compaction weight.

We take an example shown in Figure 8 to illustrate the pro-
cess of partition-based compaction. We assume the compaction
size is 4. Initially, the compaction weight of a new SSTable
is 0, indicating it has not been compacted. The SSTables S1
to S4 belong to the same partition in RH-Tree. Once they are
all fulfilled at time t1, we compact them together by recycling
invalid KV pairs and sort them to generate a larger SSTable
S5. The KV pairs in S5 incur once compaction, and thus the
compaction weight of S5 is 1. At time t2, another four new
SSTables S6 to S9 are fulfilled. They all have a compaction
weight of 0. Thus, at time t2 another compaction occurs by
merging them to the larger SSTable S10. Note that, when
SSTables S6 to S8 are fulfilled, they are not compacted with
S5 as their compaction weights (CW equals to 0) from S5
(CW equals to 1). Only when another new SSTable S9 with
the same compaction weight is fulfilled, these four SSTables
begin to compact. This process repeats to recycle invalid KV
items and sort remaining ones. At time t5, there exist four
SSTables S5, S10, S15 and S20 with the same compaction
weight of 1. Then, they are compacted together to generate
S21 with the increased compaction weight of 2.

The partition-based data compaction greatly reduces the
write amplification by controlling the compaction size. As-
suming the compaction size is S and the total number of
newly flushed SSTables (excluding SSTables generated by
compaction) is N, the write amplification of LightKV is
logS N + 1. For example, at time t6 in Figure 8, the newly
flushed SSTables are 16, the KV pairs in these SSTables
are compacted twice. One is for generating SSTable with
compaction weight 1 and the other is for generating SSTable
with compaction weight 2. Taking the initial SSTable flushing
into account, the write amplification is 3. Note that, increasing

compaction size can reduce write amplification but at the cost
of decreasing searching efficiency.

G. Discussion

Although RH-Tree is able to cluster KV pairs into partitions
according to their key prefixes, it faces the data skew issue.
Unbalanced key distributions result in a few overloaded par-
titions with a large number of SSTables. This degrades query
performance. Several optimizations can be used to reduce the
impact of data skew.

For example, one can add random hash values at the
beginning of keys to scatter key distributions but at the cost
of reduced scan performance. Alternatively, one can set a load
factor to indicate the maximum keys stored in one partition.
Once the number of keys of a partition exceeds this load factor,
we split the partition. In this paper, LigthKV performs well
under the default skewed workloads of YCSB. as shown in
Section VI-E. We leave the optimizations for very skewed data
workloads for the future work.

IV. LIGHTKV OPERATIONS

Insert: When serving an insert request, LightKV first searches
for an empty entry in leaf node of RH-Tree. If no empty
entry is found, LightKV conducts RH-Tree split according to
current number of leaf nodes. If the number of leaf nodes is
greater than MAX LEAF NODES, LightKV adds linked hash
leaf node. After that, LightKV appends KV pair to the segment
indexed by either the newly split leaf node or linked leaf node.
Finally, LightKV updates RH-Tree index.
Update/Delete: Updates and deletes in LightKV are similar
to insertion as LightKV adopts append write. The difference
is that update operation only updates the offset slot in index
entry, while delete operation only updates the signature slot in
index entry by marking it to be invalid.
Get: When searching for a key, LightKV searches the prefix
tree of RH-Tree through the prefix of the key to locate a certain
partition. Then, it searches all hash leaf nodes in the partition
from front to back until it finds the corresponding slot (the
signature value of the slot is equal to the 32-bit hash value of
the searched key). Through the address slot, it finds the KV
item from the PWB or SSTable. Finally, it performs a full key
comparison, and returns the result if they are equal.
Range query: To serve range query, LightKV first uses the
upper-layer radix tree to locate the prefixes of starting and end-
ing keys. Correspondingly, LightKV locates the starting and
ending partitions. As for KV pairs stored in PWB, LightKV
needs to fully scan the hash leaf nodes. As for KV pairs stored
in SSD, each SSTable is sorted and contains index block.
After locating the starting and ending partitions, LightKV
reads index blocks of the SSTables within the partition. In
such doing, LightKV is able to quickly find corresponding
KV pairs. Moreover, LightKV adopts multiple threads to scan
different SSTables in parallel. The scanned results are then
merged and returned. This helps to improve range query
performance.



0

400

800

1200

1600

2000

0 

4 

8 

12 

16 

10G 20G 30G 40G 50G 60G 70G 80G 90G 100G

to
ta

l 
d

is
k
 w

ri
te

s
 (

G
B

)

W
ri
te

 A
m

p
lif

ic
a

ti
o

n

Total data amount

LevelDB amount RocksDB amount NoveLSM amount SLM-DB amount

LightKV amount LevelDB ampl RocksDB ampl NoveLSM ampl

SLM-DB ampl LightKV ampl

Fig. 9: Write Amplification. This figure shows the write
amplifications and write amounts for different KV stores with
different data amounts.

V. RECOVERY

At runtime, LightKV persists a leaf node to PM when its
corresponding segment is flushed into SSD. Similar to the
persistent memory management in PMDK [4], LightKV itself
maintains a persistent root structure referring to the physical
offset addresses of leaf nodes (except top leaf nodes) and PWB
in PM. The root data structure is stored in a fixed location
in PM. In case of system recovery after crash, these leaf
nodes can be used directly. On the contrary, the prefix search
tree and the top leaf nodes are maintained in DRAM, which
are lost after system crash. As for system recovery, LightKV
scans all key-value pairs in PWB to rebuild them. According
to our observation, when the PWB capacity is 8 GB, the
recovery time takes 2.4 seconds using a single thread. As for
larger PWB, the recovery can be further accelerated by using
multiple threads.

Note that, in case of normal shutdown, LightKV persists the
prefix tree and top leaf nodes of RH-Tree in PM. This helps
LightKV to serve incoming requests directly after normal
reboot.

VI. EVALUATION

A. Experiment Setup

System and hardware configuration. We conduct all exper-
iments on a server equipped with two Intel Xeon Gold 5215
CPU (2.5GHZ), 64GB memory and one Intel DC P3700 SSD
of 400GB. We run CentOS Linux release 7.6.1810 with 4.18.8
kernel and use ext4 file system.
Persistent Memory. We use Intel Optane DC Persistent
Memory in our evaluation. The firmware version of Optane
DC PM is 01.00.00.3279. We configure Optane DC PM using
App Direct Mode as follows. For the configuration of PM, we
first create an ext4 file system on PM and mount it using DAX
mode [2]. Then, we create a file of 64 GB on PM as a PM
pool, and use mmap [3] to create page table for data accessing.
As for writing data to PM, we use both clflush/clwb/clflushopt
and ntstore/mfence to ensure persistence [18], [41]–[44].
Compared systems. We compare LightKV against Lev-
elDB [17] and RocksDB [14], which are widely used persistent

LSM-Tree based KV stores. We set MemTable size to 64MB
and configure a Bloom filter using 10 bits per key to optimize
lookup. Note that, LevelDB and RocksDB do not use PM and
adopt asynchronous WAL.

NoveLSM [23] is an optimized KV store using PM to
reduce (de-)serialization cost. We set up 8 GB persistent
MemTable for NoveLSM, which is the same as the size of
PWB in LightKV. Moreover, it still has in-DRAM MemTable,
which is set to 64MB as in paper. The Bloom filter is
configured to be same as LevelDB.

SLM-DB [22] is another recently proposed KV store us-
ing PM. It adopts B+-Tree to index KV pairs in SSTables
and conducts well-tuned garbage collection. In the original
paper, the persistent MemTable of SLM-DB is set to 64MB.
However, using a larger PM is more effective for SLM-DB
to sort more data in memory, thereby reducing the frequency
of compaction of data in the SSD. Therefore, we also set a
Persistent MemTable of 8 GB for SLM-DB which in similar
to LightKV and NoveLSM in our experiment.

As for LightKV, we set MAX LEAF NODES to 2048, the
segment size in PWB to 4 MB, and the compaction size to
4. Since LevelDB and NoveLSM only support 1 background
thread to execute SSTable flush and compaction, we keep this
configuration in our evaluation. As for RocksDB, SLM-DB,
and LightKV, we use 2 background threads. For simplicity,
compression is turned off for all key-value stores.
Workloads. We use db bench [14], [17] as the micro-
benchmark and YCSB [10] as the actual workload for evalua-
tion. We execute 5 runs for each experiment and use average
results.

B. Reducing write amplification

We first use db bench to evaluate write amplification.
Figure 9 shows the write amplifications of different KV
stores with different data amounts while value size is 1KB.
When writing totally 100 GB data, the write amplifications of
LightKV are reduced by 7.1x, 5.1x, 2.9x and 2.3x compared
to that of LevelDB, RocksDB, NoveLSM, and SLM-DB
respectively. LightKV relies on RH-Tree to cluster keys with
same key prefixes into the same partition. When executing
compaction, LightKV only involves a few SSTables. On the
contrary, the key range of a compacting SSTable usually
overlaps with all SSTables in an upper level in LevelDB and
RocksDB. This results in large write amplification. NoveLSM
instead adopts a large persistent write buffer to reduce the
compaction frequency. This partially reduces write amplifica-
tion. However, when compacting on-disk SSTables, NoveLSM
still faces the key range overlapping issue which results in
large write amplification. SLM-DB organizes SSTables in a
single level and performs restricted compaction. However, its
compaction still needs to be conducted frequently in case of
serving a large amount of data writes.

When the total amount of written data increases, the write
amplification of LightKV remains stable (e.g. from 1.6 to 1.8
when the data amount increases from 50 GB to 100 GB).
On the contrary, the write amplifications of other KV stores



0 

10 

20 

30 

256B 1KB 4KB 16KB 64KB

N
o

rm
.T

h
ro

u
gh

p
u

t

Value Size

LevelDB RocksDB NoveLSM

SLMDB LightKV
2

6
.3

2
 K

O
P

S/
s

1
1

.3
3

3
.4

1

1
.1

4

0
.3

1
(a) Random Write

0 

3 

6 

9 

12 

256B 1KB 4KB 16KB 64KB

N
o

rm
.T

h
ro

u
gh

p
u

t

Value Size

LevelDB RocksDB NoveLSM

SLMDB LightKV

4
.7

3
 K

O
P

S/
s

4
.1

4

3
.1

6

2
.5

0

1
.6

6

(b) Random Read

0 

1 

2 

256B 1KB 4KB 16KB 64KB

N
o

rm
.T

h
ro

u
gh

p
u

t

Value Size

LevelDB RocksDB NoveLSM

SLMDB LightKV

1
.3

7
K

O
P

S/
s

0
.8

6

0
.5

5

0
.2

0

0
.0

7

(c) Range Query

0 

1 

2 

256B 1KB 4KB 16KB 64KB

N
o

rm
.T

h
ro

u
gh

p
u

t

Value Size

LevelDB RocksDB NoveLSM

SLMDB LightKV

3
5

2
.9

 K
O

P
S/

s

1
6

2
.2

1
2

7
.5

5
7

.6

1
4

.8

(d) Sequential Read

Fig. 10: Normalized throughputs of basic operations for db bench. These figures show the throughputs of different KV
stores with varied value sizes, which are normalized to LevelDB.

increase a lot. For example, the write amplification of SLM-
DB increases from 3.9 to 5.9 when data amount increases from
50 GB to 100 GB.

C. Basic Operations

We then evaluate the throughputs of basic operations with
varied value sizes, including random write, random read,
range query, and sequential read. Figure 10 shows the results
normalized to LevelDB.
Random write. Figure 10a shows the random write results
with 100 GB KV pairs. LightKV outperforms LevelDB,
RocksDB, NoveLSM, and SLM-DB by up to 33.4x, 16.3x,
16.0x, 12.7x and 13.5x, 8.3x, 5.0x, 4.0x on average. NoveLSM
persists MemTable directly in PM to reduce (de-)serialization
costs, and thus it achieves higher write throughput than Lev-
elDB and RocksDB. SLM-DB adopts single-level data orga-
nization and carefully conducts compaction, which further re-
duces write amplification and in turn achieves higher through-
put than NoveLSM. LightKV instead applies partition-based
data compaction by only involving well-controlled number of
SSTables in each compaction. This allows LightKV to greatly
reduce write amplification and achieve the highest throughput.
Moreover, instead of flushing the PWB data as a whole into
SSD, LightKV flushes KV pairs in a per segment way. This
avoids frond-end write blocking due to the background flush.
When the value size increases, the OPS throughput decreases
for all KV stores. However, LightKV still achieves highest
write throughput.
Random read. We randomly read 20 GB data in a warmed
up KV store with 100 GB KV pairs. Figure 10a shows the
results. LightKV outperforms LevelDB, RocksDB, NoveLSM,
and SLM-DB by up to 9.2x, 3.5x, 9.2x, 1.9x and 4.5x, 1.9x,
4.2x, 1.3x on average. LightKV uses RH-Tree to globally
locate target KV pair in either PM or SSD, which provides fast
querying performance. However, the other 4 KV stores need
to use separate indexing to locate KV pairs. Note that, the B+-
Tree in SLM-DB only globally indexes data in SSD. SLM-DB
still needs to search skiplist-based persistent MemTable. When
the value size increases, the value reading time gradually
dominates the whole execution time. Thus, all KV stores
achieve similar throughputs.
Range query. We execute short range queries to fetch totally
20 GB data in a warmed up KV store with 100 GB KV pairs.

Each range query fetches 100 KV pairs. As for LevelDB,
RocksDB, and NoveLSM, different SSTables (except the ones
in level 0) do not overlap with each other. On the contrary, both
SLM-DB and LightKV controls the data volume involved in
each compaction. This helps to reduce write amplification but
results in more key overlappings among different SSTables.
As a result, when serving range query, both SLM-DB and
LightKV perform worse than the other three KV stores. For
example, compared to LevelDB, the throughputs of SLM-DB
and LightKV are reduced by 24.3% and 13.2% on average
respectively as shown in Figure 10c.
Sequential read. We first warm up 100 GB KV pairs, and
then sequentially read all of them. Since the data amount is
large, all KV stores need to read SSTables from underlying
SSD. Thus, they perform similarly.
Sequential load. LightKV performs poor when serving se-
quential writes. The sequential write throughput of LightKV is
reduced by 35% on average compared to other KV stores. This
is because LightKV needs to perform compaction within par-
titions even during sequential writes. However, the sequential
write workloads usually occur in data loading stage. Thus, we
can use multiple threads to accelerate sequential data loading.
For example, when LightKV uses two threads to load data in
parallel, it achieves similar throughput as other KV stores.

D. Tail latency under read-write workload

The read-write mix workload becomes common in recent
years [36], which usually causes heavy tailed latency. Thus,
we evaluate both read and write tail latency in this section. We
modify db bench to obtain read and write latencies of each
request. We calculate the 99th and 99.9th percentile read and
write latencies every 100,000 requests. We first warm up the
KV store using 100 GB KV pairs. Then, we randomly write
100 GB data meanwhile randomly read 100 GB data. The key
size is 16 B and the value size to 1 KB.

Figures 11a and 11c show the variations of 99th percentile
read and write latencies. Due to space limitation, we only show
the results for LightKV, RocksDB, and SLM-DB. Overall,
LightKV achieves the lowest and stable 99th read and write
latencies. This is because LightKV uses global indexing and
well-controlled partition-based compaction to reduce both read
and write amplification. Moreover, LightKV flushes PWB data
into SSDs in a per segment way (e.g. 4 MB per segment)



KV Store 256B 1KB 4KB 16KB 64KB
% avg 99 99.9 avg 99 99.9 avg 99 99.9 avg 99 99.9 avg 99 99.9

LevelDB 294 2.7 5.8 370 3.6 6.5 429 4.3 7.0 653 5.7 8.7 829 6.1 10.2
RocksDB 106 0.3 3.6 152 2.2 5.1 274 4.1 6.9 671 5.9 9.1 1383 7.9 14.9
NoveLSM 243 0.7 3.5 321 1.4 8.0 399 4.1 9.8 524 6.2 11.1 891 8.7 18.6
SLM-DB 81 0.3 1.5 101 0.8 4.0 201 2.5 4.7 414 7.5 13.8 641 6.5 8.1
LightKV 58 0.2 0.4 74 0.2 2.4 131 0.8 3.6 258 3.0 5.5 409 4.2 6.5

TABLE I: Read tail latency for db bench. This table shows the average (ns), 99th and 99.9th percentile read latencies (ms)
in read-write mixed workload for varied value length with db bench.

0

2

4

6

1 31 61 91 121 151 181

La
te

n
cy

 (
m

s)

Rquest Count (x100000)

SLM-DB RocksDB LightKV

(a) 99th read latency

0

5

10

15

1 31 61 91 121 151 181

La
te

n
cy

 (
m

s)

Rquest Count (x100000)

SLM-DB RocksDB LightKV

(b) 99.9th read latency

0

10

20

30

40

50

1 31 61 91 121 151 181

La
te

n
cy

 (
m

s)

Rquest Count (x100000)

SLM-DB RocksDB LightKV

(c) 99th write latency

0

20

40

60

80

1 31 61 91 121 151 181

La
te

n
cy

 (
m

s)

Rquest Count (x100000)

SLM-DB RocksDB LightKV

(d) 99.9th write latency

Fig. 11: Read and write tail latency in real-time. This figure shows the 99th and 99.9th percentile read and write latencies
in real-time during read-write workload. We calculate the tail latency every 100,000 requests.

0 

3 

6 

9 

A B C D E F

N
o

rm
.T

h
ro

u
gh

p
u

t

LevelDB RocksDB NoveLSM SLMDB LightKV

5
.8

K
O

P
S

6
.4

8
.4 9
.3

2
.8

8
.5

0 

10 

20 

30 

Load A Load E

1
4

.2
 K

O
P

S/
s

1
4

.4

Fig. 12: The throughput of different workloads for YCSB.
This figure shows the throughput of different mixed workloads
for YCSB which normalized to LevelDB. Workload A performs
50% reads and 50% updates; Workload B performs 95% reads
and 5% updates; Workload C performs 100% reads; Workload
D performs 95%reads for latest keys and 5% inserts; Workload
E performs 95% range queries and 5% inserts; Workload
F performs 50% reads and 50% read-modify-writes. Zipfian
distribution is used for workload A, B, C, D and F and uniform
distribution is used for workload E.

to avoid heavy write tail latency. The 99th read and write
latencies of RocksDB reach up to 50 ms and 3.5 ms. These
spikes are caused by the uncontrolled background compaction
accompanied with large number of disk reads and writes.
Unlike RocksDB, SLM-DB organizes SSTables into single
level and performs restricted compaction to reduce write
amplification. Moreover, it uses B+ tree to index data in SSD
to reduce read amplification. Thus, it achieves lower 99th

percentile read latency except a few latency spikes. SLM-
DB will decide whether to perform compaction based on
the coverage of the key value, which also cause the read
latency spikes (e.g. up to 5.0 ms) for SLM-DB as shown in
Figures 11a.

As for 99.9th read and write latencies in Figure 11b and

11d, the results are similar. Note that, around serving 3 M4,
9 M and 15 M requests, large latency spikes are observed
in LightKV as shown in Figure 11b. This is mainly due to
the compaction of large SSTables within a partition. However,
LigthKV still achieves lower tail latency compared to other
KV stores.

Table I shows the statistical latency results (including aver-
age, 99th and 99.9th percentile read latencies) for the whole
testing period under read-write workloads. These results are
tested with different value sizes. Similar to the real-time
results, LightKV reduces the 99th percentile read latencies
by up to 17.9x, 10.5x, 6.4x, and 3.5x compared to LevelDB,
RocksDB, NoveLSM, and SLM-DB. For 99.9th percentile
read latency, LightKV outperforms LevelDB, RocksDB, Nov-
eLSM, and SLM-DB by up to 15.7x, 9.2x, 8.8x, and 3.4x.
When the value size increases, the tail latencies of all KV
stores increase correspondingly.

E. Results with YCSB

We use the six workload patterns in YCSB as real ap-
plications to evaluate LightKV. We first load 100 GB KV
pairs into the KV store for Workload A (namely LoadA by
randomly inserting KV pairs). Then we run Workloads A, B,
C, F, and D in order. After that, we delete the database and
reload 100 GB KV pairs for workload E (namely LoadE by
randomly inserting KV pairs). Then we run Workload E. We
use the default KV size in which key is around 20B and value
is around 1KB. As for workloads A, B, C, D and F, the key
distributions follow the default Zipfian distribution in YCSB.

Figure 12 shows the throughput results normalized to Lev-
elDB. For all workloads (including LoadA and LoadE but
except Workload E), LightKV achieves the highest through-
put. For read-write mixed workloads A, B, F, due to the
efficient search and write amplification reduction, LightKV

4M indicates million



0 

10 

20 

30 

40 

0 

2 

4 

6 

8 

256 512 1024 2048 4096 8192

P
M

 u
s
a

g
e

 (
G

B
)

W
ri

te
 A

m
p

lif
ic

a
ti
o

n

MAX_LEAF_NODES

Persistent Write Buffer

Radix Hashing Tree

Write Amplification

(a) MAX LEAF NODES sensitivity

1.0 

1.5 

2.0 

2.5 

256 512 1024 2048 4096 8192

N
o

rm
.T

h
ro

u
g

h
p

u
t

MAX_LEAF_NODES

Random Write Random Read Range Query

(b) MAX LEAF NODES sensitivity

0 

2 

4 

6 

8 

0 

1 

2 

3 

4 5 6 7 8 9 10 11 12

W
ri

te
 A

m
p

lif
ic

a
ti
o

n

N
o

rm
.T

h
ro

u
g

h
p

u
t

Compaction Size

Random Write Random Read

Range Query Write Amplification

(c) Compaction size sensitivity

LightKVLightKV_DRAM

N
o

rm
.T

h
ro

u
g

h
p

u
t

ReadWrite

1KB256B1KB256B

2

1

0

LightKV_PM

(d) Index placement sensitivity

Fig. 13: Sensitivity analysis of LightKV. (a) shows the PM usage and write amplification, (b) shows the operation throughputs
with different MAX LEAF NODES, which are normalized to MAX LEAF NODE of 256. (c) shows the operation throughputs
with different compaction sizes, which are normalized to compaction size of 4. (d) shows the operation throughputs with
different index placements, which are normalized to LightKV PM.

outperforms LevelDB, RocksDB, NoveLSM, and SLM-DB by
up to 7.0x, 2.0x, 4.4x and 1.5x respectively. Workload C per-
forms 100% reads, and the highly efficient RH-Tree indexing
helps LightKV to achieve 4.7x, 1.5x, 4.2x and 1.2x higher
throughput than LevelDB, RocksDB, NoveLSM, and SLM-
DB. For workload D, it reads latest keys. Since NoevLSM,
SLM-DB and LightKV maintain a large write buffer in NVM,
the frequently accessed KV pairs are cached in the write
buffer. Thus, their throughputs are higher than LevelDB and
RocksDB. However, NoveLSM and SLM-DB adopts skiplist
to index data in PM, whose performance decreases when
the number of KV pairs increases. On the contrary, RH-Tree
used in LightKV is able to serve large number of KV pairs.
Workload E is dominated by range query. Thus, both LightKV
and SLM-DB are affected by accessing multiple SSTables.
Therefore, their performance is 10%-20% lower than other
KV Stores. Load A and Load E in Figure 12 represent the
performance of random write. Similar to the micro-benchmark
results, LightKV outperforms LevelDB, RocksDB, NoveLSM,
and SLM-DB by 27.4x, 6.4x, 12.2x, and 6.0x respectively.

Through experimental results, we can see that LightKV still
achieves the highest throughput under different workloads.

F. Sensitivity analysis

1) MAX LEAF NODES: Figure 13a shows the write am-
plifications and the PM usages when configuring different
MAX LEAF NODES. The MAX LEAF NODE is equal to
the number of partitions. The increased MAX LEAF NODE
results in more partitions. Thus, the PM usage increases to hold
more partitions. Meanwhile, SSTables are distributed among
more partitions and each partition is filled with less SSTables.
This in turn reduces the compaction frequency, and thus
brings less write amplification. As shown in Figure 13a, when
MAX LEAF NODES reaches 8192, the write amplification
can be reduced by 58% compared to using 256 partitions.

Figure 13b shows the throughputs of basic operations with
different MAX LEAF NODES. When MAX LEAF NODES is
8192, the throughput of random write is 30% higher than
that using 256 partitions. This is mainly due to the decrease
of write amplification. The increased MAX LEAF NODES
results in more partitions and less SSTables within each
partition. range query benefits from this by incurring less

disk IOs. Thus, using 8192 MAX LEAF NODES achieves
the highest range query performance. As for random reads,
more data are buffered in PWB with the increased partitions.
Thus, the throughputs of random read increase by fetching
data quickly from PWB.

2) Compaction size: Figure 13c shows the throughputs of
basic operations with different compaction sizes. Since a small
partition number is more likely to trigger compaction, we set
MAX LEAF NODES to 64 here for clear observation on the
sensitivity of compaction size. The increased compaction size
results in less frequent compaction. This helps to decrease
the write amplification and improve the write throughput.
However, the reduced compaction results in more SSTables
per partition, which lowers the search efficiency. As shown in
Figure 13c, the throughputs of random read and range query
decrease with increased compaction sizes.

3) Index placement: RH-Tree is placed across DRAM and
PM. Here we implement different index placements to evaluate
their efficiencies. Figure 13d shows the throughputs of ran-
dom read and write for different index placements. LightKV
refers to the proposed index placement in Section VI-F3.
LightKV PM maintains the whole RH-Tree in PM, and uses
synchronous update to ensure strong consistency of RH-Tree.
LightKV DRAM instead maintains the whole RH-Tree in
DRAM without persisting it.

Compared to LightKV PM, LightKV incurs less expensive
prefix tree operations in PM, and thus achieves higher read
and write throughputs by 70%, 1.0x with the value size of
256 B. LightKV benefits from locating in-PM KV items
using prefix tree and top leaf nodes that reside in DRAM.
Thus, although LightKV DRAM places the whole RH-Tree
in DRAM, LightKV performs close to LightKV DRAM. As
the value size increases, the difference between LightKV and
LightKV PM becomes less obvious. This is because the KV
item read and write dominate the performance. In summary,
LightKV PM can do instant recovery but at the cost of
lower performance. LightKV DRAM instead provides highest
performance but suffers from costly system recovery for re-
constructing the whole RH-Tree. On the contrary, LightKV
balances the system performance and recovery cost.



VII. RELATED WORKS

LSM-Tree redesign for NVM. Recently, a few research
efforts have been made to optimize LSM-Tree using NVM.
NoveLSM [23] uses NVM as large persistent MemTable to
reduce the cost of data (de-)serialization. However, when using
large persistent MemTable, NoveLSM still adopts skiplist
to index data in persistent MemTable. This affects the sys-
tem query efficiency. NVMRocks [12] is an optimization of
RocksDB for NVM. It stores persistent MemTable in NVM.
SSTables on NVM are stored on a file system optimized
for NVM and use a special table format (PlainTable). SLM-
DB [22] is a persistent memory based key-value store using
a B+-Tree to index on-disk data. SLM-DB organizes on-disk
SSTables into a single level to reduce write amplification but
at the cost of degraded range query performance. LightKV
takes the similar approach with these works by using NVM
as a persistent write buffer. However, LightKV especially
focuses on efficient global indexing for locating cross-media
data and well-controlled data compaction for reducing write
amplification.
Optimizing LSM-Tree performance. PebblesDB [34]
presents Fragmented Log-Structured Merge Trees (FLSM) to
avoid rewriting data in the same level. WiscKey [30] separates
key and value by storing keys in LSM-Trees and values in
log. However, the values stored in log are usually unsorted.
This results in degraded range query as a number of random
reads are required to fetch data. Similarly, HashKV [7] also
separates keys and values. Moreover, HashKV uses a hash
function to partition the values to optimize garbage collection.
LSM-Trie [40] uses tries to organize data which reduces write
amplification. However, it does not support range queries.
bLSM [36] proposes a new compaction scheduler to reduce
write amplification. LOCS [38] improves the performance
of LSM-Trees based on open-channel SSDs. cLSM [16] is
designed to increase concurrency. SILK [6] proposes well-
designed compaction mechanisms in RocksDB to reduce
heavy tailed latency. On one hand, LightKV has similar
optimization targets with these works. On the other hand,
unlike these works, LightKV explore the usage of persistent
memory in building persistent KV stores and does not restrict
design choices based on LSM-Tree itself.
Optimizations for NVM-based index. There are a number
of research works focusing on optimizing indexing structures
when built in NVM. CDDS [15], NV-Tree [42], FP-Tree [33],
wB+-Tree [9] and FAST-FAIR B+-Tree [18] are optimized for
NVM-based B+-Tree from the perspective of read/write per-
formance and crash consistency. Instead, Path Hashing [43],
Level Hasing [44] and CCEH [31] target to provide optimized
hashing index scheme for NVM. WORT [26] is optimized
based on the radix tree [28]. HiKV [41] proposes a hybrid
index consisting of hash table and B+-Tree based on hybrid
DRAM-NVM memory. The hybrid index is used to sup-
port both single-point operations and range query efficiently.
Recipe [27] provides a principled approach to convert DRAM
indexes into persistent indexes. Unlike these works, RH-Tree

in this paper focuses on improving inefficient indexing for
cross-media data management. More importantly, the design
of RH-Tree targets to help control data volume involved in
data compaction.

VIII. CONCLUSION

In this paper, we propose LightKV a cross media key-
value store with persistent memory. Similar to previous works,
LightKV use PM to avoid costly write ahead logging. More-
over, on one hand, LightKV adopts a global index RH-
Tree to efficiently manage data across memory and disk.
By exploring the specific features of PM product, LightKV
achieves balance between persisting index and providing high
indexing performance. On the other hand, LightKV exploit
the range partition of RH-Tree to conduct partition-based data
compaction to greatly reduce write amplification. We evaluate
LightKV against both PM-based KV stores and existing LSM-
Tree based KV stores. The experiment results show LightKV
greatly reduce write amplification and meanwhile improve
PUT and GET performance by up to 33.0x and 9.2x.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful com-
ments. We thank Ying Wang and Huan Zhang for use-
ful discussions. This work is supported by National Key
Research and Development Program of China under grant
No.2018YFB1003303, Strategic Priority Research Program
of the Chinese Academy of Sciences under grant No.
XDB44030200, Beijing Natural Science Foundation under
grant No. L192038, and Youth Innovation Promotion Asso-
ciation CAS.

REFERENCES

[1] Intel and micron produce breakthrough memory technology.
https://www.intel.com/content/www/us/en/architecture-and-technology/
intel-micron-3d-xpoint-webcast.html.

[2] Linux dax file system. https://www.kernel.org/doc/Documentation/
filesystems/dax.txt.

[3] Linux programmer’s manual mmap(2). http://man7.org/linux/
man-pages/man2/mmap.2.html.

[4] Pmdk: Persistent memory development kit. https://github.com/pmem/
pmdk.

[5] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. . Suh, J. C. Park,
S. O. Park, H. S. Kim, I. K. Yoo, U. . Chung, and J. T. Moon. Highly
scalable nonvolatile resistive memory using simple binary oxide driven
by asymmetric unipolar voltage pulses. In IEDM Technical Digest.
IEEE International Electron Devices Meeting, 2004., pages 587–590,
Dec 2004.

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-
hankar Chandhiramoorthi, and Diego Didona. SILK: preventing latency
spikes in log-structured merge key-value stores. In Dahlia Malkhi
and Dan Tsafrir, editors, 2019 USENIX Annual Technical Conference,
USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019, pages 753–766.
USENIX Association, 2019.

[7] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu.
Hashkv: Enabling efficient updates in KV storage via hashing. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 1007–
1019. USENIX Association, 2018.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and
Robert Gruber. Bigtable: A distributed storage system for structured
data. In 7th Symposium on Operating Systems Design and Implemen-
tation (OSDI ’06), November 6-8, Seattle, WA, USA, pages 205–218,
2006.



[9] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main
memory. PVLDB, 8(7):786–797, 2015.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143–154. ACM, 2010.

[11] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
October 2007.

[12] Facebook. Myrocks. http://myrocks.io/.
[13] Facebook. Nvmrocks. http://istc-bigdata.org/index.php/

nvmrocks-rocksdb-on-non-volatile-memory-systems/.
[14] Facebook. Rocksdb. http://rocksdb.org/.
[15] Gregory R. Ganger and John Wilkes, editors. 9th USENIX Conference

on File and Storage Technologies, San Jose, CA, USA, February 15-17,
2011. USENIX, 2011.

[16] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar.
Scaling concurrent log-structured data stores. In Proceedings of the
Tenth European Conference on Computer Systems, EuroSys 2015, Bor-
deaux, France, April 21-24, 2015, pages 32:1–32:14, 2015.

[17] Google. Leveldb. https://github.com/google/leveldb.
[18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.

Endurable transient inconsistency in byte-addressable persistent b+-tree.
In 16th USENIX Conference on File and Storage Technologies (FAST
18), pages 187–200. USENIX Association, 2018.

[19] Intel. Intel optane dc persistent memory. https://newsroom.intel.com/
news-releases/intel-data-centric-launch/#gs.7kv3ru.

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[21] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet,
Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif
Walsh, Michael Bender, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. Betrfs: A right-optimized write-
optimized file system. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 301–315. USENIX Association, 2015.

[22] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and
Young ri Choi. Slm-db: Single-level key-value store with persistent
memory. In 17th USENIX Conference on File and Storage Technologies
(FAST 19), pages 191–205. USENIX Association, 2019.

[23] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. Redesigning lsms for nonvolatile
memory with novelsm. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005. USENIX Association, 2018.

[24] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong.
Atlas: Baidu’s key-value storage system for cloud data. In 2015 31st
Symposium on Mass Storage Systems and Technologies (MSST), pages
1–14, May 2015.

[25] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April
2010.

[26] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and
Sam H. Noh. WORT: Write optimal radix tree for persistent memory
storage systems. In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 257–270. USENIX Association, 2017.

[27] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: converting concurrent DRAM indexes
to persistent-memory indexes. In Tim Brecht and Carey Williamson,
editors, Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019,
pages 462–477. ACM, 2019.

[28] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages 38–49, April 2013.

[29] Jihang Liu and Shimin Chen. Initial experience with 3d xpoint main
memory. In 35th IEEE International Conference on Data Engineering
Workshops, ICDE Workshops 2019, Macao, China, April 8-12, 2019,
pages 300–305, 2019.

[30] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakr-
ishnan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Wisckey: Separating keys from values in ssd-conscious storage. ACM
Trans. Storage, 13(1):5:1–5:28, March 2017.

[31] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beom-
seok Nam. Write-optimized dynamic hashing for persistent memory. In
17th USENIX Conference on File and Storage Technologies (FAST 19),
pages 31–44. USENIX Association, 2019.

[32] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J.
O’Neil. The log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–
385, 1996.

[33] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. Fptree: A hybrid scm-dram persistent and concurrent
b-tree for storage class memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD ’16, pages 371–
386. ACM, 2016.

[34] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham.
Pebblesdb: Building key-value stores using fragmented log-structured
merge trees. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 497–514. ACM, 2017.

[35] Kai Ren and Garth Gibson. TABLEFS: Enhancing metadata efficiency
in the local file system. In Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 145–156. USENIX,
2013.

[36] Russell Sears and Raghu Ramakrishnan. blsm: A general purpose log
structured merge tree. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages
217–228. ACM, 2012.

[37] Beth Trushkowsky, Peter Bodı́k, Armando Fox, Michael J. Franklin,
Michael I. Jordan, and David A. Patterson. The SCADS director: Scaling
a distributed storage system under stringent performance requirements.
In Gregory R. Ganger and John Wilkes, editors, 9th USENIX Conference
on File and Storage Technologies, San Jose, CA, USA, February 15-17,
2011, pages 163–176. USENIX, 2011.

[38] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen
Zhang, and Jason Cong. An efficient design and implementation of
lsm-tree based key-value store on open-channel SSD. In Ninth Eurosys
Conference 2014, EuroSys 2014, Amsterdam, The Netherlands, April
13-16, 2014, pages 16:1–16:14, 2014.

[39] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson. Phase change memory. Proceedings
of the IEEE, 98(12):2201–2227, Dec 2010.

[40] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An lsm-
tree-based ultra-large key-value store for small data items. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 71–
82. USENIX Association, 2015.

[41] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv: A hybrid index
key-value store for dram-nvm memory systems. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 349–362. USENIX
Association, 2017.

[42] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. Nv-tree: Reducing consistency cost for nvm-
based single level systems. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 167–181. USENIX Association,
2015.

[43] P. Zuo and Y. Hua. A write-friendly and cache-optimized hashing
scheme for non-volatile memory systems. IEEE Transactions on Parallel
and Distributed Systems, 29(5):985–998, May 2018.

[44] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and high-
performance hashing index scheme for persistent memory. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 461–476. USENIX Association, 2018.


