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Abstract—With the high-density advantage, fewer 3D NAND
chips are needed to build higher capacity embedded storage
devices. However, this decrease in the number of chips means
fewer parallel units, resulting in reduced channel bandwidth uti-
lization and poor performance. By analyzing requests execution
timing, we find that write and read operations need to focus on
different problems to improve system performance because of
read and write asymmetry. Promoting plane-level parallelism is
more important for write. Reducing response time and providing
a more balanced distribution of data is more crucial for read. Mo-
tivated by this observation, we propose a Maximize Bandwidth
Management FTL called MBM. MBM includes a parallelism-
enhanced Write Strategy (WS) and a parallelism-relaxed Read
Strategy (RS). WS extends an active block for GC in each
plane to enhance intra-chip parallelism. Additionally, it limits
the channel’s maximum executable number for superior request
distribution. To guarantee response time, RS executes parallel
read conditionally and improves read efficiency by rearranging
data to a suitable location. Moreover, to reduce long tail latency,
we also propose a Minimizing Chip consumption Strategy (MCS)
and exploit a program/erase suspension. MCS helps provide
enough idle chips for subsequent requests. Experiment results
show the proposed MBM reduces the average response time by
up to 66.8% and promotes I/O bandwidth to 3x compared to the
baseline scheme. Specifically, between 99–99.999th percentiles,
MBM significantly reduces the tail latency.

Index Terms—3D NAND Flash, read and write asymmetry,
plane-level parallelism, response time, channel bandwidth, tail
latency

I. INTRODUCTION

In the past decade, flash memory has gradually become
the most important storage medium [1]. It is widely used
in embedded storage devices due to excellent performance
[2], [3]. To achieve high performance, NAND-based SSDs
provide multi-level parallelism (channel-level, chip-level, die-
level, plane-level) [5], [8]. It helps to service more subrequests
at a given period of time.

With the development of high-density technology such as
the emergence of 3D NAND Flash, embedded devices meet
the higher storage capacity requirements with fewer chips. For
example, two generations of Samsung SSDs use different chips
to build a 512 GB capacity SSD: (1) a Samsung 950 pro
SSD [6] using 16 32GB chips and (2) a newer generation
Samsung 960 pro SSD [7] using 8 64GB chips. 3D NAND

(a) 3D NAND Chips.

(b) 2D NAND Chips.

Fig. 1. A comparison of the number of 3D and 2D flash memory chips in
the channel.

Flash stacks 32 [9], 64 [10], 96 [11] or even 128 [12] layers of
NAND cells vertically, a single chip capacity is significantly
increased. Unfortunately, Chip capacity increase means the
decrease in the number of chips, reducing parallel units of
each channel and chip-level parallelism. To demonstrate the
impact of chip capacity increase on intra-channel parallelism
more clearly, we assume that the device maintains the same
maximum bandwidth and the same number of channels, a 1TB
flash device using 2D flash chips [30] (each flash chip contains
four 64 Gb dies) require 32 chips. Using 3D NAND flash chips
[31] (each flash chip contains four 512Gb dies of 512Gb), only
four chips are needed as shown in Figure 1. Fewer requests
can be processed in parallel at the given time, causing severe
degradation in channel bandwidth [13].

Solutions proposed to address the above problem fall into



two broad categories, request scheduler based [14] and paral-
lelism promoting based [15] schemes. With request scheduler
based schemes, the channel is kept busy by serving over-
committing requests. However, these schedulers neglect the
strict restriction of plane-level parallelism. Request execution
is not efficient. As an alternative to scheduler based solutions,
parallelism promoting based schemes avoid these drawbacks.
They reorder queued requests to increase the chance of parallel
execution at the plane level. But executing requests in parallel
unconditionally sacrifices response time especially for read.
One parallel read may include many subrequests from different
requests. Thus, the completion time of the previous request
includes additional data transfer time of other requests.

Read and write operations of SSDs usually consist of a
data transmission phase and a read or write phase. But read
and write latency of flash memory is asymmetrical. Write
latency is greater than data transfer time but read latency
is less than it. By analyzing requests execution process, we
find that to maximize channel bandwidth and promote SSD
performance, read and write requests meet different chal-
lenges. For write, the most important is satisfying plane-level
parallelism constraint and making full use of parallel units.
However, indiscriminately forcing read operations to maximize
parallelism can seriously affect read request response time
instead. So, for read requests, reducing response time and
providing a more balanced distribution of data is more crucial.

Motivated by the above observation, we propose Maximize
Bandwidth Management (MBM). It utilizes read and write
asymmetry to efficiently service requests. MBM includes a
parallelism-enhanced Write Strategy (WS) and parallelism-
relaxed Read Strategy (RS). WS extends an active block for
GC in each plane to enhance intra-chip parallelism. Addi-
tionally, it limits the channel’s maximum executable number
for balanced request distribution. RS focuses on performing
parallel read conditionally. Only when the subrequests come
from a same request, we will execute read in parallel. To
further improves the chance of parallel read, RS rearranges
data in the read-intensive area averagely. Most latency has
been optimized after applying the WS and RS. But large
performance degradation still occurs when read operations are
blocked. To solve the problem, we propose a Minimizing Chip
consumption Strategy (MCS) and exploit a program and erase
suspension mechanism additionally. They reduce the long tail
latency by providing enough idle chips for subsequent write
requests. The contributions of this paper include:

• Based on the observation that write and read operations
need to focus on different problems to improve channel
bandwidth and system performance, we propose MBM to
perform write and read operations with different strate-
gies. Moreover, to relieve performance degradation, we
also provide MCS to optimize tail latency by exploiting
the P/E (program/erase) suspension mechanism and leave
more free chips to service subsequent requests through an
optimal selection.

• We implement MBM techniques on SSDsim and evaluate
it with comparison to two aggressive schemes. Experi-

ment results show the proposed MBM reduces the aver-
age response time by up to 66.8% and promotes I/O band-
width to 3x compared to the baseline scheme. In addition,
with the number of chip decreasing, MBM is always
guaranteed to provide stable performance. Moreover, at
99–99.999th percentiles, MBM significantly reduces the
tail latency.

II. BACKGROUND

A. SSD Parallelism

To handle multiple data accesses efficiently, SSD provides
four levels of parallelism to maximize performance. They
are channel-, chip-, die- and plane-level parallelism [5], [8].
Specifically, SSD includes multiple channels, each channel has
an independent data bus. All channels can execute requests
independently. According to the capacity demand, each chan-
nel connects a set of flash chips. These chips are organized
in a parallel architecture to achieve high I/O performance
by performing multiple flash operations simultaneously. It is
called the chip-level parallelism. Each chip consists of multiple
dies, which share the chip communication interface and inde-
pendently execute flash operations. The plane-level parallelism
is at the last level. However, it exhibits strict restrictions, i.e.
for two operations that can be issued simultaneously to two
different planes, they not only need to be of the same type
(i.e., read or write) but also need to have the same in-plane
address (i.e., the same offset within each plane).

B. FTL

FTL is a key component of any flash software stack, which
hides the complexities and constraints of the underlying flash
medium like the erase before-write requirement and endurance
limits. It receives the read/write requests and issues the op-
erations to the NAND chips. FTL performs two important
tasks: 1) Address mapping. Due to the out-of-place update,
the logical page number (LPN) of the host requests must
be translated into physical page number (PPN). For a write
operation, FTL allocates a free physical page and stores the
(LPN, PPN) pair in the mapping table for further reads.
For read operations, translation is executed by searching the
mapping table for LPN entry. 2) GC: Due to the out-of-place
update, free flash pages are substantially consumed, resulting
in numerous physical pages with invalid data. Consequently,
FTL triggers a GC procedure to reclaim the invalid pages.
GC procedure selects a victim block, moves its valid data to
free pages, and finally performs an erase operation, which in-
troduces additional read/program operations and performance
issues.

III. MOTIVATION

A. Request Processing

An efficient FTL algorithm can make full use of parallelism
and get better performance. When serving a request, FTL takes
the request out of the queue and splits it into several subre-
quests. As shown in Figure 2, the execution of subrequests
can be divided into three parts: command and address transfer



(a) The process of write operations.

(b) The process of read operations.

Fig. 2. The process of write and read operations.

(CA), data transfer and read/write. In the data transfer phase,
data is transported from memory to the chip controller through
the channel bus. When reading or writing, flash chips work
independently and the bus will be released for other chips.

Two main factors that affect the response time of a re-
quest: 1) All sub-requests belonging to the same request are
assigned to different channels and chips, resulting in different
completion times. Subrequests completed early must wait for
subrequests completed later, extending the overall response
time of the request; 2) If the channel is busy executing data
transmission of other requests, it needs to wait for the channel
free, which increases the request response time.

TABLE I
FLASH PARAMETERS FOR EXPERIMENT

Parameter Value
Page Size 8KB

Page Number/Block 1024
Channel Number 4

Chip Number/Channel 2
Die Number/Chip 2
Plane Number/Die 2
Data Transfer Rate 10ns/8bit

Erase Time 15ms
Flash Array Program Time 1,300,000ns

Falsh Array Read Time 78,000ns
Command & Address Transfer Time 7*10ns

Data Transfer Mode Synchronous mode

B. Read and Write Asymmetry

To find that performing read and write operations face
different challenges for improving performance when the
number of chips reduces, we analyze the timing and sequence
of request execution. The parameters of the flash memory used
in the analysis are those shown in Table I. Since the Command
and Address (CA) transmission latency only accounts for 70
ns, it is much smaller than the read or write latency, the
following figures will omit the CA latency without affecting
the analysis result. First, we analyze three cases for write
operation.

Case1: We assume that each channel contains five flash
chips and maximum parallelism degree of these flash chips is
four but the available parallelism degree is two now (Due to the
different resource consumption rate, the intra-chip parallelism

(a) the process of write operation with five chips per channel and 2
parallelism degree.

(b) the process of write operation with four chips per channel and 2
parallelism degree.

(c) the process of write operation with four chips per channel and 4
parallelism degree.

Fig. 3. the process of write operation with three different cases.

of each chip cannot always be fully utilized). The execution of
write operations is shown in Figure 3(a). Channel bandwidth
is well exploited.

Case2: Keep the above assumptions remain unchanged.
Only the number of chips decreases to four. As shown in
Figure 3(b), channel bandwidth is wasted. that is to say, the
reduction in the number of chips makes a negative impact on
bandwidth utilization.

Case3: With the assumptions mentioned in Case2 constant,
only the degree of available parallelism increases to four. It
is apparent from Figure 3(c) that Channel0 is always busy at
any time.

Three specific examples indicate that to provide better
performance when executing write operations, promoting uti-
lization of intra-chip parallelism is very important. It can com-
pensate for the negative effect of the chip number reduction
on channel bandwidth.

Next, we analyze read operations. It is worth noting that
there are some differences between read and write operations:
1) read latency is much smaller than write latency, also
than data transfer time, 2) the physical address of a read
operation is fixed. If subrequests corresponding to the same
chip can not meet parallel execution conditions can only be
performed separately. The following cases show how channel
bandwidth utilization changes when executing read operations
with different settings.

Case4: Assume that one channel employs four chips and
read subrequests do not satisfy parallel read constraints. There
are four, one, four, and one subrequest locating in four chips
respectively. Requests are executed as shown in Figure 4(a).
We execute a simple scheduling for subreque3 to maximize



(a) The process of read operation with a simple schedule.

(b) The process of read operation with an extremely uneven distribution.

Fig. 4. The process of write operation with two different cases.

channel bandwidth as shown in Figure 4(a) without increasing
parallelism. But after schedule, the response time of subre-
quest3 increases due to the long waiting time. Thus, we can
draw the following conclusion: even if read operations can
not always be executed in parallel, channel bandwidth waste
will be alleviated in a simple way. So, for read operations,
providing response time guarantees is more important and
challenging than maximizing channel bandwidth when im-
proving performance. However, there is often a conflict be-
tween maximizing bandwidth and guaranteeing response time.
For balance, we try to maximize bandwidth when performing
one request and guarantee response time between requests.

Case5: In the worst case, as shown in Figure 4(b), sub-
requests distributed in one chip are greater than the total
subrequests distributed in other chips. There is no way to
maximize bandwidth by scheduling in this extreme case.
Moreover, it increases response time because the chance of
parallel read decreases. Thus, a uniform distribution of data
is crucial for read performance. It helps eliminate the worst
response time.

To summarize, for improving channel bandwidth and system
performance, write and read operations need to focus on
different problems. Promoting plane-level parallelism is more
important for write. Reducing response time and providing a
more balanced distribution of data is more crucial for read.

IV. THE MBM DESIGN

In this section, we present the specific design of MBM.
MBM is incorporated into the Flash Translation Layer of
the SSD. It consists of three optimal solutions: parallelism-
enhanced Write Strategy (WS), parallelism-relaxed Read Strat-
egy (RS) and Minimizing Chip consumption Strategy (MCS).
WS is responsible for satisfying the plane-level parallelism
constraint when executing write requests. It extends an addi-
tional block for garbage collection (GC). Moreover, WS limits
the number of subrequests that a channel can execute at a

Fig. 5. Each plane additionally extends an active block for GC.

time by a simple algorithm. To guarantee response time, RS
specifies necessary conditions to perform parallel read and
improves read efficiency by a more uniform distribution of
data. In addition, MCS optimizes tail latency by exploiting
program/erase suspension and leaves more free chips to service
subsequent requests through dynamic selections. For readabil-
ity purposes, we first define a brief list of important terms
commonly used in the following sections.

• The parallelism of a flash chip: the number of flash
pages that can be simultaneously written in this chip
with one program latency. For example, each flash chip
itself is composed of 2 dies (called die0 and die1), each
die consists of two planes (called plane0 and plane1).
Only two planes of die0 can operate in parallel, and
the other two planes of die1 did not adhere to the
strict restriction of plane-level parallelism. Thus, with one
program latency, 3 flash pages can be written at the same
time, the parallelism of the chip is 3.

• SSD transaction: a set of commands that the SSD
controller needs to initiate to perform a write operation.
For example, writing three pages of a chip (parallelism is
3) requires initiating a multi-die command and a multi-
plane command, transmitting three addresses and data,
and occupying the channel bus before the SSD transaction
completes.

A. Parallelism-Enhanced Write Strategy

Parallelism enhancement means each SSD transaction
should finish more subrequests and utilize all available parallel
units. So, the channel will always be busy according to
the analysis in section III-B. However, space allocation and
garbage collection greatly impact the existence of queued I/O
operations mapped onto different planes of a die and, at the
same time, accessing identical addresses in these planes. For
instance, less queued write operations satisfy the plane-level
addressing constraint if memory addresses of the neighboring
planes are asymmetrically assigned and invalidated memory
locations are recycled without any address consideration. It
destroys plane-level parallelism. Available parallel units in
each chip gradually decrease. Channel bandwidth will be
wasted as shown in case2 of section III-B. To exploit plane-
level parallelism more efficiently and alleviate its inherent
limitations, we propose that each plane additionally extends an
active block for garbage collection (GC), as shown in Figure



5. The last written page in the active block can keep the
same by using a round robin assignment strategy for page
allocation. When executing GC to reclaim space, valid data is
migrated to a dedicated active block instead of the block being
written. Thus, available free page addresses of all planes in the
chip will keep consistent. To ensure there is enough room to
service host requests, GC process will be triggered separately
according to the available space in each plane. WS does not
increase the area overhead. Data migration of the GC process
always needs to consume new physical pages. The previous
solutions migrate valid data to the open block when executing
GC. WS extends an additional block for migrated data of GC
instead of placing it in the active block. Therefore, the space
consumption is the same.

Besides, to reduce the impact of a too long subrequest
response time on the overall request response time, write
requests should be more evenly distributed across all channels.
In addition, because read operations also transfer data and
occupy the channel bus, the number of subrequests that the
channel can execute needs consider read. To balance the
distribution of subrequests in all channels, we propose Chan-
nel Max Subs. It refers to the total number of read and write
subrequests that can be executed in each channel currently. It’s
calculation algorithm as shown in the Algorithm 1.

First, we count the total number of subrequests in each
channel (Line 1-3). Then sort channels from smallest to the
largest total number (Line 4). Gradually allocate subrequests
to the channel according to the order as Line4. If subrequests
allocation complete, set the Channel Max Subs for every
channel (Line 5-9). If not, modify the number of remaining
subrequests and continue the above steps (Line 10-12). When
all Channel Max Subs reach the same, but there are still some
subrequests in the queue, we distribute them into all channels
on average and update the Channel Max Subs (Line 14-16).

The minimum of Channel Max Subs and chip parallelism
degree determines the number of subrequests performed
in an SSD transaction. For example, according to Chan-
nel Max Subs, an SSD transaction can only execute two
subrequests. But the current chip parallelism degree is four, the
transaction will take two subrequests. If the chip parallelism
degree remains unchanged, the channel can have five more
subrequests, the transaction will only take four subrequests.

B. Parallelism-Relaxed Read Strategy

Parallelism-relaxed does not mean giving up channel band-
width maximization. Instead, it indicates that we can maximize
channel bandwidth without maximizing parallelism as WS
when executing read requests. As the analysis shows in Section
III-B, it is easy to guarantee channel bandwidth maximization
by a simple schedule when performing read requests. And the
channel will be kept busy when chips are occupied for reading
data.

Therefore, using the same enhanced strategy for read is
not necessary. Although executing a parallel read operation
is efficient and could read more data once, the finish time
of the first coming subrequest will be extended because of

Algorithm 1 Cnannel Max Subs().
Input:

Read requests queue length of the channel, chan-
nel num[].read len;
Number of write subrequests that the channel has exe-
cuted, channel num[].execute w subs;
Number of channel, channel number;
Requests number of SSD write requests queue, w req;

Output:
Subrequests number that channel can execute, chan-
nel max subs;

1: for i = 0 to channel number do
2: Count the total number of subrequests per channel,

channel req len[i] = channel num[i].read len + chan-
nel num[i].execute w subs;

3: end for
4: Sort channel req len[channel number] from small to

large;
5: for i = 0 to channel number do
6: if SSD number of write subrequests < subrequests num-

ber of Channel[i-1]- subrequests number of Channel[i]
then

7: channel max subs = (w req%i) ? (w req/i + 1 +
channel req len[i-1]): (w req/i + channel req len[i-
1]);

8: set the number of write requests to 0, w req = 0;
9: break;

10: else
11: update the number of write subrequests, w req - =

(channel req len[i] - channel req len[i-1]) * i;
12: end if
13: end for
14: if subrequests number of write requests queue 6= 0 then
15: average the number of remaining write subrequests to

each channel and update the channel max subs;
16: end if

additional data transfer. Thus, executing read operations in
parallel conditionally could achieve bandwidth maximization
without sacrificing response time. Specifically, an shown in
Figure 6 if the subrequests in a parallel read operation come
from a same request, RS will perform the parallel read (see
Figure 6(a)). Otherwise, RS responses to the first coming
subrequest (see Figure 6(b)).

However, bandwidth could be wasted inevitably when sub-
request distribution is extremely unbalanced. To further in-
crease RS efficiency, we propose a more strict data layout
for the read-intensive area. It increases the chance to perform
parallel reads, promoting execution efficiency and read per-
formance. A Read-intensive area is judged by space locality.
Specifically, we set a threshold of a read request length.
When a read request length is longer than the threshold, the
corresponding logical area is read-intensive; otherwise, the
area is not. If write requests are allocated to a read-intensive
area, we will distribute them into all corresponding dies of the



(a) An example of parallel read.

(b) An example of responding to first coming subrequest .

Fig. 6. Two examples of RS.

Fig. 7. Minimizing Chip consumption Strategy (MCS).

area averagely.
If data distribution satisfies one of the following conditions:

1) the transactions number of a request is greater than the
theoretical number; 2) the subrequests of a request distributed
in a channel are excessive. We will initiate a reallocation. An
alternative method to reallocate is migrating redundant data
from an overloaded channel to an underloaded channel.

C. Reduce Tail Latency

After WS and RS optimization, most high latency is allevi-
ated. However, performance degradation problem still occurs.
Through analysis, we find the reason for this phenomenon is
as follows: 1) when a write request is an update operation and
the page to be read is busy for programming, we need to wait
for the program completed; 2) subrequests number is larger
than chip parallelism, so we need to execute at least two write
operations.

For the first reason, we exploit P/E suspend and resume
[22]. It suspends the on-going program or erase operation
(P/E) to service pending reads and resumes the suspended P/E
afterward. For the second reason, we propose a Minimizing
Chip consumption Strategy (MCS). When allocating pages for
write requests, MCS first selects an idle chip with the least
parallelism degree. This is because when the chip completes
the current task, it will restore the maximum intra-chip par-
allelism and execute more subrequests next time. Then MCS
selects a free chip with the maximal parallelism degree so
that more data transfer time can cover the busy time of the
working chip. Overall, the SSD can have more free chips for
subsequent requests.

Figure 7 shows an example of MCS. Chip 03 with the least
parallelism degree is selected for the first time, and the chip
00 with the maximum parallelism is selected for the second
time. Chip 01 and Chip 02 keep the maximum parallelism and
can respond to subsequent requests timely.

V. EXPERIMENTAL METHODOLOGIES

In this section, we present the experiment environment and
apply a variety of workloads to evaluate MBM. For compar-
ison, the other two existing FTLs [15], [14] are implemented
as well. Simulations based on SSDsim [18] were implemented
to evaluate the proposed MBM. The detailed flash parameters
can be found in Table I. For the flash microarchitecture
configuration, four levels of parallelism are supported. By
testing IO bandwidth, average response time, and erase counts,
we evaluate the overall performance of MBM. To investigate
the impact of the proposed scheme on tail latency under the
different workloads, we also test the I/O latencies at the 95th,
97th, 98th, 99th, and 99.5th percentiles. For convenience, we
implement TBM [15] and Sprinkler [14] as a comparison.
They are introduced as follows:

• TBM [15]: TBM symmetrically conducts usage and recy-
cling of the flash block addresses on the planes of a die,
thus enhancing the utilization of plane-level parallelism
for reads, writes and erases.

• Sprinkler [14]: Sprinkler relaxes parallelism dependency
by scheduling I/O requests based on internal resource
layout rather than the order imposed by the device-
level queue. Sprinkler improves flash-level parallelism
and reduces the number of transactions (i.e., improves
transactional locality) by over-committing flash memory
requests to specific resources.

TRASE: We choose 6 representative real workloads pre-
sented by the storage networking industry association (SNIA)
[19] and MSR Cambridge [20]. The important characteristics
of our traces are given in Table II.

TABLE II
WORKLOADS ANALYSIS

Workloads
Avg.Size

(Read/Write)
(KB)

Read/Write
Ratio(%)

(KB)
Annotation

usrlvm0 40.91/10.28 40.42/59.58 User home directories
stg-lvm0 24.92/9.19 15.19/84.81 Webstaging
web-lvm0 29.99/8.59 29.88/70.12 Web/SQLserver
src1-lvm2 19.11/32.50 25.37/74.63 Source contrl
Financial 2.38/3.85 21.96/78.04 Financial institution
MSNFS 14.88/10.60 79.57/20.43 MSN File System

VI. EXPERIMENTAL RESULTS

A. Response Time

Average response time. Figure 8 plots the average response
time, normalized to that of the TBM, driven by six workloads.
The MBM scheme reduces the average response time of the
baseline scheme by up to 66.8% with an average of 43.6%.
The significant performance improvement comes from the
following facts. First, WS fully exploits plane-level parallelism
with the additional block for GC. Channel Max Subs ensure a
more even distribution of subrequests across channels, avoid-
ing excessively high response time. Second, when executing



Fig. 8. The normalized average response times driven by the six workloads,
normalized to that of the TBM.

Fig. 9. The normalized average response times with different number of chips
per channel, normalized to that of TBM with two chips per channel.

read requests, RS promotes the chance of parallel read by
a better data distribution strategy, improving the execution
efficiency of read requests. Although TBM relieves the side-
effects of out-of-place-update on the utilization of multi-
plane read/write operations, it extends the response time
of subrequests with unrestricted parallel reading. Sprinkler
fully exploits channel-level and chip-level parallelism, but it
neglects the strict restriction of the plane-level parallelism.

Unlike the other workloads, TBM outperforms Sprinkler
and MBM in src1-lvm2. Sprinkler shows the worst per-
formance with a 2.18x average response time compared to
baseline. And that of the MBM increases by 7.5%. The result
is related to the benchmark characteristics. Src1-lvm2 is a
typical write-intensive benchmark. The average length of its
write requests is the longest of the selected benchmarks. So,
response time is mainly determined by program time. TBM
decreases the average latency of src1-lvm2 with the best plane-
parallelism because of twin block management. Sprinkler does
not consider the plane-level parallelism constraint, MBM dose.
But during RS, data remapping strategy for the read-intensive
area makes it not always possible to keep the maximum
parallelism degree when programming. So, the response time
is slightly higher than that of the TBM. It is worth noting that

Fig. 10. The Bandwidth driven by the six workloads.

Fig. 11. The normalized erase count driven by the six workloads, normalized
to that of the TBM.

if the decision method of the read-intensive area is further
optimized, this problem will be alleviated and the average
response time can be shortened.

Response time with different number of chip/channel.
Moreover, to further investigate whether MBM can deliver
and guarantee stable performance when the number of chips
reduces, we present the average response time of different
number of chips in Figure 9. The result is normalized to that
of TBM with two chips per channel. We can see that MBM
consistently and significantly outperforms the baseline system
in different configurations. First, MBM reduces the average
response time of the TBM by 43.6% and 31.6% when there
are two and eight chips in a channel, respectively. Second,
with chip number decreasing, the average response time of
TBM and Sprinkler significantly increases. But MBM shows
the opposite. It achieves almost the same performance when
the chip number reduces from 8 to 2. In addition, the optimal
result corresponds to the 4 chips per channel. The performance
improvement of MBM comes from the fact that it fully uti-
lizes intra-chip parallelism without sacrificing response time.
However, Sprinkler does not consider the strict restriction of
plane-level parallelism. TBM ignores the negative effect of
the uneven distribution of requests. Thus, MBM outperforms
Sprinkler and TBM no matter how the configuration changes.



B. Bandwidth

Bandwidth is also an important reflection of device perfor-
mance. Figure 10 gives the bandwidth values, MBM increases
the overall bandwidth by up to 3x and by 2.1x averagely.
MBM is clearly the most efficient. The reasons behind MBM’s
superiority in the bandwidth are two-fold. First, by extends
an additional block for GC, MBM sufficiently exploits plane-
level parallelism compared to Sprinkler. Besides, when there
are many subrequests in the queue, an SSD transaction
will take out as many subrequests as possible according to
Channel Max Subs. Moreover, Optimized data distribution
in read-intensive areas also improves read parallel efficiency.
Therefore, MBM shows the best bandwidth. Sprinkler also
gets good improvement, this is because, in each operation, all
parallel resources are utilized as much as possible. Although
its plane-parallelism may be destroyed, the die- and chip-level
parallelism can be better utilized. Consequently, neither TBM
nor Sprinkler is productive and they are even worse than
the baseline system without any optimizations. By contrast,
MBM FTL has a better balance between bandwidth and
response time by exploiting read and write asymmetry, thus
achieving the best results among all the schemes.

C. Erase Count

Erase Count plays an important role in measuring system
overhead of proposed MBM and the other two schemes.
Figure 11 presents the experiment result of the erase count.
Except for MSNFS, the result shows the erase count of MBM
slightly increases, but is almost the same as it of Sprinkler
or TBM. Under MSNFS, the normalized result shows a large
difference. This is because MSNFS has fewer writes than other
benchmarks. And only dozens of GC operations are executed,
while under other benchmarks are thousands. According to the
experimental result of MSNFS, TBM, Sprinkler, and MBM
perform GC operations 46, 15, and 247 times, respectively.
As data volume increases such as the other five workloads,
GC increment of MBM averages 3.5% and the maximum
is 7.9%. In the read-intensive benchmarks, the increment is
slightly more obvious.

D. Tail Latency

Tail latency represents the worst response time of the device.
The lower tail latency indicates the much smaller performance
degradations. Figure 12 and Figure 13 plots the read and
write tail latency of three schemes when running MSNFS and
Financial. We can see that at high percentiles, compared to
Sprinkler and TBM, MBM consistently and significantly show
better performance. Since tail latency is mainly caused by the
blocking of a program or erase operations, the performance
degradations are alleviated by P/E suspension. Moreover, the
MCS strategy ensures that there are enough parallel units
to respond to incoming write requests, which achieves the
execution efficiency of write requests and reduces the blocking
of read requests. The result of Sprinkler is similar to that of
MBM under MSNFS. But in Financial, the read latency at
the 98th percentile of Sprinkler is larger than that of MBM,

(a) MSNFS read tail latency

(b) MSNFS write tail latency

Fig. 12. Tail Latency:trace MSNFS

and the write latency at the 94th percentile of Sprinkler also
increases. TBM is the worst under different workloads. This
reflects a serious problem with TBM. When performing GC,
it forces the valid pages to be migrated into planes equally,
causing the read locality corrupted. This affects both the read
and write latency (update operations also need to be read first
and then write), resulting in worse performance. Compared
to Sprinkler, MBM completes the request in intensive case
fast because RS and MCS help reduces the waiting time of
program or erase operations. If the chip that needs to be read
is busy, Sprinkler must wait for it completed (the program
latency of a page is about 1,300us). But MBM can get the read
data timely by suspending the program or erase operation.



(a) Financial write tail latency

(b) Financial Write tail latency

Fig. 13. Tail Latency:trace Financial

VII. RELATED WORK

Several different methods have been proposed to improve
performance by optimizing parallelism. Slacker [21] presents
a slack-enabled re-ordering scheduler for subrequests issued
to each flash chip. It estimates the slack of each incoming
subrequest to a flash chip and allows them to jump ahead of
existing subrequests with sufficient slack so as to not detrimen-
tally impact their response times. SOML(Single-Operation-
Multiple-Location) [13] can perform several small intra-chip
read operations to different locations simultaneously, thereby
mitigating the parallelism-related bottlenecks. P/E suspension
scheme [22] suspends the on-going P/E to service pending
reads and resumes the suspended P/E afterward. Having reads
enjoy the highest priority. Moreover, Many recent studies
generally use reordering and rescheduling of queued I/O
operations to increase the chance of parallel execution at plane

level [14], [23], [24]. Considering the impact of GC on device
parallelism, GCPAR [25] presents a scheduling technique,
I/O-parallelized GC, which leverages the idle planes during
GC to service the blocked I/O requests. There have been
several studies [26], [15] evaluate the priorities of four levels
parallelism under various benchmarks, but none of them have
optimized FTL management.

VIII. CONCLUSION

Because of the high storage capacity demands from the
storage market, 3D NAND density keeps increasing. Un-
fortunately, high-density SSDs fail to achieve better intra-
chip parallelism and channel bandwidth than their low-density
counterparts. By analyzing the multi-level parallel request
execution process in SSDs, we found that for improving
channel bandwidth and system performance, write and read
operations need to focus on different problems. Promoting
plane-level parallelism is more important for write. Reducing
response time and providing a more uniform distribution of
data is more crucial for read. Motivated by this observation,
we propose a Maximize Bandwidth Management FTL (MBM)
which can perform parallelism-enhanced Write Strategy (WS)
and parallelism-relaxed Read Strategy (RS) which are for
write and read operations respectively. To mitigate serious
performance degradation that cannot be completely avoided
after applying the above strategy, a Minimizing Chip consump-
tion Strategy (MCS) is also proposed correspondingly. Our
experiments with various workloads indicate that, on average,
the overall performance of MBM outperforms two state-of-
the-art optimization strategies. The RS of MBM causes a
little more erase counts, which are carefully controlled and
evaluated. Optimizing the read-intensive area determination
method in RS can further improve parallelism and reduce
average response time. we will modify MBM to achieve better
performance in the future work.
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