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Abstract—LSM-based key-value stores (LSM-stores) play an
important role in many storage systems. However, LSM-stores
suffer from high write amplification of their compaction opera-
tions. Recently proposed key-value separated LSM-stores reduce
the impact, but the garbage collection overheads of the value
parts remain high. In this paper, we find that existing key-value
separation approaches have to check validity of key-value items
by querying the LSM-tree, and update value handles by inserting
them back into the LSM-tree during garbage collection. Validity
checking and value handle updating introduce heavy overheads
to the LSM-tree. To this end, we propose an efficient approach to
reduce expensive overheads of garbage collection, by eliminating
queries and insertions of the LSM-tree. The approach consists of
three key techniques: collaborative compaction, efficient garbage
collection, and selective handle updating. We implement this
approach atop LevelDB and name it as NovKV. Evaluations show
that NovKV outperforms WiscKey by up to 1.98x on random
write and 1.85x on random read.

Index Terms—LSM-tree, key-value separation, garbage collec-
tion

I. INTRODUCTION

Key-value (KV) stores have become essential storage infras-
tructures. LSM-stores [1] organize data into different levels.
Recently updated data are first kept in the lowest level, and
the compaction operation sorts, merges, and moves data from
low levels to high levels. In the compaction operations, keys
and values are moved for a number of times, and this incurs
high overhead.

Recently, key-value separation is proposed to reduce the
write amplification overheads in LSM-stores in WiscKey [2].
It stores keys and values into two different components, which
we term as KStore and VStore respectively. The KStore uses
an LSM-tree to store keys, and its value keeps the handle
of the corresponding value in the VStore. The VStore stores
encoded KV items in numbers of value files. While the key-
value separation reduces write amplification without moving
values in the LSM-tree, an extra garbage collection is required
in the VStore, which still incurs high overhead. The garbage
collection in the VStore has to query the KStore to determine
which values are invalid, so that it can drop obsolete values.
For the valid values, it moves them to the new locations in the
VStore, and updates their handles in the KStore. The garbage
collection in the VStore also incurs high overhead.

In this paper, our key idea is to leverage the dependen-
cies between the KStore and VStore to reduce the garbage
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collection overhead. We observe that the compaction in the
KStore has differentiated the invalid values from the valid
ones. We pass this information to the VStore, to avoid the
validity checking in the garbage collection of the VStore. To
support the validity information passing from the KStore to
the VStore, we introduce VTable and SVTable designs to the
VStore, so as to append invalid keys that have been identified
in the KStore.

We also propose to delay the handle updating till the
read, so as to reduce the handle updating overhead. During
garbage collection, valid values are moved to new locations in
the VStore. Instead of updating these handles in the KStore
immediately, we delay the updating until the values are read.
As such, the garbage collection overheads can be reduced.

Based on the above ideas, we propose an novel design
of key-value separated LSM-stores, NovKV, with an efficient
garbage collection approach. Our approach aims to reduce
validity checking and handle updating overheads, the two
dominated overheads in the garbage collection of the VStore.
NovKV achieves the efficient garbage collection using the
following key techniques:

• Collaborative Compaction. NovKV collects keys that
the KStore drops during compaction (termed DropKeys)
and appends DropKeys to two newly designed tables
(termed VTable and SVTable) (Section III-B).

• Efficient Garbage Collection. During the VStore
garbage collection, NovKV uses DropKeys to check va-
lidity of KV items without querying the KStore, and uses
searchable value files (SVTable) to avoid value handle
updating and to support fast reads (Section III-C).

• Selective Handle Updating. NovKV does not aggres-
sively insert all new handles of valid values back into the
KStore. Instead, NovKV will take the value handle and
update it in the KStore when a client read request finally
searches for the value in the SVTable (Section III-D).

We implement NovKV with our proposed garbage col-
lection approach based on LevelDB. Evaluations show that
NovKV achieves up to 1.98x write throughput compared to
WiscKey, and nearly the same read throughput. After warming
up, NovKV outperforms WiscKey by up to 1.85x on random
read.

II. BACKGROUND AND MOTIVATION

A. The LSM-tree Basics
In order to maximize write performance, the LSM-tree

buffers incoming KV items in memory and writes the journal



in case of a crash. When the buffer reaches a threshold,
the LSM-tree builds this buffer as a searchable table that is
internally ordered by key (called SSTable in LevelDB) and
writes the table to disk sequentially. In this way, the LSM-
tree transfers user-level random writes to disk-level sequential
writes, and so that can efficiently use the disk bandwidth.

Since the LSM-tree creates SSTables in write order (but
internally in key order), key ranges of these SSTables may
overlap each other. As a result, the LSM-tree needs to check
all SSTables that possibly contain this key when reading a KV
item, but only one of them is likely to contain the KV item,
which incurs severe read amplification.

A pivotal process to reduce such useless reads is com-
paction. The LSM-tree compaction picks some key-overlapped
SSTables and compacts these SSTables into several non-key-
overlapped SSTables in a merge sort way. During compaction,
the LSM-tree drops obsolete values that are updated or deleted
previously. However, the compaction process brings in signif-
icant overheads and results in many problems such as write
amplification [3], write stall [4], and resource contention [5].

B. The LSM-tree Optimizations

Due to the extensive usages of the LSM-tree, both academia
and industry have done much research to optimize it. For
example, PebblesDB [3] uses a fragmented LSM-tree that
allows key overlaps in a level, and avoids rewriting data in
the same level to reduce write amplification. TRIAD [5] uses
a holistic combination of three techniques, respectively in
memory level, storage level, and commit log level to reduce
write amplification. LWC-tree [6] introduces a light-weight
compaction that only merges and sorts metadata of table files
to fasten compaction speed and to decrease write amplification.
RocksDB employs dynamic level size adjustment, tiered com-
pression, shared compression dictionary, prefix bloom filters,
and different size multipliers to better utilize the SSD storage
space [7]. The bLSM [8] proposes a new ”spring and gear”
merge scheduler to bound write latency and so that satisfying
strict latency SLAs.

FlashKV [9] applies the LSM-tree on open-channel
SSDs [10], [11], and directly manages the raw flash devices
in the LSM-tree layer, to eliminates redundant management
and semantic isolation. SineKV [12] adopts the LSM-tree as a
decoupled secondary index structure, and proposes a mapping-
based lazy index maintenance mechanism to efficiently main-
tain indexes, and also leverages the CMB in NVMe SSDs to
guarantee the crash consistency.

An important optimization method is the key-value sepa-
ration. WiscKey [2] uses a value file (called vLog) to store
values while storing keys and value handles in the LSM-tree.
During garbage collection, WiscKey first reads a chunk of KV
items from the tail of the vLog, then finds those valid values
by querying the LSM-tree (validity checking). Then WiscKey
appends those valid values back to the head of the vLog
and updates value handles in the LSM-tree (handle updating).
Finally, WiscKey frees the space occupied by these values.
HashKV [13] also adopts the key-value separation approach,

but organizes data in value store by hash-based partitioning.
Unlike WiscKey, HashKV splits the vLog into several segment
groups, and deterministically maps KV items to corresponding
segment groups. A garbage collection operation in HashKV
first selects a segment group with the largest amount of
writes, then sequentially scans the KV items in the segment
group without querying the LSM-tree (validity checking), then
write all valid KV items back into the segment group, and
finally updates the latest value locations in the LSM-tree
(handle updating). To avoid querying the LSM-tree in validity
checking, HashKV uses a temporary in-memory hash table to
store keys and value locations of valid KV items. Since KV
items are sequentially stored in the segment group in their
write order and all versions of values of a specific key must
be hashed into the same segment group, the hash table will
hold all the latest versions of valid KV items after this scan is
finished. So, HashKV can write all valid KV items back into
the segment group.

C. Motivation

Even though the key-value separated approach substan-
tially reduces the compaction overhead, existing approach
of garbage collection introduces another query and insert
overheads. WiscKey needs to check the validity of KV items,
append valid KV items to the head of the vLog, and then insert
those new handles of valid KV items back into the LSM-tree.
These large amounts of queries and insertions compete with
clients for available resources, which degrades performance
significantly [2].

We observe that WiscKey runs the KStore compaction
and the VStore garbage collection independently. The KStore
compaction does not have any collaboration with the VStore
garbage collection. However, there are some useful data in the
KStore can be used to facilitate the VStore garbage collection.
We furthur notice that keys in the KStore are only dropped
during compaction. Based on these observations, we record
those keys that the KStore drops to avoid querying the KStore
during the VStore garbage collection.

Furthermore, the VStore garbage collection may insert valid
value handles into the KStore many times during the entire
run time. However, most KV items will not be read after
garbage collection [14], [15]. As a result, many value handles
are inserted into the KStore over and over again, even though
they are not read. And even worse, aggressively inserting
value handles will increase the compaction frequency and thus
increase total compaction overheads. So, we insert those value
handles only when they are read.

Based on the above two points, we propose an efficient
approach of garbage collection for key-value separated LSM-
stores.

III. NOVKV DESIGN

A. Architecture

Fig. 1 depicts the architecture of NovKV. NovKV consists
of a KStore and a VStore. Inside VStore, there is a current
VTable, a VMap, and an SVMap. In NovKV, the value handle
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Fig. 1. NovKV Architecture.

consists of a file number, an epoch, a file offset, and an item
size. The epoch is the number of times a table has been
rewritten, and also indicates whether a value handle is still
valid in the table. Meanwhile, in order to recover from a crash,
the VStore saves metadata to the VManifest, and records the
last MemTable flush point in the VRecovery.

For a write request, NovKV first encodes the value along
with the key as a length prefixed string (termed VItem),
as illustrated in Fig. 2, and then appends it to the end of
the current VTable. After doing this, NovKV gets the value
handle of this VItem, and inserts this value handle to the
MemTable in the KStore. When the current VTable reaches
its size threshold, NovKV finishes this VTable, creates a new
VTable, and inserts the newly created VTable into the VMap.

For a read request, NovKV first queries the KStore to get
the value handle. Then NovKV uses the handle’s file number
to check whether this value file exists in the VMap. If it
exists, NovKV directly reads the value from the VTable by
the handle. If not exists, it indicates that the VTable has
been garbage collected before and been transferred to an
SVTable. So, NovKV takes the SVTable from the SVMap.
If the epoch of the handle and the epoch of the SVTable
matches, NovKV directly reads the value from the SVTable by
the handle without searching. If not matches, it indicates that
this SVTable is rewritten after this value handle was inserted
to the KStore, which means this value handle is also invalid.
So, NovKV searches for the KV item in the SSTable part of
this SVTable. The search process in SSTable is the same as
in the LevelDB.

In order to efficiently store keys that the KStore compaction
drops, we introduce two newly designed files, VTable and
SVTable.

1) VTable: As illustrated in Fig. 2, VTable is composed of
a vLog part and several DropBlocks. The vLog part contains
numbers of encoded VItems. Using the offset and size of a
value handle, NovKV can directly read the value from the
vLog part. A DropBlock contains a couple of DropKeys and
a DFooter. The DFooter stores metadata of the DropBlock and
the VTable:
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Fig. 2. The VTable Format.
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Fig. 3. The SVTable Format.

• Magic. The magic is used to check the file integrity.
• DOffset and DSize. The DOffset and DSize indicates the

offset and the size of this DropBlock.
• Epoch. The epoch indicates how many times this table

has been rewritten.
• ValueSize. The value size records the size of the vLog

part.
• Total and valid keys. The DFooter also records the

numbers of total keys and currently valid keys in the
VTable. The number of valid keys is equal to the number
of total keys minuses the number of all dropped keys.

To avoid an extra read of the DFooter before garbage collec-
tion, NovKV keeps the last DFooter in memory, along with the
calculated valid rate that is equal to valid keys/total keys.

When the current VTable reaches its size threshold, NovKV
appends an invalid DFooter to the end of the vLog part to
indicate the start of the following DropBlocks, which we term
as finish. Then NovKV creates a new VTable as the new
current VTable, and inserts this VTable to the VMap. The
newly created VTable is unfinished and only contains the vLog



part. During the KStore compaction, NovKV collects keys that
the KStore drops, builds these keys as a DropBlock, and then
appends the DropBlock to the end of the VTable.

2) SVTable: Similar to VTable, SVTable is composed of an
SSTable part and numbers of DropBlocks, as shown in Fig. 3.
As mentioned above, NovKV may need to search for values
by keys in SVTable. So, the SVTable replaces the vLog part
in VTable with an embedded SSTable. The DFooter keeps the
same as VTable except that the ValueSize here represents the
SSTable size. Note that once NovKV needs to search values
from the SVTable, we can confirm that this key and value must
exist in the SSTable. Hence, the bloom filter in the SSTable
is not needed.

In addition to supporting fast search, SVTable is also far
more cache-friendly than an unordered VTable since values
in SVTable is ordered by keys. Thus, the directly read by the
value handle in SVTable is faster than the directly read in
VTable.

B. KStore: Collaborative Compaction

In LSM-trees, the update operation of a KV item is to
directly write the new KV item instead of an in-place update.
Thus, there may exist multiple versions of values of a specific
key in the LSM-tree, which leads to two issues. On the one
hand, a read operation must figure out the right version of
values. On the other hand, the LSM-tree needs to release those
invalid items that have been updated or deleted. So, there must
be a way to determine which item is valid in the LSM-tree.

To address these two issues, the LSM-tree maintains an
incremental sequence number and a snapshot list, and drops
invalid KV items during compaction.

For each writing key, the LSM-tree appends a sequence
number to the tail of this key. The writing key and the compos-
ited key is called user key and internal key respectively. When
comparing two internal keys, the LSM-tree first compares the
user key in ascending order, and then compares the sequence
number in descending order if two user keys are identical.
Based on the sequence number and internal key mechanism,
a snapshot in the LSM-tree is in essence a sequence number.

When the read operation retrieves a specific snapshot of
value, the LSM-tree searches the KV item whose sequence
number is equal or less than the sequence number of the
snapshot.

During compaction, the LSM-tree checks whether the se-
quence number of a KV item is less than the sequence number
of the KV item with the same user key in the oldest snapshot.
If it is not, this KV item is still valid. If it is, this KV item is
obsolete, the conventional LSM-tree directly drops this item,
and thus we term the key of this item as DropKey.

Take Fig. 4 as an example, the oldest snapshot is Snap@6,
so the oldest version of KV item whose user key is Key that
can be retrieved is Key@4. Thus, Key@2 is an invalid item.

Based on the implementation of conventional compaction,
We add some extra operations to it while the most operations
of compaction in NovKV is the same as in conventional LSM-
trees, as illustrated in Fig. 5. Before the KStore compaction,
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NovKV first creates a map whose the key type is file number
and the value type is a vector of keys. Then, NovKV reads an
item from an SSTable, checks its validity as in conventional
compaction. If this item is not valid, NovKV decodes the
value to get the file number, inserts this DropKey to the
corresponding vector in the map by the file number. After
this compaction finishes, NovKV writes these DropKeys to
corresponding VTables and SVTables, and then triggers a
VStore garbage collection. If there already exists a running
garbage collection, this trigger is skipped.

C. VStore: Efficient Garbage Collection

Since the key-value separated LSM-store keeps actual KV
items in the VStore while keeps only keys and value handles
in the KStore, NovKV also needs a process to free spaces
occupied by obsolete KV items in the VStore.

Thus, NovKV introduces a VStore garbage collection pro-
cess to drop obsolete KV items and then write valid values
back as a new value file to the disk. To reduce the overheads of
validity checking and handle updating, the VStore persists the
validity information that has been differentiated in the KStore
before, and uses the SVTable to eliminate updating new value
handles.

The VStore garbage collection is illustrated as Fig. 6 from
a high-level perspective. VTables or SVTables whose invalid
items exceeds a threshold will be garbage collected and be
built as new SVTables.

NovKV first collects all of finished VTables and SVTables
whose valid rate is less than the gc threshold, and sorts
them by valid rate in descending order, then picks a num-
ber of VTables and SVTables with the smallest valid rate.
Those VTables or SVTables whose valid keys is zero are
removed from the VMap or SVMap respectively, and are
deleted directly. Then, NovKV processes remaining VTables
and SVTables one by one, as described below.
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Before actually doing the VStore garbage collection,
NovKV reads DropKeys from DropBlocks reversely. Through
the DOffset and DSize of the in-memory DFooter, NovKV
read the last DropBlock along with the previous DFooter.
Then, NovKV decodes these DropKeys and inserts them into
a hash set. After reading this DropBlock, NovKV checks the
previous DFooter. If the previous DFooter is valid, NovKV
continues to read the previous DropBlock by this DFooter.
Otherwise, NovKV finishes reading.

1) VTable GC: The VTable garbage collection is illustrated
as Fig. 7.

In actually garbage collection, NovKV first creates an
SVTable whose epoch is 1 to store valid KV items. Then,
NovKV reads a fix-sized content from the beginning of the
vLog part, decodes a VItem from the content, checks whether
the key exists in its DropKeys. If it does not exist, NovKV
inserts this key and value to the new SVTable, or drops this
item otherwise. After processing this VItem, NovKV reads the
next VItem from the content or read another chunk of content
if there is no more VItems in the content.

Since VItems in the VTable is out-of-order, SVTable uses
a MemTable to hold valid KV items during the construction.
When this VTable is processed successfully, NovKV finishes
this SVTable. The SVTable builds this MemTable as an
SSTable and flushes it to disks. Then NovKV appends an
invalid DFooter to the end of the SSTable part.

Next, NovKV removes the obsolete VTable from the VMap,
and inserts the newly created SVTable into the SVMap. Note
that a lock guards this step.

There is a special issue that needs to be deal with. The
KStore may do several times of compaction during this
garbage collection, and drop some other keys to the obsolete
VTable that is involved in this garbage collection. So, before
deleting the obsolete VTable, NovKV needs to check whether
there are new DropKeys appended in the obsolete VTable.
This run of garbage collection does not read these new
DropKeys, so NovKV copies these DropKeys to the newly
created SVTable. Finally, NovKV deletes this obsolete VTable.

2) SVTable GC: The SVTable GC is roughly the same
as VTable GC. NovKV first collects DropKeys from the
obsolete SVTable and creates its iterator to read KV items.
The following process is exactly the same as VTable GC. In
the end, NovKV opens the newly created SVTable, replace
the obsolete SVTable with the newly created SVTable in the
SVMap. A lock also guards this step. Note that the epoch
of the newly created SVTable is equaled to the epoch of the
obsolete SVTable plus one.

D. Selective Handle Updating

NovKV does not insert new valid value handles back into
the KStore immediately during garbage collection. So, there
is only the file number in the value handle is still valid after
garbage collection (GC does not change the file number). To
facilitate searching for values in a garbage-collected value file,
NovKV uses an embedded SSTable in the SVTable. However,
this introduces extra SSTable search overheads to the read
process. So, NovKV proposes a mechanism to update the
obsolete value handles.

When NovKV searches for a value in an SVTable, NovKV
also gets the value handle in the SVTable, and inserts this new
value handle back into the MemTable in the KStore to fix the
invalid value handle.

The cost of a completely memory write is substantially low,
which makes handle updating in read process possible. In this
way, NovKV can directly read the value from the SVTable
without searching next time.

E. Failure Recovery

In order to recover from crashes, NovKV uses a manifest
file to record all valid data files (including VTables, SVTables,
and the current VTable), and uses a recovery file to record the
recovery point.

When recovers from a crash, NovKV first reads the manifest
file and rebuilds the VMap, SVMap, and the current VTable
pointer. Then NovKV reads the recovery file, reads all KV
items after the previous recovery point from VTables, and re-
inserts all these keys and value handles to the KStore.

As described in III-A, an incoming KV item in NovKV is
first appended to the current VTable before returning the write
result, which ensures that a write operation returns successfully
only if the KV item is persisted successfully. So, a program
crash during writing does not lose any data.

Since the VStore uses DropKeys to discard obsolete KV
items instead of querying the KStore, if keys that have been



dropped by the KStore are lost, some obsolete KV items will
be left and will not be dropped forever.

Thus, NovKV write DropKeys during the KStore com-
paction. If a crash happens before DropKeys are persisted,
the KStore compaction is also unfinished and will be cleaned
up after failure recovery. As a result, these DropKeys can be
collected again in the next compaction. Furthermore, only if all
files in this run of garbage collection are collected successfully
and the new version of manifest file is persisted successfully,
the corresponding file pointers in VMap and SVMap will be
replaced. So, a program crash during compaction and garbage
collection also does not lose any data or break the consistency.

IV. EVALUATION

In this section, we compare some performance indicators
of NovKV, WiscKey, and the original LevelDB using the Lev-
elDB’s benchmark framework db bench. Our implementation
is based on LevelDB 1.22.

Completely sequential workloads are almost rare in gen-
eral LSM-stores in the real world. Specific methods for
time series data will deal with these workloads. So we
choose two very representative random benchmarks (ran-
dom write and random read) to evaluate three LSM-stores.
We add a readrandomsame benchmark to db bench.
The readrandomsame benchmark is almost the same as
readrandom except that it keeps test keys in memory so that
the test keys in the next run can be identical with the previous.
We run one time of fillrandom to evaluate the random
write performance, and two times of readrandomsame to
evaluate the random read performance. During benchmarks,
we record the total time of reading the KStore and the VStore
respectively, and the write amounts of compaction and garbage
collection.

In these benchmarks, We set the max size of VTable
and SVTable to 16MiB and the gc threshold to 0.7. To
better measure the performance, we disable LevelDB’s default
snappy compression.

We use an Alibaba Cloud ECS [16] server to evaluate three
LSM-stores, which is equipped with 8 vCPUs, 60GiB memory,
a 20GiB system cloud disk, a 1788GiB test local SSD and runs
Ubuntu 18.04 LTS with the Linux 4.15 kernel. The filesystem
running on the test disk is ext4.

All write benchmarks in this section have only one write
thread. In these benchmarks, we all vary the value size from
128B to 4KiB while the key size remains 16B unchanged.

A. Randdom Write

This benchmark inserts 100M KV items with values of
different sizes. The number of KV items is fixed, so the total
data size increases with the value size. Inserting the fixed
number of KV items instead of the fixed size of data helps us
better understand the performance when storing large amounts
of KV items.

As Fig. 8 shows, the throughput of NovKV is at most
roughly 2× over WiscKey. With the value size increases,
operations per second (ops) of NovKV starts to get close to
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Fig. 8. The Random Write Throughput.
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Fig. 9. The Random Read Throughput (The First Run).
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Fig. 10. The Random Read Throughput (The Second Run).

WiscKey but always higher than WiscKey. This proves that
insertions during garbage collection in WiscKey compete for
the write room of the KStore with user-facing insertions. So,
benefits from avoiding insertions, NovKV can achieve higher
throughput than WiscKey.

B. Random Read

This benchmark reads 10M KV items previously inserted
in Section IV-A. When the first time that the client read
a specific key, NovKV may need to search for values and
update the value handle, which introduces some negative
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impacts on this read. However, once the specific key and
value handle is updated, latencies of future reads will be
much lower than the first time. Based on this, we issue two
runs of readrandomsame in this benchmark. The first run of
readrandomsame mainly reflects the impacts of searching in
SVTables and overheads of value handle updating. The second
run of readrandomsame indicates the normal random read
performance after updating value handles.

As Fig. 9 shows, the random read throughput of NovKV is
much higher than LevelDB and slightly higher than WiscKey
even NovKV needs to update handles. This shows that large
amounts of queries and insertions of WiscKey during garbage
collection have negative impacts on the KStore.

We can see from Fig. 10 that the random read throughput
of NovKV on the second run is much higher than WiscKey
when the value size is relatively small. According to Fig. 11,
when the values size is relatively small, even the time spending
in reading the VStore in NovKV is more than in WiscKey,
WiscKey suffers more from the slowly read in the KStore.
With the value size increases, reading VStore dominates the
entire read process. As explained in Section III-A2, benefits
from the more efficiently caching, NovKV still performs better
than WiscKey. This proves that the SVTable is much more
cache-friendly than a naive unordered vLog.

C. Write Amplification

We record the total write amounts of compaction and
garbage collection, and define the write amplification as the
proportion of this total write amounts to the raw data size.

Fig. 12 shows the write amplification of NovKV, WiscKey,
and LevelDB. Both NovKV and WiscKey performs much
better than LevelDB, while NovKV is better than WiscKey.

As shown in Fig. 13, large amounts of insertions to the
KStore in garbage collection in WiscKey result in much more
KStore compaction than NovKV. In contrast, NovKV does not
insert value handles during garbage collection so that the write
amounts of compaction in NovKV keep almost the same. As
a consequence, WiscKey needs to do more data rearrangement
than NovKV, which leads to a higher write amplification.

In NovKV, we use a greedy approach of valid rate to
collect files to do garbage collection, and the overheads of

NovKV
WiscKey
LevelDB

W
rit

e A
m

pl
ifi

ca
tio

n

0

10

20

Value Size (Byte)
128 256 512 1024 2048 4096

Fig. 12. The Write Amplification.

W
rit

e 
Si

ze
 (G

B
)

Garbage Collection
Compaction

 N   NovKV
 W  WiscKey

Value Size (Byte)

0

10
0

20
0

30
0

40
0

128
N W

256
N W

512
N W

1024
N W

2048
N W

4096
N W

Fig. 13. The Write Amounts of Compaction and GC.

NovKV (GC)
NovKV (No GC)
WiscKey (GC)
WiscKey (No GC)

Th
ro

ug
hp

ut
 (K

O
PS

)

50

100

150

200

250

300

Value Size (Byte)
128 256 512 1024 2048 4096

Fig. 14. The Random Write Throughput With and Without GC.

garbage collection in NovKV are less than in WiscKey. So, we
can do more garbage collection in NovKV than in WiscKey.

D. The Impact of GC

To better understand how far the garbage collection degrades
overall performance, we run an extra fillrandom benchmark
without GC.

As shownn in Fig. 14, when GC is disabled, WiscKey can
achieve very high performance. Due to some extra operations,



NovKV does not perform as good as WiscKey. However, if GC
is enabled, the performance of WiscKey is reduced by a factor
of 1.3 at most compared to the performance without GC while
the factor of NovKV is only 0.1. This proves that the garbage
collection of WiscKey has very serious negative impacts on the
performance. As a contrast, benefits from the elimination of
validity checking and handle updating, the garbage collection
of NovKV has only a slight impact on the performance.

V. CONCLUSION

In this work, we find an efficient approach to reduce the
overheads of garbage collection. Three key techniques tactfully
eliminate queries and insertions during garbage collection,
which also significantly reduce the burden of compaction at
the same time. By reducing the overheads of compaction
and garbage collection, more available resources can be used
to improve user-facing performance. Evaluations show that
NovKV indeed achieves higher performance compared to
WiscKey. We hope that this work can inspire more work about
key-value separated LSM-stores, and the key-value separated
approach can be more elegant.
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