
NUMA-Aware Thread Migration for High
Performance NVMM File Systems

Ying Wang, Dejun Jiang and Jin Xiong
SKL Computer Architecture, ICT, CAS; University of Chinese Academy of Sciences

{wangying01, jiangdejun, xiongjin}@ict.ac.cn

Abstract—Emerging Non-Volatile Main Memories (NVMMs)
provide persistent storage and can be directly attached to the
memory bus, which allows building file systems on non-volatile
main memory (NVMM file systems). Since file systems are built
on memory, NUMA architecture has a large impact on their
performance due to the presence of remote memory access and
imbalanced resource usage. Existing works migrate thread and
thread data on DRAM to solve these problems. Unlike DRAM,
NVMM introduces extra latency and lifetime limitations. This
results in expensive data migration for NVMM file systems
on NUMA architecture. In this paper, we argue that NUMA-
aware thread migration without migrating data is desirable
for NVMM file systems. We propose NThread, a NUMA-aware
thread migration module for NVMM file system. NThread applies
what-if analysis to get the node that each thread performs local
access and evaluate what resource contention will be if all threads
access data locally. Then NThread adopts migration based on
priority to reduce NVMM and CPU contention. In addition,
NThread also considers CPU cache sharing between threads
for NVMM file systems when migrating threads. We implement
NThread in state-of-the-art NVMM file system and compare it
against existing NUMA-unaware NVMM file system ext4-dax,
PMFS and NOVA. NThread improves throughput by 166.5%,
872.0% and 78.2% on average respectively for filebench. For
running RocksDB, NThread achieves performance improvement
by 111.3%, 57.9%, 32.8% on average.

Index Terms—non-volatile memory, NUMA architecture, file
system, performance, thread migration

I. INTRODUCTION

Non-Uniform Memory Access (NUMA) architecture is
widely used in data center [40], [43], [51]. They provide
DRAM on each NUMA node with multi-core CPU, which
can enlarge DRAM capacity. Emerging byte-addressable Non-
Volatile Main Memories (NVMMs), such as Phase Change
Memory (PCM) [3], [37], ReRAM [5] and recent Optane DC
persistent memory [20], can be directly attached to memory
bus meanwhile supports data persistency. Thus, one can build
file systems on NVMM (namely NVMM file systems). Similar
to DRAM, NVMM can also be structured on NUMA architec-
ture to exploit multiple CPUs and enlarge NVMM capacity.

However, NUMA architecture introduces remote memory
access in which applications run on one NUMA node may
access data placed on another node. In addition, imbalanced
request scheduling and data requests on NUMA nodes lead
to imbalanced resource usage and further result in resource
contention [9], such as memory accessing contention. Existing
NVMM file systems [7], [10], [11], [23], [25], [45], [47], [48]
are unaware of NUMA architecture. They place file data with-

out considering the NVMM usage on NUMA nodes. Besides,
application threads accessing file system rely on the default
operating system thread scheduler, which migrates thread only
considering CPU utilization. These bring remote memory
access and resource contentions to application threads when
reading and writing files, and thus reduce the performance
of NVMM file systems. We observe that when performing
file reads/writes from 4 KB to 256 KB on a NVMM file
system (NOVA [47] on NVMM), the average latency of
accessing remote node increases by 65.5 % compared to
accessing local node. The average bandwidth is reduced by
34.6%. Besides, the imbalanced NVMM accessing increases
file read latency by 73.0%. Thus, NVMM file systems are
required being NUMA-aware to achieve better performance.

A number of research efforts have been made to improve
application performance on NUMA architecture, such as re-
ducing remote memory access [6], [38], reducing DRAM
accessing imbalance [19], [38], and increasing CPU cache
sharing among threads [28], [44]. The key idea of these
works is migrating threads as well as related data (such as
stack data and heap data on memory). These techniques are
efficient for DRAM-based NUMA architecture. DRAM has
high bandwidth and low latency. The cost of migrating thread
data on DRAM is low. However, applying these techniques
to NVMM file systems on NUMA architecture is expensive.
Firstly, NVMM has higher access latency and lower bandwidth
than DRAM. It is expensive to migrate file data on NVMM.
For example, as reported in [22], the write bandwidth of
NVMM is almost 1/6 of DRAM. In our observation, migrating
a 16 KB page from one NVMM NUMA node to another
takes 2.8x longer than that on DRAM. Secondly, unlike
thread runtime data, migrating file data requires modifying
file metadata to record the new addresses of data blocks.
Besides, since file metadata changes, one needs to pay for extra
effort to guarantee crash consistency, such as recording journal
for metadata changes. These further increase the overhead of
migrating file data for NVMM file systems. Thirdly, NVMM
has lower write endurance than DRAM, migrating file data
on NVMM introduces additional write operations and reduces
device life. Finally, the stack and heap data of a thread are usu-
ally excluded from other threads. The data of stack and heap
can be migrated only considering the corresponding thread.
However, file data can be shared among multiple threads.
Migrating file data based on the current state of a single thread
is inaccurate and may cause migration oscillation. Taking the

key-value database RocksDB as an example, RocksDB usually
adopts multiple threads to accelerate performance. Two threads
may query key-value items from the same file (in the form
of SSTable file) simultaneously. It is difficult to decide file
data migration in case of the two threads running on different
NUMA nodes.

Thus, we argue that one should only carefully migrate
threads without migrating file data on NVMM file systems
to reduce remote memory access and meanwhile avoid im-
balanced resource usage. Recently, a few works [39], [46]
propose to only migrate threads to the NUMA node where
the accessing file locates to reduce remote access. However,
they do not handle imbalanced NVMM accessing and CPU
utilization on NUMA architecture. Furthermore, these works
require modifying the application code. For example, [46]
modifies application to invoke two additional system calls to
obtain the location of file data and migrate threads respectively.
Since file systems contain file related information, such as file
data location and file data sharing, we can directly let file
system migrate thread without modifying application code.

In this paper, the basic principle of thread migration is
to migrate threads to the NUMA node where the accessing
file locates. In such doing, remote memory access can be
reduced. However, the basic principle faces three challenges.
Firstly, a thread may access multiple files that are placed on
different NUMA nodes. For example, a RocksDB thread may
search multiple files (SSTable) to find a key value pair. In this
case, carefully thread migration is required to avoid migration
oscillation. Secondly, the number of threads on a NUMA
node may increase after thread migration, which may cause
imbalanced CPU usage and further result in CPU contention.
Besides, NVMM file systems may place file data unevenly,
which may cause imbalanced NVMM accessing and further
result in NVMM contention (in this paper, all contention is
caused by imbalanced use of resource). Migrating threads to
reduce remote access may further exacerbate NVMM con-
tention. To reduce resource contention, one needs to conduct
thread migration by balancing reducing remote access and
reducing resource contention. Finally, in case of multiple
threads accessing the same file data, running these threads on
different NUMA nodes cannot benefit from sharing the last
level cache (LLC). One still needs to balance the benefit of
reducing resource contention and increasing LLC sharing.

We propose NUMA-aware thread migration (NThread) for
NVMM file systems. NThread applies what-if analysis to
evaluate what resource contention will be if all threads access
data locally. NThread obtains the node that performs local data
access for each thread according to the read amount on each
NUMA node. NThread also takes NVMM contention and CPU
contention into account. By analyzing the impacts of different
contention, NThread adopts priority based migration policy.
The policy by default lets all threads access data locally in
case of no resource contention. It takes NVMM contention
as the first priority and migrates threads with high write
ratio to remote nodes to reduce NVMM contention. Then the
policy considers CPU contention and migrates threads to other

CPU 3 XXXXXXXXXX

Node 3

MC

LLC

1512 13 14XXXX CPU 2

NVMM DRAM

Node 2

MC

LLC

8 9 10 11

IC

CPU 1 XXXXXXXXXX

Node 1

MC

LLC

74 5 6

IC

XXXX CPU 0

NVMM DRAM

Node 0

MC

LLC

30 1 2

NVMMDRAM

DRAM NVMM

IC

IC

Fig. 1. The architecture of NUMA with 4 nodes. Each node has one CPU,
and each CPU contains four cores.

nodes to avoid CPU contention. In case of multiple threads
accessing the same file data, NThread keeps all threads locally
to increase CPU cache sharing among threads. We implement
NThread on the existing NVMM file system NOVA [47]
under Linux kernel 4.18.8 and compare it with state-of-the-
art NVMM based file systems. The evaluation shows that
compared to NOVA, NThread increases throughput by 78.2%
and 32.8% on average for filebench and RocksDB respectively.

II. BACKGROUND AND MOTIVATION

A. NUMA architecture

NUMA architecture has multiple NUMA nodes and mul-
tiple CPU sockets. Each CPU socket contains multiple CPU
cores (e.g. 4 cores per CPU socket in Figure 1). These cores
share CPU last level cache (LLC). A CPU socket connects
to one local NUMA node by Memory Controller and one or
multiple remote NUMA nodes by Interconnect Network (IC
in Figure 1). All NUMA nodes provide a single globally-
addressable physical memory space with support for cache
coherence [50]. In NUMA-based systems, accessing remote
NUMA node suffers from higher latency than accessing local
NUMA node. This also results in IC contention. Moreover,
imbalanced data accessing may result in resource contention
on a specific NUMA node. For example, intensive writes on
one NUMA node brings NVMM contention to the node.

B. Non-volatile main memory

Emerging Non-Volatile Main Memories (NVMMs) pro-
vide persistency, byte-addressability and directly access fea-
tures. We can build file system on it (NVMM file system).
Since NVMM provides less write endurance (106-108) than
DRAM (1016) [11], [36], operating on NVMM file systems
should avoid introducing extra write operations, such as re-
peated write operations by migrating file data. Recently, Intel
provides a NVMM product – Intel Optane DC Persistent

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

W R RW W R RW W R RW W R RW

N
or
m
al
iz
ed
th
ro
ug
hp
ut

ext4-dax PMFS NOVA NOVA_n

Fig. 2. The normalized throughput against maximum throughput. We run two
RocksDB applications with db bench. Each db bench contains 10 threads. W,
R and RW represent fillseq, readrandom and readwhilewriting respectively.

Memory Module (Optane DC PMM). The read latency of
Optane DC PMM is about 3x slower than DRAM and the write
latency is closed to DRAM [22]. For read and write bandwidth,
Optane DC PMM is 1/3 and 1/6 of DRAM respectively. In
addition, the read bandwidth of Optane DC PMM is 3x the
write bandwidth. Similar to DRAM, NVMM is also affected
by NUMA architecture, which includes remote access and
imbalanced resource usage.

C. Motivation

Existing Linux operating systems use first-touch or inter-
leave approaches to allocate memory space and randomly
schedule threads on NUMA architecture. First-touch allocates
space on the node where the thread runs, which allows threads
to access data in local node, reducing remote access. However,
this approach can cause memory accessing contention when a
NUMA node holds a large volume of data. More importantly,
operating systems may schedule threads to different nodes.
Thus, first-touch may suffer from resource contention and
remote access. Interleave approach allocates space by using
round robin on all NUMA nodes. This helps to reduce memory
accessing contention but increases remote access. These two
approaches mainly optimize memory space allocate, such as
memory for heap, stack and page cache. However, NVMM file
systems usually bypass page cache [7], [10], [11], [23], [25],
[41], [45], [47] and use its own space allocator. This requires
the space allocator of NVMM file system to deal with the
problems on NUMA architecture.

Existing NVMM file systems are not aware of NUMA
architecture. They allocate space without considering hardware
resources on NUMA nodes. Besides, they rely on kernel
thread scheduler to select CPU node for running threads,
in which only CPU utilization is considered but file data
locations are ignored. This results in remote accessing when
a thread and its file data are not on the same node. We run
experiments to show the performance degradation of existing
NVMM file systems with two-nodes NUMA architecture. The
detailed experiment configurations are presented in Section V.

Since existing NVMM file systems do not support multiple
nodes and can only store files on a single NUMA node.
We build one file system on each node and run a RocksDB
instance with each file system separately. For comparison,
we add multiple NUMA nodes support in NOVA to show
the performance of existing NVMM file system on multiple
NUMA nodes (NOVA n). NOVA n treats NVMM devices on
multiple NUMA nodes as a single device. For example, pmem0
and pmem1 are the NVMM device of node 0 and node 1
respectively. NOVA only operates one NVMM device (such
as pmem0) by mapping it into kernel space. Instead, NOVA n
maps the two NVMM devices into the kernel together as a
continuous address space. NOVA n randomly writes file data
on NUMA nodes. We select three RocksDB workloads, includ-
ing fileseq (W), readrandom (R) and readwhilewriting (RW)
from db bench to show the performance. The database size
is 40 GB for each RocksDB run. We run the evaluation ten
times.

Figure 2 shows the normalized throughputs of two applica-
tions. The max value of each error bar represents the achieved
maximum throughput when all RocksDB threads are pinned
to the node where the data file locates. This allows all data
accessing to be performed locally. The min value of each
error bar represents the achieved minimum throughput when
all data accessing is performed remotely. In this case, all
RocksDB threads run on a node from the one the data file
locates. Existing NVMM file systems are NUMA-unware, and
IO threads are placed by the kernel thread scheduler without
considering NUMA architecture. The average throughputs
are achieved under these cases. Compared to the maximum
throughputs, the average throughputs of ext4-dax, PMFS,
NOVA and NOVA n reach 77.6%, 59.8%, 62.0% and 59.2%
of the maximum ones respectively under readwhilewriting
workload. Since threads are scheduled without considering
data placement, existing NUMA-unaware NVMM file systems
suffer from remote access and degraded performance. This
motivates us to explore NUMA-aware approach for NVMM
file systems.

III. DESIGN

In this section, we present the design issues of NThread,
a NUMA-aware thread migration module for NVMM file
systems. The key idea of NThread is to migrate threads
without migrating file data. This can reduce remote access
and imbalanced resource usage as well as avoids expensive
data migration on NVMM.

When NVMM file systems are mounted, NThread starts
working. Note that, NThread does not decide the initial
node where a thread runs, which is still decided by the
operating system thread scheduler. Operating system thread
scheduler determines that where a thread runs based on the
CPU utilization on each node. It may result in remote access
on NUMA architecture. Besides, it cannot solve NVMM
contention. NThread periodically (such as 1s) runs what-if
analysis to migrate threads to reduce remote memory access
and resource contention.

Reducing remote access

NVMM
contention?

CPU
contention?

Reducing NVMM
contention

Reducing CPU
contention

Migrating threads to target node

Y

Y

N

1

2

What-if
analysis

Getting initial
target node

Getting final
target node N

1) Read/write size 2) NVMM bandwidth
3) CPU utilization 4) Thread sharing

Fig. 3. The workflow of NThread each period.

Figure 3 shows the workflow of NThread each period.
NThread firstly collects runtime information of each thread
and node, including the data size of read/write, NVMM
accessing bandwidth, CPU utilization and thread sharing in-
formation. Then NThread performs what-if analysis to get the
target node where a thread should be migrated to. After what-
if analysis, NThread migrates threads to the target node to
improve performance. What-if analysis can directly decide the
target node by reducing remote access. However, migrating
all threads to perform local access cannot reduce NVMM
contention and may result in CPU contention. For example,
all threads read file data on node 0, and migrating all these
threads to node 0 can cause CPU contention on node 0.
Thus, what-if analysis decides the target node with two steps.
Firstly, what-if analysis decides the initial target node to reduce
remote access (1© in Figure 3, Section III-A). Secondly, what-
if analysis adopts priority based target node selection (2©
in Figure 3) to get the final target node to reduce NVMM
and CPU contention (Section III-C). Note that, migrating
threads to reduce CPU/NVMM contention may suffer from
extra remote access again. However, we do not take this
into account as resource contention has larger impact on
performance degradation. In case of existing severe NVMM
contention, increasing remote access turns out to improve
overall performance [29]. Meanwhile, migrating threads to
reduce resource contention may destroy CPU cache sharing,
which can affect data accessing performance. Thus, what-if
analysis also considers handling data sharing among threads
(Section III-D).

A. Deciding initial target node

The basic principle of what-if analysis is to assume that all
threads access data locally. For a given thread, we decide the
initial target node to reduce remote access.

For file write, NThread always avoids remote write.
NThread lets the thread directly write data on the NUMA node

where threads run. As illustrated in Section III-C, a writing
thread may be migrated to other nodes for reducing resource
contention. Even under such a case, the writing thread still
executes local writes.

For file read, a thread could access different file data and
the file data can be distributed on different NUMA nodes. For
example, one thread can read multiple SSTables to get target
key-value pair, and these SSTables are stored on different
NUMA nodes. File systems provide data read APIs with the
data size. Reading a large amount of data usually indicates
intensive read pressure. Thus, for one thread reading data of
multiple files, NThread decides its initial target node according
to its read amount on each NUMA node. To reduce thread
migration oscillation, only when the read data size of a thread
on one NUMA node is higher than all other nodes by a value
per period (such as 200 MB, the bandwidth of one Optane DC
PMM is approximately 6.8 GB/s), we think the node has a lot
of data to read for the thread and regard the node as initial
target node to reduce remote access. Otherwise, we think that
the thread does not have an initial target node. Migrating
threads to the initial target node can reduce remote memory
access.

B. Resource contention analysis

When deciding the initial target node, NThread primarily
considers reducing remote access. However, it cannot reduce
NVMM contention and may cause CPU contention on NUMA
architecture. Thus, NThread needs to take NVMM contention
and CPU contention into account for deciding the final target
node. Before presenting the policy for selecting the final target
node, we analyze the different impacts of NVMM contention
and CPU contention to decide which contention is more
important.

On one hand, the contention comes from NVMM file system
itself which places file data without considering the usage of
hardware resources on NUMA architecture. If the access of
NVMM is imbalanced among NUMA nodes, it will lead to
amounts of hot data on a node, resulting in serious NVMM
accessing contentions on that node. Our results show that
NVMM contention can reduce performance by 73.0%. On
the other hand, when multiple threads run on the same node,
these threads compete for CPU resources. CPU contention can
reduce performance by 39.3%.

In order to evaluate the impact of both NVMM and CPU
contention. We conduct experiments to analyze them. All
threads and file data are operated on node 0. To show the
impact of CPU contention, we set some cores offline by
keeping 4 cores online on node 0 and run more threads (8
and 16). To reflect the performance impact of reducing CPU
contention, We migrate threads to node 1 and keep the
data operation of the migrated threads on node 0. Figure 4
shows the normalized bandwidth against without handling
CPU contention. The detailed experiment configurations are
presented in Section V. For 1KB 8, 1KB represents read/write
block size and 8 represents the number of running threads.
rw80 presents file read ratio is 80%. When performing 1 KB

0.75
0.8
0.85
0.9
0.95
1

1.05
1.1
1.15

1K
B_
8

1K
B_
16

4K
B_
8

4K
B_
16

16
KB
_8

16
KB
_1
6

N
or
m
al
iz
ed
B
an
dw
id
th

rw80 rw60 rw40 rw20

Fig. 4. The performance of reducing CPU contention.

TABLE I
NOTATIONS USED IN NODE SELECTION OF NTHREAD

BWrN The read bandwidth of Node N.
BWwN The write bandwidth of Node N.
BWN The total read and write bandwith of Node N.
BWaverage The average NVMM bandwidth of all nodes.
BWr weight The weight of read bandwidth: 1/3 in this paper.

D writei
The data size of file write for thread i within each
time window.

D readi
The data size of file read for thread i within each
time window.

W ratioi The write ratio of thread i.
D migrateN The amount of data that Node N can be migrated.
CPUi The CPU utilization of thread i.
CPUN The CPU utilizaiton of Node N.

CPUlimit
The upper limit of CPU utilization: 90% in
this paper.

Timei
The time that thread i runs within each time
window.

TimeW The execution time window of NThread, such as 1s.

read/write operations, the evaluation does not cause NVMM
contention (1KB 8 and 1KB 16) and migrating threads to
other free nodes can reduce CPU contention. Figure 4 shows
that the bandwidth can be improved by 13.2%. When in-
creasing access size (4KB/16KB), theoretically reducing CPU
contention can improve performance. However, NVMM has
serious contention, and the performance decreased. The re-
sults show that the performance can be reduced by 20%.
This is because NVMM contention is the main reason for
performance. Therefore, when there exists both NVMM ac-
cessing contention and CPU contention, NThread only handles
NVMM contention (see Figure 3).

C. Priority based target node selection

Only deciding target node by reducing remote access cannot
solve resource contention problems. Therefore, what-if anal-
ysis also uses priority based migration policy to decide final
target node. What-if analysis considers NVMM contention and
CPU contention. When there exists both NVMM contention
and CPU contention, NThread only handles the problem of
NVMM contention (as shown Section III-B). The notations
used in node selection are listed in Table I.

1) Avoiding NVMM accessing contention: We can migrate
a part of hot data from high NVMM accessing contention
node to low NVMM accessing contention node to solve this
problem. However, NVMM provides higher access latency and
lower bandwidth than DRAM, migrating file data between
NVMM of different nodes is expensive and increases addi-
tional access pressure. Our results show that migrating 16 KB
data on NVMM costs 35 us, which is 2.8x higher than DRAM.
File systems contain a large number of files and a file can
be accessed by multiple threads. It is difficult to maintain
the accessing status of each file and migrate them. Therefore,
NThread does not migrate file data. In addition, if NThread let
a thread that runs on high NVMM accessing contention node
write new data on low NVMM accessing contention node,
it can reduce NVMM contention on high NVMM accessing
contention node but introduce remote write operations. Remote
writing has higher latency than local writing. Our results show
that remote writing reduces performance by 65.5% compared
to local writing. Besides, remoting write may result in remote
read of these new writing data, increasing remote access.
Therefore, NThread migrates threads and writes file data to
the node where the thread runs to reduce NVMM accessing
contention.

NThread obtains NVMM bandwidth for each node (we
use ipmwatch [21] to get the bandwidth) to detect if im-
balanced NVMM accessing occurs. NThread calculates the
total NVMM bandwidth of each node by Equation 1. The
BWrN and BWwN are the read and write bandwidth of Node
N. BWN is the bandwidth of Node N after our calculation.
BWr weight is the weight of read bandwidth. Since the read
bandwidth of NVMM is higher than its write bandwidth,
we reduce the weight of read bandwidth. In this paper, we
choose the 1/3 as the BWr weight. We get this value from the
evaluation in Section V-G. NThread judges the imbalanced
NVMM accessing by considering the theoretical maximum
bandwidth of Optane DC PMM1 and our test results. We
can get the maximum bandwidth of a node by multiplying
the theoretical maximum bandwidth of one Optane DC PMM
by the number of Optane DC PMM. In this paper, when the
NVMM bandwidth of a node exceeds 80% of the maximum
bandwidth and the NVMM bandwidth of other nodes is lower
than 1/2 of the node, we argue that the NVMM accessing
is imbalanced and the node has high NVMM accessing con-
tention. NThread should migrate threads to balance NVMM
accessing.

BWN = BWrN ∗BWr weight +BWwN (1)

NThread performs NVMM balancing operations by mi-
grating threads with high write ratio from the high NVMM
accessing contention node to low NVMM accessing contention
node. Since NThread sets file write position on the node where
the application thread runs, moving away high write ratio

1the read and write bandwidth of single Optane DC PMM are approximately
6.8 GB/s and 1.85 GB/s respectively and the bandwidth of multiple devices
is superimposed.

threads can reduce NVMM write operations on high NVMM
accessing contention nodes. Besides, writing more new data
on low NVMM accessing contention nodes can bring new file
data to the node, introducing read operations. This approach
avoids file data migration overhead of NVMM and solves the
NVMM accessing contention problems. NThread calculates
write ratio of each thread by Equation 2. D writei and D readi

are the data size of file write and read for thread i within each
time window (the running cycle of NThread, TimeW , such as
1s) respectively. Note that, NThread currently does not support
mmap operations. The D writei and D readi are measured
only for read/write system calls.

W ratioi = D writei/(D writei +D readi) (2)

Since migrating threads may introduce new NVMM con-
tention, such as migrating too many threads to low NVMM
accessing nodes, NThread evaluates the amount of data that
can be migrated for migrating threads. Equation 3 shows the
calculation formula. BWN is the NVMM bandwidth of Node
N and BWaverage is the average of NVMM bandwidth of all
nodes. D migrateN is the amount of data that Node N can be
migrated in (D migrateN is less than 0) or out (D migrateN
is greater than 0). We multiply the value of bandwidth by time
window (TimeW , the running cycle of NThread, such as 1s)
because we perform balancing operations per time window.

D migrateN = (BWN −BWaverage) ∗ TimeW (3)

Migrating a thread to low NVMM accessing contention node
should satisfy Equation 4. This limitation ensures that the data
amount of NVMM accessing on Node N does not exceed
BWaverage after migrating thread i to it, avoiding introducing
new contention on Node N. Since migrating thread i to Node N
only brings write operations to Node N, we use the amount of
write data for thread i (D writei). Once Equation 4 is satisfied,
node N is the final target node of thread i.

D migrateN +D writei <= 0 (4)

2) Avoiding CPU contention: NThread migrates threads to
reduce remote memory access and NVMM accessing imbal-
ance. However, these operations can bring CPU contention if
we do not consider CPU utilization. NThread calculates CPU
utilization to avoid CPU contention caused by imbalanced
CPU usage. Since NVMM contention has greater impact
than CPU contention (Section III-B), NThread handles CPU
contention only when the system does not have NVMM
contention.

NThread calculates the CPU utilization for each thread
and sum the CPU utilization of each NUMA node. When
NThread finds that NUMA nodes have imbalanced CPU
utilization that the utilization of one CPU is 2x of the other
CPUs and the CPU utilization exceeds CPUlimit (we set the
CPUlimit is 90% and get this value through experiments in
Section V-G), NThread migrates threads to balance the usage
of CPU. NThread migrates one thread to a node only if the
CPU utilization of the node does not exceed a threshold after

migrating. As shown in Equation 5, NThread migrates thread i
to node N only if the sum of the CPU utilization of node N and
thread i does not exceed CPUlimit. CPUN is the utilization of
CPU on Node N, which is the sum of the CPU utilization of
all threads running on Node N. CPUi is the CPU utilization of
thread i. Once Equation 5 is satisfied, node N is the final target
node of thread i. We calculate CPU utilization for each thread
according to Equation 6. Timei is the time that thread i runs
within each time window. Cores is the number of core in each
physical CPU. TimeW is the time window of NThread (such as
1s). This approach can avoid serious CPU contention within
each CPU.

CPUi + CPUN <= CPUlimit (5)

CPUi = Timei/(TimeW ∗ cores) (6)

D. Handling data sharing

All threads performing local access can let threads that
access the same data run on the same node, increase CPU
cache sharing among threads. However, reducing resource
contention by migrating threads (Section III-C) may migrate
threads that access the same data to different NUMA nodes,
destroying CPU cache sharing between threads. CPU cache
sharing can avoid reading data from NVMM and improve
performance. Our results show that CPU cache sharing among
threads can improve performance by 31.5% when reading file
data. Therefore, NThread avoids migrating a thread to reduce
resource contention if the thread accesses the same file with
other threads simultaneously.

NThread obtains threads sharing information from virtual
file system (VFS). VFS records the number of threads that
each file is being accessed on (i count in inode). When a
thread read/write a file and the i count of the file is greater
than 1, the thread is sharing file data with other threads.
NThread does not migrate the thread during the process of
reducing resource contention.

IV. IMPLEMENTATION

NThread is a module for NVMM file systems which
periodically (such as 1s) fetches information from NVMM
file systems and performing thread migration. We skip some
threads, such that read/write some fewer data, to optimize
the process. NThread is transparent to applications. We im-
plement NThread based on NOVA [47] on Linux kernel
4.18.8. NThread can be used for all NVMM file systems. We
modify file data block index in NOVA to let NThread get
the node where accessing file data is located for each thread.
Besides, we modify file system space allocator to support
allocating space on a specified node. Therefore, each thread
can write data on the node where the thread is running on.
In NThread, we migrate thread by using binding function
in operating system (sched setaffinity). In total, implementing
NThread requires total 1,300 lines of codes.

TABLE II
THE CONFIGURATION OF NTHREAD. Y/N REPRESENT

ENABLING/DISABLING THE FEATURE.

Reducing
remote access

Reducing
CPU contention

Reducing
NVMM contention

Increasing
data sharing

NThread rl Y N N N
NThread cpu Y Y N N
NThread nm Y Y Y N
NThread Y Y Y Y

V. EVALUATION

In this section, we evaluate NThread and show the per-
formance improvement by reducing remote access, avoiding
CPU, NVMM contention and increasing data sharing.

A. Experimental setup

We conduct all experiments on a server equipped with two
NUMA nodes. Each node contains an Intel(R) Xeon(R) Gold
5215 CPU (2.50GH) processor, a 128 GB Optane DC PMM
device and 64 GB DRAM. The operating system is CentOS
7.6.1810, Linux kernel version is 4.18.8. We configure Optane
DC PMM with App direct mode [22]. All experimental results
are the average of at least 3 runs.

B. Compared systems

We compare NThread with ext4-dax [8], PMFS [11] and
NOVA [47]. Since Optane DC PMM cannot establish contin-
uous regions across NUMA nodes, NVMM device (pmemX)
is installed on each NUMA node. Ext4-dax, PMFS and NOVA
only support building file system on one device, they cannot
build a file system across multiple nodes. Therefore, we build
a file system for each node. For single application test (fio,
filebench and RocksDB), we just test one file system for them.
For two applications, such as two RocksDBs and filebenches,
we run one application on each file system. In this case,
running multiple applications for existing NVMM file systems
does not have NVMM contention problem. To show the per-
formance of existing NVMM file system on multiple NUMA
nodes, we modify NOVA to build a file system supporting
multiple nodes (NOVA n, see Section II-C).

Table II shows the four configurations used in the eval-
uation. NThread rl shows the benefits of reducing remote
access, which pins threads to the NUMA node where the
reading file locates. Besides, NThread rl lets a thread di-
rectly write data on the NUMA node where the thread runs.
Therefore, NThread rl reduces remote access. NThread cpu
not only pins threads as NThread rl, but also reduces CPU
contention as shown in Section III-C2. This can reduce
CPU contention as well as reduce remote access. Based
on NThread cpu, NThread nm further reduces NVMM con-
tention (Section III-C1). Finally, NThread enables all these
configured features.

C. Microbenchmark

We use fio [2] to show the performance of NThread. Each
thread accesses a 4 GB private file using 4 KB block size.
We set file read ratio to 100% (read-only), 80% (rw80),

60% (rw60), 40% (rw40), 20% (rw20) and 0% (write-only).
Since our server only contains one Optane DC PMM for
each NUMA node, 4 running threads can run out of its
bandwidth. We set each node with 4 active cores and set the
rest offline. We run 4/8 threads to show the results with/without
CPU contentions respectively. Figure 5 shows the bandwidth
of each file system (we calculate the bandwidth by using
Equation 1). Before the evaluation, we pre-allocate all file data
on NUMA node 0 to show the performance of each file system.

When running 4 threads, as shown in Figure 5(a),
NThread rl improves bandwidth by 15.1%, 27.1%, 40.5%
and 22.3% on average under all workloads against ext4-dax,
PMFS, NOVA and NOVA n respectively. This is because all
file data is stored on node 0 and meanwhile NThread rl binds
all threads on node 0 to provide local file read without remote
access. On the contrary, the 4 threads are interleaved on the
two NUMA nodes by the kernel scheduler for existing NVMM
file systems. This results in remote access and degrades
performance. As each of the 4 threads runs on an individual
core, NThread cpu performs similar to NThread rl due to few
CPU contention.

When performing mixed read and write operations (rw80
and rw60), NThread improves performance by 12.6% and
12.7% on average against NThread rl and NThread cpu re-
spectively. This is because NThread detects NVMM contention
and migrates threads with high write ratios to other node. This
in turn results in new data written to different nodes. Corre-
spondingly, the reads to these data are distributed between
two nodes, and thus reduces NVMM contention. As for rw40
and rw20, NThread does not detect NVMM contention and
pins all threads on node 0, which is similar to NThread rl. As
for write-only workloads, there is no data reads. NThread rl,
NThread cpu and NThread do not migrate threads to reduce
remote access and resource contention. Thus, NThread per-
forms similar to both NThread rl and NThread cpu. Currently,
NThread does not address NVMM read contention. As a result,
NThread performs similar to NThread rl and NThread cpu for
read-only workload.

Figure 5(b) shows the results when running 8 threads,
NThread increases bandwidth by 90.4%, 117.1%, 129,6%,
43.4% and 44.7% on average against ext4-dax, PMFS, NOVA,
NOVA n and NThread rl respectively. Since the 8 threads
compete for 4 cores, NThread addresses both CPU and
NVMM contentions compared to NThread rl. Moreover, un-
like these existing file systems, NThread migrates threads
to reduce remote access. This allows NThread to achieve
bandwidth improvement. NThread cpu performs similar with
NThread. This is because initially the CPU and NVMM
contentions occur on the same node 0, and NThread cpu
migrates 4 threads to node 1 to solve CPU contention. This
in turn results in reduced reads/writes to node 0 as well as
reduced NVMM contention on node 0.

As for read-only workloads, NThread rl pins all threads on
NUMA node 0, resulting in CPU and NVMM contention. Both
NThread cpu and NThread migrate threads to NUMA node 1

0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8

��������� ���� ���� ���� ���� ����������

B
an
dw
id
th
(G
B
/s
)

ext4-dax
PMFS
NOVA

NOVA_n
NThread_rl
NThread_cpu

NThread

(a) Fio for running 4 threads

0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8

��������� ���� ���� ���� ���� ����������

B
an
dw
id
th
(G
B
/s
)

ext4-dax
PMFS
NOVA

NOVA_n
NThread_rl
NThread_cpu

NThread

(b) Fio for running 8 threads

Fig. 5. The bandwidth of fio. rw presents read ratio.

to reduce CPU contention but still suffer from NVMM con-
tention. Therefore, NThread cpu and NThread only improve
bandwidth by 5% compared to NThread rl. For write-only
workloads, NThread rl, NThread cpu and NThread directly
write data on the node where the thread runs. Since there exist
no remote accesses, the three approaches perform similarly.
Therefore, they perform similar.

Note that, the threads of NOVA n are evenly scheduled
to run between two NUMA nodes. This can reduce both
CPU and NVMM contentions, but still suffers from remote
access under read-write mixed workloads. Thus, NOVA n
outperforms NThread rl under read-write mixed workloads,
but still performs worse than NThread cpu and NThread.

NThread rl shows lower bandwidth for running 8
threads (Figure 5(b)) than running 4 threads (Figure 5(a))
for read-only, rw80, rw60, rw40 and rw20 workloads. This
is because NThread rl binds all threads to NUMA node 0
to perform local data access. Since there exist only 4 active
cores for each node, running 8 threads suffers from thread
switching overheads. This reduces system performance. As for
write-only workloads, write threads are evenly scheduled to
each NUMA node for NThread rl, which allows local writes.
NThread rl performs better for running 8 threads than running
4 threads.

D. Macrobenchmark

We use filebench [1], a file system benchmark that simulates
a large variety of workloads, as macrobenchmark. Similar to
previous works [34], [47], we use the default configuration to
run filebench as show in Table III. We also let all CPU core
online to show the performance. To show the performance of
NThread under multiple applications running, we run filebench
with one (Figure 6(a)) and two (Figure 6(b)) applications.

For running one application, NThread rl outperforms ext4-
dax, PMFS, NOVA and NOVA n by 166.3%, 869.1%, 78.1%
and 35.1% on average respectively. This is because NThread rl
avoids remote access. Besides, NThread rl pins all threads to
the NUMA node where the file data locates. It can increase
data sharing between threads. NThread nm and NThread cpu

TABLE III
FILEBENCH WORKLOAD CHARACTERISTICS

Workload Average file size files I/O size threads r:w ratio
Fileserver 128 KB 100 K 1MB 50 1:2
Webserver 16 KB 100 K 1MB 100 10:1
Webproxy 16 KB 100 K 16 KB 100 5:1
Varmail 16 KB 100 K 1 MB 16 1:1

reduce resource contention but ignore data sharing be-
tween threads, they show poor performance than NThread rl.
NThread reads file counter to support file data sharing between
threads and avoids migrating threads that accessing to the same
data on different NUMA nodes. NThread performs better than
NThread nm and NThread cpu.

For running two applications, existing NVMM file sys-
tems generate more remote access and resource contention.
NThread rl can make two applications run on different NUMA
nodes, which does not produce remote access and resource
contention. Therefore, NThread rl improves performance by
157.5%, 729.7%, 160.8% and 103.0% on average for ext4-
dax, PMFS, NOVA and NOVA n. Because NThread runs an
application on a NUMA node, the system does not have the
problem of resource contention, NThread cpu, NThread nm
and NThread show similar performance with NThread rl.

E. Application

RocksDB [13] is a high-performance, persistent key-value
store and is widely deployed for Internet services [18], [33],
[42] and storage services [4], [14]–[16], [31]. RocksDB is
implemented based on Log-Structure Merge Trees (LSM-
Tree) [35] and relies on file system to support logs and
data persistency. For example, RocksDB persists key-value
operations in write-ahead log and flushes key-value pairs into
Sorted String Table (SSTable) files on underlying file systems.
Thus, RocksDB is widely used for evaluating file system
performance [22], [27], [32], [46], [48], [49], [52]. Similarly,
in this paper, we use RocksDB to evaluate the defectiveness
of NThread.

We set RocksDB with 10 M keys and 4KB value size. The
data size of each RocksDB application is 40 GB. To show the

0

100

200

300

400

500

600

700

800

��������� ��������� �������� �������

Th
ro
ug
hp
ut
(K
op
s/
s)

��������
����
����
NOVA_n
NThread_rl
NThread_cpu
NThread_nm
�������

(a) One filebench application

0

200

400

600

800

1000

1200

1400

��������� ��������� �������� �������

Th
ro
ug
hp
ut
(K
op
s/
s)

��������
����
����
NOVA_n
NThread_rl
NThread_cpu
NThread_nm
�������

(b) Two filebench applications

Fig. 6. The throughput of filebench workloads

performance of NThread with multiple applications running,
we run one (Figure 7(a)) and two (Figure 7(b)) RocksDB
applications. Each RocksDB runs 10 threads, which is equal
to the number of cores per CPU.

When running one RocksDB application, NThread improves
throughput by 111.3%, 57.9%, 32.8% and 24.1% on average
compared to ext4-dax, PMFS, NOVA and NOVA n respec-
tively. For fillseq (W) operations, NThread evenly writes all
file data on the node where the thread runs, reducing remote
write and NVMM contention. For readrandom (R) operations,
NThread improves throughput by 68.0%, 50.1%, 50.4% and
12.8% for ext4-dax, PMFS, NOVA and NOVA n respec-
tively, as NThread reduces remote access. Since NOVA n
randomly writes data to each NUMA node, NVMM contention
is avoided when performing read operations. Therefore, the
performance of NOVA n is better than ext4-dax, PMFS and
NOVA. Readwhilewriting (RW) performs read and write op-
erations, and NThread improves by 47.1%, 26.9%, 17.8% and
14.3% for ext4-dax, PMFS, NOVA and NOVA n respectively.

For running two RocksDB applications, the remote access
of existing NVMM file systems increases. NThread improves
performance by 141.2%, 117.4%, 54.3% and 46.8% on aver-
age compared to ext4-dax, PMFS, NOVA and NOVA n.

F. Multiple NUMA nodes

To show the performance of NThread under multiple mem-
ory nodes. We run NThread on a server with 4 NUMA nodes.
Each node has an Intel (R) Xeon (R) Gold 5215 CPU processor
and 16 GB DRAM. The operating system is CentOS 7.6.1810,
Linux kernel version is 4.18.8. We use DRAM to emulate
NVMM in this evaluation. Since DRAM space limits, we
only run RocksDB with 1 M keys (the other configuration
of RocksDB is the same as Section V-E). Figure 7(c) shows
the results. We can see that NThread improves performance
by 34.4%, 65.5%, 41.9% and 21.7% compared to ext4-dax,
PMFS, NOVA and NOVA n. Since we replace NVMM with
DRAM in this evaluation and DRAM has high accessing band-
width, the performance improvement of NThread is reduced.

G. Parameter Tuning
In this section, we show some parameters choices through

evaluation. To show the impact of CPU contention, we set
some cores offline by keeping 4 cores online on each node.

CPU utilization We choose CPU utilization setting
CPUlimit in Equation 5 by migrating threads to node N and
varying the value of CPUlimit. We set the value of CPUlimit to
80%, 90%, 100%, 110%, 130% and no limits respectively. We
run the evaluation by using 16 threads. We set the operating
size as 1 KB to avoid introducing NVMM contention. Figure 8
shows the normalized bandwidth against CPUlimit at 100%.
When the CPUlimit is greater than 100%, CPU contention is
increased and the performance is reduced. To reduce CPU con-
tention and avoid remote access, NThread sets the CPUlimit

as 90% in this paper.
NVMM contention Since the read bandwidth of Optane

DC PMM is much higher than the write bandwidth, we
cannot directly add read and write bandwidth to judge NVMM
contention. We run evaluation to obtain the calculation ap-
proach of Optane DC PMM bandwidth. We mix read and
write operations with read ratio from 100% to 0% (x-axis
in Figure 9) and show the bandwidth (y-axis) under different
calculation methods. When we calculate bandwidth by using
1/3 of read bandwidth, the bandwidth of Optane DC PMM has
a stable value. Therefore, we set the weight of read bandwidth
as 1/3 (BWr weight in Section III-C1). We calculate Optane
DC PMM bandwidth by adding write bandwidth and 1/3 of
read bandwidth. When the used bandwidth of one NUMA
node exceeds 80% of the maximum bandwidth (Section III-C),
we think that NVMM has severe access contention.

VI. RELATED WORK

Reducing remote access [12] builds a locality-aware page
table, which provides accurate information to guide locality-
aware thread and data mapping policies. However, it identifies
the accessing thread within the page-table upon TLB miss,
which requires hardware level facilities that are not available
in all hardware. [26] builds temporal flows of interactions
between threads and objects, which helps programmers under-
stand why and which memory objects are accessed remotely.

0

50

100

150

200

250

300

350

� � ��

Th
ro
ug
hp
ut
(K
op
s/
s)

ext4-dax
PMFS
NOVA
NOVA_n
NThread

(a) One RocksDB application

0

100

200

300

400

500

600

700

� � ��

Th
ro
ug
hp
ut
(K
op
s/
s)

ext4-dax
PMFS
NOVA
NOVA_n
NThread

(b) Tow RocksDB applications

0

500

1000

1500

2000

2500

3000

� � ��

Th
ro
ug
hp
ut
(K
op
s/
s)

ext4-dax
PMFS
NOVA
NOVA_n
NThread

(c) Four RocksDB applications on four nodes

Fig. 7. The throughput of RocksDB. W, R and RW represents fillseq, readrandom and readwhilewriting respectively in db bench.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

��������� ���� ���� ���� ���� ����������

N
or
m
al
iz
ed
B
an
dw
id
th

80
90

100
110

130
nolimit

Fig. 8. CPU utilization

1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
6.5

��� �� �� �� �� �� �� �� �� �� �
B
an
dw
id
th
(G
B
/s
)

r+w
r/2+w
r/3+w
r/4+w
r/5+w

Fig. 9. NVMM bandwidth

NThread can directly discovery remote access by reading file
system file block index. Operating systems allocate thread
memory (such as stack and heap) on the node where the thread
locates to avoid remote access. HydraFS [39] and [46] suggest
binding threads to the NUMA node where the accessing file
locates to reduce remote access. These works only reduce
remote memory accessing on NUMA architecture. NThread
also migrates thread based on the amount of data that the
thread currently read to avoid remote access.

Resource contention There are many works solving re-
source contention. [6] uses LLC miss rate to predict contention
between threads, and evenly allocates threads to each node
by using LLC miss rate to avoid contention. However, LLC
miss rate cannot reflect the CPU utilization and is likely to
cause CPU contention. [44] predicts both memory bandwidth
utilization and optimal core allocations with high accuracy
and low overhead for memory-intensive multi-threaded ap-
plications on large-scale NUMA machines. [17] accounts for
contention at multiple resources such as processor functional
units and memory channels. And then it predicts the best
thread allocation and resources needed for a given workload
to meet a specified performance target. NThread predicts
contention based on current resource usages, such as CPU
utilization and NVMM bandwidth, which can better reflect
the resource usage and contention. Then NThread dynamically
migrates threads to improve performance.

[30] argues that maximizing data locality does not always
minimize execution time, it may be more advantageous to allo-
cate data on a remote processor to reduce memory contention.

[9] solves memory contention on memory traffic by using
page-replication, interleaving and co-location to allocate mem-
ory. [19], [28] consider the asymmetric interconnect architec-
ture to maximize bandwidth and optimal page placement. All
these works reduce resource contention by placing threads first
and then migrate memory. However, NVMM has lower access
latency and less bandwidth than DRAM. Migrating data on
NVMM takes up limited bandwidth and reduces performance.
NThread is designed for NVMM file systems, and it can
reduce NVMM contention by specifying the write location
of new file data. Therefore, NThread only migrates threads.
[50] designs a bandwidth-aware memory placement policy to
avoid memory contention. It places data amount according to
the DRAM-to-NVMM bandwidth ratios. Since the bandwidth
of DRAM is higher than NVMM, [50] places more data in
DRAM than NVMM. However, the amount of data stored is
not related with the access frequency of data. Placing less
data on NVMM than DRAM does not mean NVMM has low
access pressure.

Resource sharing [38] detects sharing patterns online with
low overhead by using performance monitoring unit(PMU).
[28] and [24] sample hardware counters to detect communi-
cating threads and place them onto a well-connected nodes.
NThread determines data sharing between threads by reading
the status of file. If a file is accessed by multiple threads, the
file is shared among these threads. And then NThread migrates
these threads to the NUMA node where the file locates,
supporting data sharing. NThread avoids migrating threads
accessing the same data on different nodes.

Thread and memory migrating [28] migrates thread
memory by using full memory migration and dynamic memory
migration. [6] argues that migrating a large amount of thread
memory with threads resulting in good performance. These
works are orthogonal to NThread. NThread only migrates
threads without memory migration in this paper.

VII. CONCLUSION

Since NVMM file systems directly access file data on the
memory, NUMA architecture has a large impact on their
performance due to the presence of remote memory access and
resource contention. However, existing NVMM file systems,
such as ext4-dax, PMFS and NOVA, are unware of NUMA
architecture and thus suffer from degraded performance. In
this paper, we avoid the expensive data migration on NVMM,
and instead present NThread. NThread is a NUMA-aware
thread migration approach for high performance NVMM file
systems. NThread performs what-if analysis to find target node
to reduce remote access and resource contention. Besides,
NThread supports file data sharing between threads. Compared
to existing NVMM file system NOVA, NThread achieves up
to 205.6% and 44.6% throughput improvements for filebench
and RocksDB applications.

ACKNOWLEDGES

We thank the anonymous reviewers and our shepherd Andre
Brinkmann for their insights and valuable comments. We also
thank Alvaro Frank, Frederic Schimmelpfennig, Wanling Gao,
Shukai Han and Wenqing Jia for their suggestions. This work
is supported by National Key Research and Development
Program of China under grant No.2016YFB1000302, Strategic
Priority Research Program of the Chinese Academy of Sci-
ences under grant No. XDB44030200, Beijing Natural Science
Foundation under grant No. L192038, and Youth Innovation
Promotion Association CAS.

REFERENCES

[1] Filebench 1.4.9.1. https://github.com/filebench/filebench/wiki.
[2] Fio-2.14. https://github.com/axboe/fio.
[3] A. M. Caulfield A. Akel, R. K. Gupta T. I. Mollov, and S. Swanson.

Onyx: A protoype phase change memory storage array. In Proceedings
of the 3rd USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’11, pages 2–2, 2011.

[4] M. Annamalai. Zippydb: a modern, distributed keyvalue data store.
https://www.youtube.com/watch?v=DfiN7pG0D0k, 2015.

[5] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh, JC Park, SO Park,
HS Kim, IK Yoo, et al. Highly scalable nonvolatile resistive memory
using simple binary oxide driven by asymmetric unipolar voltage pulses.
In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE
International, pages 587–590, 2004.

[6] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexan-
dra Fedorova. A case for numa-aware contention management on
multicore systems. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’11, pages 1–1.
USENIX Association, 2011.

[7] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Coetzee Derrick. Bpfs:better I/O
through byte-addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09,
pages 133–146. ACM, 2009.

[8] Jonathan Corbet. Supporting filesystems in persistent memory. https:
//lwn.net/Articles/610174/, September 2014.

[9] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.
Traffic management: A holistic approach to memory placement on numa
systems. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 381–394. ACM, 2013.

[10] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and protection in the zofs user-space nvm file system.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, pages 478–493. ACM, 2019.

[11] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, pages 15:1–15:15.
ACM, 2014.

[12] Matthias Diener Eduardo H. M. Cruz, Laércio L. Pilla Marco A.
Z. Alves, and Philippe O. A. Navaux. Optimizing memory locality using
a locality-aware page table. 2014 IEEE 26th International Symposium
on Computer Architecture and High Performance Computing, 2014.

[13] Facebook. Rocksdb. http://rocksdb.org/, 2013.
[14] Facebook. Cassandra on rocksdb at instagram.

https://developers.facebook.com/videos/f8-2018/cassandra-on-rocksdb-
at-instagram., 2018.

[15] Facebook. Myrocks. http://myrocks.io/, 2019.
[16] S. Iyer G. J. Chen, J. L. Wiener, R. Lei A. Jaiswal, W. Wang N. Simha,

T. Williamson K. Wilfong, and S. Yilmaz. Realtime data processing at
facebook. In Proceedings of the International Conference on Manage-
ment of Data, pages 1087–1098. ACM, 2016.

[17] Daniel Goodman, Georgios Varisteas, and Tim Harris. Pandia: Com-
prehensive contention-sensitive thread placement. In Proceedings of the
Twelfth European Conference on Computer Systems, EuroSys ’17, pages
254–269. ACM, 2017.

[18] A. Gupta. Followfeed: Linkedin’s feed made faster and smarter.
https://engineering.linkedin.com/blog/2016/03/followfeed–linkedin-s-
feedmade-faster-and-smarter, 2016.

[19] David Gureya. Asymmetry-aware page placement for contemporary
numa architectures. 2018.

[20] Intel. Intel and Micron produce breakthrough memory technology,
https://newsroom.intel.com/news-releases/intel-and-micron-produce-
breakthrough-memory-technology/ edition.

[21] Intel. ipmwatch. https://github.com/opcm/pcm.
[22] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance mea-
surements of the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[23] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: Reducing software
overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
pages 494–508. ACM, 2019.

[24] Ali Kamali. Sharing aware scheduling on multicore systems. In MSc
Thesis, Simon Fraser Univ.,, 2010.

[25] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 460–477. ACM, 2017.

[26] Renaud Lachaize, Baptiste Lepers, and Vivien Quema. Memprof: A
memory profiler for NUMA multicore systems. In Presented as part
of the 2012 USENIX Annual Technical Conference (USENIX ATC 12),
pages 53–64. USENIX, 2012.

[27] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and
Jinkyu Jeong. Asynchronous i/o stack: A low-latency kernel i/o stack for
ultra-low latency ssds. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 603–616, Renton, WA, July 2019. USENIX
Association.

[28] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. Thread and
memory placement on NUMA systems: Asymmetry matters. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 277–
289. USENIX Association, 2015.

[29] Zoltan Majo and Thomas R. Gross. Memory system performance in
a numa multicore multiprocessor. In Proceedings of the 4th Annual
International Conference on Systems and Storage, SYSTOR ’11, pages
12:1–12:10. ACM, 2011.

[30] Zoltan Majo and Thomas R. Gross. Memory system performance in
a numa multicore multiprocessor. In Proceedings of the 4th Annual
International Conference on Systems and Storage, SYSTOR ’11, pages
12:1–12:10, New York, NY, USA, 2011. ACM.

[31] Y. Matsunobu. Innodb to myrocks migration in main mysql database at
facebook. USENIX Association, May 2017.

[32] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim.
Understanding manycore scalability of file systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16), pages 71–85. USENIX
Association, 2016.

[33] S. Nanniyur. Sherpa scales new heights.
https://yahooeng.tumblr.com/post/120730204806/ sherpa-scales-new-
heights, 2015.

[34] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A high performance file system
for non-volatile main memory. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, pages 12:1–12:16.
ACM, 2016.

[35] D. Gawlick P. O’Neil, E. Cheng and E. O’Neil. The log-structured
merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, 1996.

[36] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
Scalable high performance main memory system using phase-change
memory technology. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, pages 24–33, New
York, NY, USA, 2009. ACM.

[37] M. Breitwisch S. Raoux, G. Burr, R. Shelby C. Rettner, Y. Chen,
D. Krebs M. Salinga, H. L. Lung S.-H. Chen, and C. Lam. Phase-
change random access memory: A scalable technology. IBM Journal of
Research and Development, 52(4.5):465–479, 2008.

[38] David Tam, Reza Azimi, and Michael Stumm. Thread clustering:
Sharing-aware scheduling on smp-cmp-smt multiprocessors. In Pro-
ceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, pages 47–58. ACM, 2007.

[39] Kai Liu Ting Wu, Xianzhang Chen, Zhixiang Liu Chunhua Xiao, and
Edwin H.-M. Sha Qingfeng Zhuge. Hydrafs: an efficient numa-aware
in-memory file system. Cluster, 2019.

[40] Lingjia Tang ; Jason Mars ; Xiao Zhang ; Robert Hagmann ; Robert
Hundt ; Eric Tune. Optimizing google’s warehouse scale computers:
The numa experience. 2013 IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA), 2013.

[41] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible file-system interfaces to storage-class memory. In
Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 14:1–14:14. ACM, 2014.

[42] J. Wang. Myrocks: best practice at alibaba.
https:/www.percona.com/live/17/sessions/myrocksbest-practice-alibaba,
2017.

[43] Junsheng Tan ; Fuzong Wang. Optimizing virtual machines scheduling
on high performance network numa systems. 2017 3rd IEEE Interna-
tional Conference on Computer and Communications (ICCC), 2017.

[44] Wei Wang, Jack W. Davidson, and Mary Lou Soffa. Predicting the
memory bandwidth and optimal core allocations for multi-threaded
applications on large-scale numa machines. In HPCA, pages 419–431.
IEEE Computer Society, 2016.

[45] Xiaojian Wu and A. L. Narasimha Reddy. Scmfs: A file system for
storage class memory. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 39:1–39:11. ACM, 2011.

[46] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven Swanson. Find-
ing and fixing performance pathologies in persistent memory software
stacks. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, pages 427–439. ACM, 2019.

[47] Jian Xu and Steven Swanson. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th USENIX Conference
on File and Storage Technologies, FAST’16, pages 323–338. USENIX
Association, 2016.

[48] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. Nova-fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 478–496. ACM, 2017.

[49] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable

persistent memory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 169–182, Santa Clara, CA, February
2020. USENIX Association.

[50] Seongdae Yu, Seongbeom Park, and Woongki Baek. Design and
implementation of bandwidth-aware memory placement and migration
policies for heterogeneous memory systems. In Proceedings of the
International Conference on Supercomputing, ICS ’17, pages 18:1–
18:10. ACM, 2017.

[51] Yuxia Cheng ; Wenzhi Chen ; Zonghui Wang ; Xinjie Yu. Performance-
monitoring-based traffic-aware virtual machine deployment on numa
systems. IEEE Systems Journal (Volume: 11 , Issue: 2 , June 2017
), 2015.

[52] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. Ziggurat:
A tiered file system for non-volatile main memories and disks. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), pages
207–219, Boston, MA, 2019. USENIX Association.

