
PAPA: Partial Page-aware Page Allocation in TLC
Flash SSD for Performance Enhancement

Imran Fareed, Mincheol Kang, Wonyoung Lee, and Soontae Kim
Embedded Computing Laboratory

Korea Advanced Institute of Science and Technology
Daejeon, South Korea

Email: {imranf45, mincheolkang, wy lee, kims}@kaist.ac.kr

Abstract—The three bit types, namely, least significant bit
(LSB), central significant bit (CSB), and most significant bit
(MSB), in the TLC flash memory exhibit variable read/write
latencies. Reading/writing an MSB takes more time than read-
ing/writing a CSB, and an LSB incurs the minimum latency. In
addition, the increased size of flash pages results in the formation
of partial page writes. The partial page writes are significantly
costly if they update the existing data, as partial updates perform
read-modify-write (RMW) operations for ensuring data integrity.
The performance further worsens if the to-be-updated data by
partial writes are stored in high-latency MSB pages. Conventional
TLC programming designs do not consider the size of the
write requests and follow a type-blind page allocation, thereby
missing a key opportunity to boost the performance of the TLC
flash memory. In this study, we propose a partial page-aware
page allocation (PAPA) scheme for TLC flash memory. PAPA
simultaneously considers both the write request size and flash
page types for performing page allocation. Our study reveals
that most of the to-be-updated data updated via partial updates
are partial pages. Therefore, the central mechanism of PAPA
scheme is to prioritize low-latency LSB pages for partial page
writes, as partial page writes incur extra latency to read the
existing data, during update operations; however, high-latency
CSB/MSB pages are assigned to full page writes. Our analysis
using various write-intensive workloads report that the PAPA
scheme improves the write response time, RMW latency, and
IOPS by 55%, 34%, and 14% on average, respectively.

Index Terms—TLC flash memory, partial updates, variable
latencies, performance

I. INTRODUCTION

The triple-level cell (TLC) flash memory has been attracting
the attention of the storage market because of its high bit
density and low cost per bit compared with its predecessors
such as single-level cell (SLC) and multi-level cell (MLC)
flash memories. The TLC flash stores three bits, namely,
least significant bit (LSB), central significant bit (CSB), and
most significant bit (MSB), in a cell. As the aforementioned
three bits in a flash cell require different number of memory
accesses for reading/writing, they possess different read/write
latencies [1]–[3]. Therefore, the three bits are separated to
form different types of pages, i.e., LSB, CSB, and MSB pages,
each page having variable read/write latencies [2]–[4]. The
typical read/write latencies of LSB, CSB, and MSB pages are
50/500, 100/2000, 110/5500 µs, respectively [2], [3].

This work was supported by the National Research Foundation (NRF)
grants funded by Korean Government (2018R1A2B2005277).

Owing to the increase in the bit density, to accommodate
large volume of data, the size of flash pages has also been
increasing, up to 16KB noticed in recent flash memories [5],
[6]. However, the write requests from the host system are
sent in the units of 4KB sectors which is smaller than the
flash I/O unit [7], and thus large number of partial page
writes are received by the SSD, either due to the small host
request size or due to the misalignment of the sectors [5], [6].
These partial writes degrade both lifetime and performance,
which are attributed to the under-utilized space and read-
modify-write (RMW) operations that are unavoidably involved
in the partial updates [5], [6]. The partial updates further
exacerbate the problem if the data to be updated are stored
in the high-latency CSB/MSB pages, as partially updating the
existing CSB/MSB data requires an additional read to the high-
latency CSB/MSB pages that contain the data to be updated.
Therefore, it is important to minimize the number of partial
updates to long-latency CSB/MSB pages.

To leverage the diverse latencies in the TLC flash memory,
several prior works have proposed to assign only LSB pages
for all write requests. Grupp et al. [4] suggested to assign
LSB pages proactively to the dense write requests. However,
the benefit of this work is limited, owing to the strict program
order of MLC/TLC blocks. Moreover, Park et al. [8] proposed
FlexFTL that uses a relaxed program order to completely
exploit the MLC latency asymmetry. They also proved that
despite using a relaxed program order, the reliability of the
MLC/TLC flash is not compromised. Zhang et al. [3] proposed
a page-type aware SSD (PA-SSD), which also used a relaxed
program order and assigned same type of pages to all the
transactions of a host write request. The motivation of PA-
SSD, behind using same page-type for all the transactions of
a host write request, is that all the transactions of a write
request have same urgency of completion, and therefore these
transactions should be assigned the same type of page for
achieving high efficiency.

Although the aforementioned techniques can utilize the
asymmetric latencies of the MLC/TLC flash memory, they
do not consider the RMW overhead during partial updates,
while performing page allocation, and therefore they suffer
from considerable performance overhead during partial up-
dates. However, our proposed scheme, partial page-aware page
allocation (PAPA), considers costly partial updates for page

Flash Controller

(splits requests into page unit)

HOST

S
SD

 C
O

N
T

R
O

LL
E

R

Flash Controller

Flash Memory

Flash Translation Layer

PLAlloc
(Channel->Chip->Die->Plane)

BLAlloc
(Block ID->Page ID)

Host Interface

(Splits requests into page-sized transactions)

Host request

Transactions
(page unit)

Page allocation

Flash writes

1

2

3

4

Fig. 1: SSD components and write-request processing [9].

allocation and relies on a relaxed program order to flexibly
use the three types of TLC pages. The basic idea of PAPA
is to allocate LSB pages to partial writes, as future updates
to the stored LSB data require reading the low-latency LSB
pages, followed by writing the updated data to the new pages.
However, the long-latency CSB/MSB pages are assigned to
full page writes, as full page updates do not incur any
additional overhead. Because all the partial updates require
an extra read operation on the existing data, the response time
can be reduced upon storing partial writes in low-latency LSB
pages (see Section V).

The remaining sections of this paper are as follows. In
Section II, we present the background, and the related works
are discussed in Section III. We explain the motivation behind
this work in Section IV. In Section V, the details of the
proposed scheme, PAPA, are presented. The evaluations and
experimental results are explained in Section VI. Finally, we
draw conclusions in Section VII.

II. BACKGROUND

A. SSD Components

The essential components of the modern SSD comprise
the host interface, SSD controller, flash controller, and flash
memory, as depicted in Fig. 1. The host interface provides
communication between the host and SSD controller. The
SSD controller receives and processes the host requests with
the help of the flash translation layer (FTL), which performs
logical to physical mapping. The flash controller is the inter-
face between the SSD controller and flash chips. The flash
memory stores the actual user data received from the host,
and it comprises several flash chips. Each flash chip is further
composed of few dies, which are further divided into few
planes. Several blocks, each comprising many pages, form
a plane. The basic I/O operations are performed on page
granularity.

Logical Sector Addresses

Logical Page Addresses

LPN0 LPN4 LPN5

W(18, 4) W(0, 3)

Logical sector address to logical page address translation

Fl
as

h
M

e
m

or
y

Fig. 2: LSN-to-LPN translation and partial page formation.

B. Address Translation and Partial Writes

1) Address translation: The host sends write requests
that contain logical sector addresses (LSA) (see 1 of Figure
1), which are the basic I/O units of modern file systems.
Subsequently, the host interface splits the host write requests
into several page-sized transactions, and each transaction is
translated to a specific logical page address (LPA) (see 2 of
Figure 1) by FTL [9]. Finally, the LPA is translated to physical
page address (PPA) with the help of PLAlloc and BLAlloc
primitives for write request completion. The duty of PLAlloc
is to allocate channel, chip, die, and plane IDs, whereas, the
BLAlloc is responsible for allocating the block and page IDs,
by selecting the free pages for each transaction [3], [9]. Once
the address translation is resolved by allocating a specific PPA
to each transaction (see 3 of Figure 1), the flash controller
writes the user data into the corresponding flash page (see 4
of Figure 1).

2) Partial writes: Write requests are sent by the host file
system in multiple of 4KB sectors [5]–[7]. Many partial writes
are generated because of either the small host request size or
misalignment of the sectors. Figure 2 depicts the LSA-to-LPA
translation in the FTL, and it also illustrates the formation
of the partial writes in SSDs in two scenarios. First, upon
receiving the write request W(0, 3) with sector address 0
and size 3 sectors, the FTL translates it to LPN0. As the
request W(0, 3) has only 3 sectors, LPN0 is partially filled, and
therefore a partial write is generated because of the small size
of the write request. The second scenario is when a full page
write request W(18, 4) is received. Although W(18, 4) is a full
page request, it is misaligned to the sectors of LPN4 and LPN5
and spans over two pages, thereby generating two partial page
writes, which, in turn, degrade the SSD performance, owing
to the costly RMW operations involved in the partial updates
[6].

C. TLC Flash Page Types and Program Sequence

Unlike its predecessors, such as the SLC/MLC flash, the
TLC flash stores three bits per cell, namely, LSB, CSB, and
MSB, each exhibiting different read/write latencies [2], [3].
Because the aforementioned bits exhibit variable latencies,
those with the same latency within a wordline form a flash
page, and the pages within a wordline are programmed in a
fixed order, as shown in Figure 3 [3], [4], [11]. The aforemen-
tioned variable-latency pages of a wordline are programmed

page-by-page according to their given IDs to mitigate the cell-
to-cell interference to the programmed wordlines [1], [12].

Owing to the strict program order, the flexibility of writing
to a desired page-type is compromised, as only one active
block is available for the incoming write requests in the plane
allocated by the PLAlloc primitive. Once the plane is decided
by the PLAlloc primitive, the data can only be written to
the next assigned page in the current active block allocated
by BLAlloc. Although the strict program order with only one
active block and one candidate page simplifies the meta-data
management, it highly limits the flexibility to write to the
desired page-type.

III. RELATED WORKS

The variable latencies of the various page-types of
MLC/TLC flash have been used in different ways in previously
conducted studies, to improve the write response time of the
SSD. We broadly categorize the existing works as follows.

1) SLC flash as write buffer: The read/write latencies of
the SLC flash memory being lower than those of its successors,
provides an opportunity to the researchers to employ the SLC
flash as a write buffer in the MLC/TLC SSD for boost-
ing the performance [13], [14]. However, this performance
enhancement increases the manufacturing cost of the SSD,
owing to the additional SLC chips required for the write
buffer. However, the manufacturing cost might be reduced
by enabling the SLC mode in the MLC/TLC flash memory
[1], [11], [15]–[17]. However, enabling the SLC mode in the
MLC/TLC flash memory restricts the storage space available
for user data. More importantly, the SLC buffer can become
saturated in negligible time for write-dominated user data,
owing to the limited size of the SLC flash, thereby degrading
the performance of the SSD.

2) Utilizing low latencies of LSB pages: Owing to their
low read/write latencies, LSB pages are the best candidates
to enhance the flash I/O performance. Grupp et al. [4]
suggested to assign low-latency LSB pages proactively for
dense write requests to improve the peak write performance.
However, the benefit of this work is limited, owing to the
strict program order of MLC/TLC blocks. Moreover, Park et
al. [8] proposed FlexFTL that used a relaxed program order to
flexibly exploit the MLC latency asymmetry. They also proved

. . .

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

01n-1

In Out

CSB/MSB queue

. . .

01x-1

In Out

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

LSB/MSB queue

01m-1

In Out

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

LSB queue

. . .

01y-1

In Out

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB queue

. . .

0 2 5

1 4 8

3 7 11

6 10 14

9 13 16
LSB CSB MSB

Wordline4

Wordline3

Wordline2

Wordline1

Wordline0

Fig. 3: Strict program order in a conventional TLC block [3],
[10], [11].

.

Update
request

Existing
data

Updated
data

Partial page Full page

Fig. 4: Difference between partial and full page updates.

that despite using the relaxed program order, the reliability
of the MLC/TLC is not compromised, as a strict program
order is the over-specification to reduce the inter-cell program
interference. Zhang et al. [3] proposed a page-type aware SSD
(PA-SSD), which also utilized a relaxed program order and
assigned the same type of pages to all the transactions of a
host write request. The motivation behind PA-SSD is that all
the transactions of a write request have the same urgency
for completion, and therefore, these transactions should be
assigned the same type of pages for achieving high efficiency.
In addition, PA-SSD suggested different scenarios of utilizing
LSB pages for enhancing the write performance.

Although the aforementioned schemes can satisfactorily
utilize the low write latencies of LSB pages, they do not
consider the cost of RMW operations inevitably involved in
the partial updates; therefore, the write response time may
increase. However, our proposed scheme, PAPA, considers the
size of each transaction of a write request, i.e., whether the
transaction is partial page or full page, for performing type-
directed page allocation, and accordingly allocates LSB pages
to partial writes and CSB/MSB pages to full page writes (see
Section V).

IV. MOTIVATION

As flash memory does not support in-place update, the
existing data should be read, and subsequently modified using
the new incoming data, following which the updated data
should be written to a new flash page. This operation is known
as RMW operation. However, in case of full page updates,
RMW operations need not be performed, as they contain the
updated version of all the sectors of existing data. Figure 4
depicts the difference between partial and full page updates.

0

0.2

0.4

0.6

0.8

1

8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB 8KB 16KB

prxy proj fin mds hm prn exch tpcc tpce Average

R
at

io
 o

f
p

ar
ti

al
 w

ri
te

s
an

d

p
ar

ti
al

 u
p

d
at

es

Workloads

Partial_writes Partial_updates

Fig. 5: Ratio of partial writes and partial updates in various
workloads for 8KB and 16KB pages. Both the partial writes
and partial updates are normalized to the total writes.

Flash Controller

HOST

S
SD

 C
O

N
T

R
O

LL
E

R

Flash Controller

Flash Memory

Flash Translation Layer

PLAlloc
(Channel->Chip->Die->Plane)

papa-BLAlloc
(Block ID->Page ID)

Host request

Transactions
(page type assigned)

Type-directed
page allocation

Flash writes

Host Interface

(Splits requests into page-sized transactions and assigns page types)

2

3

4

Fig. 6: Write-request processing and page-type assignment.
The host interface proactively assigns the page type to each
transaction according the size of requested data. The
papa-BLAlloc primitive which allocates the assigned flash
page types to the transactions, is the replacement of the
BLAalloc primitive in the conventional SSD.

In case of partial updates, the existing data are read into the
SSD controller, and the sectors are modified; subsequently, the
modified or updated data are written into a new flash page,
as shown in left-hand side of Figure 4. However, full page
updates involve no overhead of reading the existing data, as
the update request contains the updated sectors of existing
data, as shown in right-hand side of Figure 4. Thereafter,
the updated data are written to the available flash page, and
the corresponding obsolete data are invalidated. To conclude,
partial page updates are more costly than full page updates, as
partial updates perform extra read operations, on the existing
data, to avoid data inconsistencies.

In addition, the number of partial page writes outnumber
the full page writes in all the workloads, as shown in Figure
5. The figure shows the ratio of the partial writes and partial
updates, both normalized to the total number of writes. In an
8KB page, 43% of the write requests are partial write requests
and 39% are partial update requests. However, as the page
size increases to 16KB, the ratio of partial writes and partial
updates increases considerably. From Figure 5, it is evident
that 75% of the total write requests are partial write requests,
whereas, 61% of the total write requests are partial update
requests, in 16KB page. Therefore, considering the high ratio
of both partial writes and partial updates in the workloads, we
recommend to allocate low-latency LSB pages to the partial
writes, to mitigate both the RMW latency and write response
time.

Unlike SLC and MLC flash memories, the TLC flash mem-
ory stores three bits per cell, each with different read/write
latencies. The same type of bits in a wordline constitute a page.
The TLC flash exhibits variable read/write latencies because
of different number of memory accesses required to perform

0

0.2

0.4

0.6

0.8

1

prxy proj fin mds hm prn exch tpcc tpce Average

R
at

io
 o

f
p

ar
ti

al
 u

p
d

at
es

 t
o

p

ar
ti

al
 a

n
d

 f
u

ll
p

ag
e

d
at

a

Workloads

Updatepartial_page Updatefull_page

Fig. 7: Ratio of partial updates to partial and full page data.

read/write operations on LSB, CSB, and MSB pages [1]–[3].
The aforementioned three types of pages in the TLC flash
are programmed using a strict program order, called shadow
programming, to alleviate the cell-to-cell program interference
[2], [8], [9]. In addition, Tavakkol et al. [9] proved that a
strict program order is an over-provision to mitigate the cell-
to-cell program interference, and instead proposed a relaxed
program order to leverage the benefits of low-latency pages
in MLC/TLC flash. We also use the relaxed program order to
flexibly utilize the low-latency LSB pages for storing costly
partial writes.

V. PAPA: PARTIAL PAGE-AWARE PAGE ALLOCATION

Considering the costly RMW operations involved in partial
updates, to enhance the SSD performance, we propose a partial
page-aware page allocation (PAPA) scheme for TLC SSD that
proactively allocates LSB pages to partial writes, and writes
the full page data to CSB/MSB pages. Figure 6 depicts the
write-request processing in PAPA scheme. The write-request
processing both in the conventional SSD and proposed PAPA
schemes are similar, except that the latter proactively assigns
the page-type to the user requests according to the size of each
transaction, and then the proposed papa-BLAlloc allocates the
corresponding flash page, to each transaction, by allocating
the block ID and page ID.

A. Type-directed Page Allocation

The LSB pages are preferred for writing partial page data,
for reducing the read/write response time and RMW latency
which is inevitably involved in the partial updates. Some astute
readers may suggest that the incoming partial writes may
update the existing full page data, and thus the RMW latency
might be high due to reading the high latency CSB/MSB
pages (as full page data is written in CSB/MSB pages). In
other words, what is the assurance that the partial writes will
only update the existing partial pages and not the full pages.
To answer this question, we performed extensive experiments
with a rich set of workloads to measure the ratio of partial
updates updating the existing partial pages and the full pages.
Figure 7 presents the aforementioned ratio of partial and full
pages updated by the partial updates. As evident from the
figure, even in the worst case (in tpcc trace), more than 92% of
the partial updates target the existing partial pages. In addition,
on average, 96% of the partial updates target the existing
partial pages. Hence, nearly all the partial update requests
target the existing partial pages, and thus we can store the

partial pages in the low-latency LSB pages to mitigate both
the RMW latency and write response time.

The efficiency of PAPA depends on the availability of the
assigned page-types in active blocks, i.e., free LSB pages for
partial page writes and free CSB/MSB pages for full page
writes. The conventional SSD maintains only one active block
for each plane, and therefore, only one candidate page is
available for the incoming write requests [10]. Although this
approach simplifies the flash resource management, it has no
ability for type-directed page allocation. Although one might
modify the PLAlloc primitive to select a plane whose next
candidate page is the desired page-type, it would limit the
parallelism within the SSD by selecting a fixed path from the
channel to plane [9], [18]. Therefore, we would like to provide
more than one candidate pages within each plane to satisfy the
requirements for performing the type-directed page allocation
in PAPA scheme. Unlike the conventional SSD, to perform
the proposed type-directed page allocation, two active blocks
per plane are simultaneously required in the PAPA scheme,
resembling to more than one write points suggested in [4].

B. Managing Multiple Active Blocks in a Plane

In Section II-C, we discussed that the conventional SSD has
a fixed program sequence and that it provides only one active
block within a plane, thereby considerably compromising with
the flexibility to choose the desired page-type. Therefore, mul-
tiple active blocks within each plane is a key requirement in
designing the PAPA scheme. We can fulfill the requirement of
writing the desired page-type by wisely relaxing the program
constraints in each block and providing more than one active
block in each plane.

The fixed program order in the conventional SSD was
proposed to mitigate the cell-to-cell interference problem,
by ensuring that a fully-programmed wordline experiences
interference at most from one adjacent page. For example,
before page 8 is programmed in wordline 1, all the adjacent
pages are programmed except page 11 in wordline 2, as
shown in Figure 3. Therefore, a fully-programmed wordline 1
experiences the interference only from page 11 in the adjacent
wordline.

We can formalize the strict program order in the TLC flash
to explore and leverage a more flexible program order that

1 4 8

0 2 5

9 13 16

3 7 11

6 10 14

Wordline4

Wordline3

Wordline2

Wordline1

Wordline0

LSB CSB MSB

Fig. 8: Relaxed program order in the PAPA scheme.

satisfies the requirement of flexible programming in the PAPA
scheme.

• Rule 1: LSB (i) must be programmed before LSB (i+1),
where i > 0.

• Rule 2: CSB (i) must be programmed before CSB (i+1),
where i > 0.

• Rule 3: MSB (i) must be programmed before MSB (i+1),
where i > 0.

• Rule 4: LSB (i+1) must be programmed before CSB (i),
for all i.

• Rule 5: LSB (i+2) and CSB (i+1) must be programmed
before MSB (i), for all i.

• Rule 6: CSB (i) must be programmed before LSB (i+2),
for all i.

• Rule 7: MSB (i) must be programmed before LSB (i+3)
and CSB (i+2), for all i.

The aforementioned strict rules in the fixed program order
are used to minimize the inter-cell interference. Rules 1, 2, and
3 imply the program order between same page-types, whereas,
Rules 4 and 5 dictate the program order for different page-
types. However, Rules 6 and 7 are the over-specifications
to mitigate the cell-to-cell interference, and therfore, they
can be avoided because programming wordlines i+2 and i+3
would not introduce interference in wordline i. Park et. al.
[8] illustrated a similar scenario for the MLC NAND flash
and proved that removing over-specified constraints from the
strict program order in the MLC flash, does not increase the
program interference in the programmed wordlines. Because
both MLC and TLC flash memories share very similar cell-to-
cell interference characteristics, our proposed scheme, PAPA,
uses a similar relaxed program order by removing aforemen-
tioned Rules 6 and 7. In addition, the proposed PAPA scheme
can be applied to QLC flash, because QLC flash exhibits
similar latency asymmetries as that of the TLC flash, among
its various types of pages.

C. Relaxed Program Order in PAPA

As discussed in the previous subsection, the strict program
order is an over-specification to reduce the program interfer-
ence. We propose to use a relaxed program order that writes
all the LSB, CSB, and MSB pages in a sequence, as depicted
in Figure 8. The relaxed program order depicted in Figure 8
obeys all the rules mentioned in the previous subsection except
Rules 6 and 7, which are over-considered constraints in the
conventional TLC program order. Using such relaxed program
sequence in the PAPA scheme, we can provide multiple active
blocks, with different page-types available in each plane.

In PAPA, two active blocks are simultaneously required
in each plane; one block accommodates the partial writes in
LSB pages, and the other block stores the full page writes
in CSB pages. After the LSB pages are exhausted in the
block assigned for partial writes, the next block with free
LSB pages is allocated for partial writes. In this manner, the
LSB pages of all the blocks are allocated for writing partial
pages sequentially. When the LSB pages in all the blocks
are consumed, the CSB pages in the partially written blocks,

01m-1

In Out

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

. . .

01x-1

In Out

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

(iii) MSB block queue

. . .

0 2 5

1 4 8

3 7 11

6 10 14

9 13 16
LSB CSB MSB

Wordline4

Wordline3

Wordline2

Wordline1

Wordline0

(ii) CSB/MSB block queue

01y-1

In Out

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

(iv) Full-block queue

. . .

. . .

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

MSB pages

CSB pages

LSB pages

01n-1

In Out

(i) Free-block queue

P
ar

ti
al

 p
ag

e
re

qu
es

t
Fu

ll
p

ag
e

 r
eq

u
e

st

Fig. 9: Block management and life cycle.

whose all LSB pages have been consumed, are used as back
up for partial writes. Similarly, we allocate CSB pages of a
block whose LSB pages are completely consumed, for full
page writes. Once the CSB pages of a block are exhausted,
the next block with free CSB pages is allocated for full page
writes. However, when there is no block with free CSB pages,
the block with free MSB pages is allocated for full page writes.
Therefore, the partial pages are always written in LSB/CSB
pages and the full pages in CSB/MSB pages. In addition, we
maintain the current status of the blocks for achieving efficient
block management and page-type assignment, which we will
discuss in the following subsection.

D. Block Management and Life Cycle

According to the available free pages, a block can have the
following status in our proposed PAPA scheme: free block,
CSB/MSB block (block with free CSB and MSB pages), MSB
block (block with only free MSB pages), and full block (block
with no free pages). By managing the status of the blocks
in each plane, we can simplify the allocation of the specific
page type in the blocks in each plane. Figure 9 depicts the
aforementioned four possible stages of the blocks. Initially,
all the blocks are free, i.e., no data written yet, and therefore
are kept in the free-block queue (see (i) of Figure 9).

MSB pages

LSB pages

CSB pages

Partial writes

Backup
pages

CSB pages

LSB pages

MSB pages

Full page
writes

Active block for partial writes Active block for full page writes

MSB pages

CSB pages

LSB pages

CSB pages

LSB pages

MSB pagesFull page
writes

Backup
pages

Active block for full page writes Full block

Block status is changed after current page-type is exhausted

Fig. 10: Writing backup pages and block-status change in
the current active block.

Upon receiving a partial page request, the LSB page of
block 0 from the free-block queue is allocated for partial page
writing. In addition, all the subsequent partial page writes are
written to the LSB pages of block 0 until the LSB pages of
this block are consumed. Please note that we do not maintain
a queue for LSB blocks, i.e., blocks with free LSB pages,
because a block with free LSB pages suggests that the entire
block is free, as LSB pages are written prior to wiritng
CSB/MSB pages. Therefore, the block is kept in the free-block
queue. Once the LSB pages in the current block are exhausted,
the block is enqueued in the CSB/MSB block queue (see (ii)
of Figure 9) for servicing full page writes in the CSB pages,
and the next block from the free-block queue is allocated for
partial writes. The blocks in the CSB/MSB block queue (see
(ii) of Figure 9) have free CSB and MSB pages, and therefore,
they can be used for full page writes.

Once the CSB pages of a block in the CSB/MSB block
queue (see (ii) of Figure 9) are consumed, the block is
enqueued in the MSB block queue (see (iii) of Figure 9). When
the CSB pages of all the blocks in CSB/MSB block queue (see
(ii) of Figure 9) are consumed, the queue becomes empty, and
the subsequent full page writes will be written to the MSB
pages of the blocks in the MSB block queue (see (iii) of Figure
9). Finally, the blocks with no free pages in the MSB block
queue are enqueued in the full-block queue. If a partial page
request is received, and the free-block queue and CSB/MSB
block queue are empty, an emergency GC is invoked to claim
the space for the incoming partial page request. The GC selects
a victim block with maximum number of invalid pages from
the full-block queue (see (iv) of Fig. 9) and enqueues the block
in the free-block queue after cleaning, to accommodate partial
writes in the free LSB pages.

Figure 10 depicts a scenario wherein there are no free LSB
pages for the incoming partial writes (left side of Figure 10).
In this example, we assume that there is no free LSB page in
any block. In such case, free CSB pages are considered backup
pages for partial writes. As the figure (top left of Figure 10)
depicts, partial writes are received and written to the CSB
pages of the active block. When the LSB and CSB pages
of the active block are exhausted, the status of the block is

changed to MSB block, as it has only free MSB pages left
for accommodating the full page writes (bottom left of Figure
10).

The right side of Figure 10 depicts another scenario wherein
full page requests are received, and the LSB and CSB pages
have been exhausted in all the blocks. In such cases, the free
MSB pages are written as backup to the CSB pages (top right
of Figure 10). After the MSB pages have also been written,
the block changes its status to the full block (bottom right of
Figure 10). In summary, partial writes can only be written to
LSB and CSB pages, and full page writes can only be written
to CSB and MSB pages with an exception that full page writes
are received before any data are written to the SSD. In this
situation, the full pages are written to the LSB pages of the
active block, as the CSB pages cannot be written until the LSB
pages in the active block are exhausted.

VI. EVALUATION

A. Environment Setup

We implemented the proposed PAPA scheme by extending
the FlashSim [19] simulator, which is a widely used trace-
driven simulation framework for NAND flash storage systems,
and its accuracy and behavior have been validated against
commercial SSDs. For evaluating the effectiveness of the
proposed PAPA scheme, following modifications have been
made to the FlashSim simulator:

• LSB, CSB, and MSB pages are assigned different
read/write latency values for supporting the diverse
read/write latencies in the TLC SSD [2], [3].

• The page-allocation mechanism is modified to support the
type-directed page-allocation in the PAPA scheme.

• The traces are run twice, with disabled cache, for observ-
ing the long term behavior of the PAPA scheme and for
evaluating its impact on garbage collection (GC).

TABLE I: Characteristics of the evaluated I/O traces.

Traces Total requests Writes
(%)

Reads
(%)

Average size
(bytes)

prxy 1048576 95 5 2421
proj 1048582 76 24 11883
fin 5334987 77 23 4196

mds 1048576 87 13 7523
hm 1048498 73 27 6086
prn 1048579 86 14 12544
tpce 4510214 27 73 17701
tpcc 6286764 67 33 11942
exch 766362 69 31 12768

TABLE II: Configuration of the simulated TLC SSD.

Items Values Items Values
Packages 2 Sector size 4KB

Dies/Packages 2 Page size 16KB

Planes/Die 2 Read latency (µs) LSB/CSB/MSB
50/100/150

Blocks/Plane 2048 Write latency (µs) LSB/CSB/MSB
500/2000/5500

Pages/Block 384 Erase latency (µs) 3000

For a comprehensively evaluating the PAPA scheme, 9
real workloads, which were collected from OLTP applications
[20] and the Storage Networking Industry Association (SNIA)
[21], were used in the experiments. The workload traces are
reconstructed with the help of TraceTracker [22] technique that
refines the old block I/O traces from OLTP applications [20]
and SNIA [21] to make them compatible with modern hard-
wares. The sector size of these workloads in our experiments
is 4KB, which is the standard sector size in modern traces.
The key characteristics of these workload traces are listed in
Table I. Moreover, the configuration of the simulated TLC SSD
is listed in Table II. As our target SSDs are the TLC SSDs
with large flash page size, we use 16KB flash page size, as
mentioned in Table II. In addition, to compare the effectiveness
of PAPA scheme with that of other schemes, we implemented
a baseline scheme with the conventional program sequence,
an LSBfirst scheme [3] consuming all the LSB pages prior
to writing CSB/MSB pages, and a size-based scheme [3] that
assigns LSB pages for the write requests whose size is smaller
than the page size and assigns CSB/MSB pages otherwise.
Please note that the size-based scheme and the proposed PAPA
scheme are distinctively different from each other, as the
former only analyzes whether the size of the incoming request
from the host is less than the page size, whereas, the latter
considers the size of each transaction after the host interface
splits the request into page-sized transactions.

B. Experimental Results

1) Flash Writes Distribution: Figure 11 depicts the ratio of
LSB, CSB, and MSB writes in baseline, LSBfirst, size-based,
and proposed PAPA schemes. The baseline scheme writes the
pages in a fixed program order, and therefore the writes are
equally distributed to the three types of pages. The LSBfirst

scheme prioritizes LSB pages for the incoming write requests,
and once all the LSB pages are exhausted, it assigns both CSB
and MSB pages with equal probability to the future writes.
LSBfirst scheme is effective for workloads with small ratio of
write requests, as low-latency LSB pages can accommodate
most write requests without consuming a significant number
of high-latency CSB/MSB pages. However, if the number of
write requests increases, the high-latency CSB/MSB pages are
also consumed for accommodating write requests. Therefore,
the effectiveness of the LSBfirst scheme depends considerably
on the workload size.

The size-based scheme greedily stores the small writes,
i.e., requests with a single transaction, in low-latency LSB
pages to decrease the response time, whereas, the high-latency
CSB/MSB pages are used to serve large writes, i.e., requests
with multiple transactions. Therefore, the utilization of pages
by the size-based scheme varies with workload characteristics.
If the workloads contain mostly small-writes, the size-based
scheme proactively uses LSB pages, thereby increasing the
performance of the device. However, GC is triggered fre-
quently to claim LSB pages for accommodating future small-
sized writes, thereby reducing both the lifetime and SSD
performance.

0

0.2

0.4

0.6

0.8

1

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 f
la

sh
 w

ri
te

s

Workloads

LSB_writes CSB_writes MSB_writes

Fig. 11: LSB, CSB, and MSB flash writes in various workloads for different schemes. The flash writes are normalized to the
baseline scheme.

0

0.2

0.4

0.6

0.8

1

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

B
as

el
in

e

LS
B
fir
st

Si
ze

-b
as

e
d

P
A

P
A

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 R
M

W
 r

ea
d

s

Workloads

LSBRMW_read CSBRMW_read MSBRMW_read

Fig. 12: LSB, CSB, and MSB RMW reads in various workloads for different schemes. The RMW reads are normalized to
the baseline scheme.

However, the PAPA scheme preferably allocates LSB pages
to partial writes, considering the RMW overhead involved in
partial updates. Because modern SSDs have large page sizes,
large number of partial pages are created. Therefore, LSB/CSB
pages are written more than MSB pages in the PAPA scheme.
On average, less than 1% writes are mapped to the MSB pages,
thereby significantly reducing the writes and RMW latencies,
whereas LSB and CSB pages share 62% and 37.2% writes,
respectively.

The impact of reducing the number of writes on high-
latency CSB/MSB pages is reflected on the reduced number of
RMW reads on these pages. Figure 12 depicts the breakdown
of RMW reads on each page type in the evaluated schemes.
Similar to flash writes, significant amount of RMW reads are
performed on CSB/MSB pages in the LSBfirst scheme, thereby
increasing the RMW latency. On average, 34% and 16% RMW
reads are performed on CSB and MSB pages, respectively, in
the LSBfirst scheme. Because the size-based scheme greedily
writes small writes to LSB pages, most RMW reads, i.e., 79%,
are also performed on these pages. In addition, 13% RMW
reads are performed on CSB pages and only 8% on MSB
pages.

With the increase in the number of low-latency LSB/CSB
page writes, in PAPA, the number of RMW reads on low-
latency LSB/CSB page also increases. On average, 84% RMW
reads are performed on LSB pages and 15% on CSB pages,

whereas MSB pages account for only 1% RMW reads. This
type of wise distribution of flash writes and RMW reads to
LSB, CSB, and MSB pages, significantly decreases both the
write response time and RMW latency of the SSD, which will
be discussed in the subsections to follow.

2) Impact on lifetime: The number of erase operations
directly affects the lifetime of the device. Moreover, GC is
triggered periodically, whenever the threshold is reached, to
clean the invalid space for future writes. The page allocation
in the LSBfirst scheme is similar to that of the baseline, except
that the former greedily writes LSB pages prior to writing
CSB/MSB pages. Therefore, both the schemes reach the GC
threshold at a similar rate, and therefore, both experience
nearly equal number of erase operations, as depicted in Figure
13.

0

2

4

6

8

10

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 e
ra

se
 o

p
er

at
io

n
s

Workloads

Baseline LSBfirst Size-based PAPA

Fig. 13: Normalized erase operations in various workloads
for different schemes. The erase operation is normalized to
the baseline scheme.

0.8

0.9

1

1.1

1.2

1.3

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 IO
P

S

Workloads

Baseline LSBfirst size-based PAPA

Fig. 14: Normalized I/O throughput (IOPS) in various
workloads for different schemes. The I/O throughput (IOPS)
is normalized to the baseline scheme.

The size-based scheme aggressively writes small-writes to
LSB pages for performing latency reduction. However, for
workloads with mostly small-writes, LSB pages are used up
quickly, thereby frequently executing GC to provide more
LSB pages for future small-writes. Consequently, an increased
number of erase operations significantly degrade the device
lifetime. As can be seen in Figure 13, in the worst case, the
size-based scheme increases the number of erase operations
by more than 8 times in fin and tpcc traces, owing to the high
ratio of small-writes in these workload traces. Whereas, the
erase operations are increased by 4.5 times, on average.

However, once LSB pages are consumed, our proposed
scheme PAPA uses CSB pages as a backup for partial writes.
Consequently, compared with the size-based scheme, PAPA
executes GC less frequently, thereby preventing significant
lifetime degradation. As depicted in Figure 13, erase op-
erations are performed not more than two times, in most
workloads, except that of the fin trace. The reason behind the
increased number of erase operations in fin trace is that it is
a write-dominating workload trace with high ratio of partial
writes, and therefore, the consumption rate of LSB/CSB pages
is considerably higher than that of MSB pages. Hence, more
blocks are erased for making LSB/CSB pages available. On
average, PAPA increases the number of erase operations by 1.6
times compared to that of the baseline scheme. The increased
number of erase operations is the cost of biasing towards
LSB pages, as the GC is invoked proactively to ensure the
availability of the LSB pages for partial writes.

3) Performance improvement: Here we report the per-
formance improvements using our proposed scheme, PAPA.
We used two metrics, namely, throughput (IOPS) and re-
sponse time, to demonstrate the performance of the evaluated
schemes.

0

0.2

0.4

0.6

0.8

1

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 w
ri

te
 r

es
p

. t
im

e

Workloads

Baseline LSBfirst Size-based PAPA

Fig. 15: Normalized write response time in various
workloads for different schemes. The write response time is
normalized to the baseline scheme.

0.2

0.4

0.6

0.8

1

prxy proj fin mds hm prn exch tpcc tpce AverageN
o

rm
al

iz
ed

 R
M

W
 la

te
n

cy

Workloads

Baseline LSBfirst Size-based PAPA

Fig. 16: Normalized RMW latency in various workloads for
different schemes. The RMW latency is normalized to the
baseline scheme.

Throughout (IOPS). To evaluate and compare the per-
formance improvements obtained using the proposed scheme
with those of other evaluated schemes, we measured the SSD
throughput (IOPS). The normalized value of the IOPS for
various schemes is depicted in Figure 14. If the number of
LSB/CSB writes is increased and number of MSB writes
is reduced, more read/write operations can be performed
per unit time. The LSBfirst scheme greedily assigns LSB
pages to the incoming write requests to increase the device
throughput. However, after the LSB pages are exhausted, high-
latency CSB/MSB pages are used to serve the future writes,
thereby degrading the throughput significantly. Therefore, the
throughput of the LSBfirst scheme is different in different
phases of the experiment; i.e., the throughput is significantly
high in the initial phase when many LSB pages are available,
whereas the throughput decreases gradually with decrease in
the number of free LSB pages. The IOPS in the LSBfirst

scheme is increased by 19% in the best case in the tpce trace,
owing to the increased number of LSB writes. However, the
average increase in IOPS in the LSBfirst scheme is 5.5%.

The size-based scheme aggressively writes small-requests
in LSB pages for achieving high throughput, and therefore
its performance depends on the number of write requests
in the workloads, ratio of small-sized write requests in the
workloads, and number of free LSB pages. If the workloads
are large-sized with high ratio of small-writes, blocks would
be erased frequently for claiming LSB pages to accommodate
the future small-writes, thereby negatively affecting the SSD
lifetime. Because the evaluated workloads contain mostly
small-sized write requests, the size-based scheme could im-
prove IOPS significantly, by writing the small-sized write
requests to LSB pages. The size-based scheme outperforms
other schemes in case of prxy trace, owing to the small size of

0.2

0.4

0.6

0.8

1

prxy proj fin mds hm prn exch tpcc tpce AverageN
o

rm
al

iz
ed

 r
ea

d
 r

es
p

. t
im

e

Workloads

Baseline LSBfirst Size-based PAPA

Fig. 17: Normalized read response time in various workloads
for different schemes. The read response time is normalized
to the baseline scheme.

the workload and high ratio of small-sized write requests. The
best improvement in IOPS is 20% in fin trace, as most the write
requests in this trace are small-sized, and therefore, can be
written to LSB pages. In addition, the average increase in IOPS
is 7.5%. Although the size-based scheme effectively improves
the SSD throughput, it severely degrades the lifetime because
of the frequent execution of GC performed for assuring the
availability of free LSB pages (see Section VI-B2).

Our proposed scheme, PAPA, uses low-latency LSB/CSB
pages to write partial pages to minimize the writes and RMW
latencies. Because the flash page size has been increasing,
the ratio of partial pages has also been increasing. Therefore,
PAPA leverages low-latency LSB/CSB pages to store partial
pages, thereby increasing the SSD throughput. PAPA outper-
forms the other evaluated schemes in the traces that exhibit
high partial page ratio, because of writing the partial writes
to LSB pages. The best IOPS improvement for PAPA can be
seen in the tpce trace, which is 29%, because of high partial
page ratio in tpce. Although tpce is not a write-dominating,
it is a write-intensive workload with highest number of write
requests following fin and tpcc traces, as shown in Table I. In
addition to the large number of write requests, tpce also has
a significant amount of partial writes and partial updates, as
shown in Figure 5. Given these characteristics of tpce trace, it
eventually performs better than other traces. Moreover, PAPA
increases the IOPS by 14%, on average, as evident from Figure
14.

Response time. The device response time is another im-
portant metric to demonstrate the efficiency of the proposed
PAPA scheme. Figure 15 compares the write response times
of various schemes. The LSBfirst scheme greedily assigns LSB
pages to the incoming write requests to reduce the write
response time. However, after the LSB pages are exhausted,
high-latency CSB/MSB pages are used to serve the future
writes, thereby increasing the write response time significantly.
Therefore, the performance of the LSBfirst scheme is different
in different phases of the experiment; i.e., the performance is
significantly high in the initial phase when many LSB pages
are available, whereas, it degrades gradually with decrease
in the number of free LSB pages. In addition, for large-
sized workloads, the performance of the LSBfirst resembles
to that of the baseline scheme, owing to the similar number
of LSB/CSB/MSB writes. The write response time of the
LSBfirst scheme is reduced by 63% in the best case in the
exch trace, owing to the small number of write requests that
can be accommodated without writing MSB pages. However,
the average reduction in the write response time is 36%.

The size-based scheme aggressively writes small-writes in
LSB pages for achieving high throughput, and therefore,
its performance considerably depends on the size of the
workloads, ratio of small-sized requests in the workloads,
and number of free LSB pages. If the workloads are large-
sized with high ratio of small-writes, blocks would be erased
frequently for claiming LSB pages to accommodate the future
small-writes. Because the workloads contain mostly small-
writes, the size-based scheme can significantly mitigate the

write response time, as apparent from Figure 15. The size-
based scheme performs best in case of prxy trace, reducing the
response time by 75%, owing to the small-sized requests in
the prxy trace; however, the average reduction in the response
time is 43%. In addition, the size-based scheme satisfactorily
reduces the RMW latency by 29%, on average, owing to
the assignment of small-writes to LSB pages. Although the
size-based scheme effectively improves the performance, it
considerably degrades the lifetime of the SSD.

Because partial updates incur both additional latency, along
with the writes latency, partial pages should be written to low-
latency LSB pages. To minimize the aforementioned latencies,
the PAPA scheme uses LSB/CSB pages to write partial pages
and CSB/MSB pages to write full pages. Because the flash
page size has been increasing, the ratio of partial pages has
also been increasing. Therefore, PAPA leverages low-latency
LSB/CSB pages to store partial pages, thereby reducing both
the write response time and RMW latency. The average
reduction in the write response time is 55%, and that in the
RMW latency is 34%.

To improve the read performance, the read requests are
not considered explicitly in the above-mentioned schemes.
However, as the above-mentioned schemes attempt to max-
imize the low-latency LSB writes, the read performance im-
proves implicitly. Figure 17 presents the read response time
in various schemes. Both the LSBfirst and size-based schemes
show promising results by reducing the read response time
by 11% and 21%, respectively, on average. However, PAPA
outperforms the other schemes, as evident from the Figure
17. We attribute this performance improvement of the PAPA
scheme to LSB/CSB reads, as most of the data are stored
in and read from these pages. The average reduction in the
read response time for PAPA is 23%. Therefore, the IOPS,
write response time, RMW latency, and the read response time
improve by 14%, 55%, 34%, and 23%, respectively, as a result
of biasing towards low-latency LSB/CSB pages in PAPA.

4) Effect of DRAM cache on flash writes: The results
shown in Section VI-B were obtained by disabling the internal
cache to increase the number of partial writes written to
the flash memory. However, modern SSDs use a cache for
absorbing frequent writes and for reducing the amount of
written data to the flash memory. In this subsection, we show
the impact of cache on flash writes and argue that the efficiency
of our proposed scheme is not affected significantly with the
presence of cache. Here we show flash writes distribution
among LSB, CSB, and MSB pages, and write response time
to demonstrate the impact of cache on the evaluated schemes.

Flash Writes Distribution. Figure 18 depicts the ratio of
the LSB, CSB, and MSB writes in the baseline, LSBfirst, size-
based, and proposed PAPA schemes. The baseline scheme
writes the pages in a fixed program order, and therefore the
writes are equally distributed to the three types of pages. The
LSBfirst scheme prioritizes LSB pages for the incoming write
requests, and once all the LSB pages are exhausted, it assigns
both CSB and MSB pages with equal probability to the future
writes. LSBfirst scheme maximizes the LSB writes in prxy and

0

0.2

0.4

0.6

0.8

1

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

ed

PA
PA

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
P

A

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

ed

PA
PA

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
P

A

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

ed

PA
PA

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
P

A

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
PA

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
P

A

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
PA

B
as

e
lin

e

LS
B
fir
st

Si
ze

-b
as

e
d

PA
P

A

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 fl
as

h
 w

ri
te

s

Workloads

LSB_writes CSB_writes MSB_writes

Fig. 18: Flash writes in LSB, CSB, and MSB writes in various workloads for different schemes with cache enabled. The
writes are normalized to the baseline scheme.

0

0.2

0.4

0.6

0.8

1

prxy proj fin mds hm prn exch tpcc tpce Average

R
at

io
 o

f
p

ar
ti

al
 a

n
d

 f
u

ll
w

ri
te

s

Workloads

Partial_writes Full_writes

Fig. 19: Ratio of partial and full page writes with cache
enabled.

mds traces, as depicted in Figure 18, owing to small number
of writes to flash memory, as many writes are absorbed in the
cache in these traces.

The size-based scheme greedily stores the small writes,
i.e., requests with a single transaction, in low-latency LSB
pages to decrease the response time, whereas, the high-latency
CSB/MSB pages are used to serve large writes, i.e., requests
with multiple transactions. Therefore, the utilization of pages
by the size-based scheme varies with workload characteristics.
If the workloads contain mostly small-writes, the size-based
scheme proactively uses LSB pages, thereby increasing the
performance of the device. However, many single-transaction
requests (small requests) are absorbed by the cache, and thus
the utilization of LSB pages is reduced in size-based scheme,
as depicted in Figure 18.

The PAPA scheme preferably allocates LSB pages to partial
writes, considering the RMW overhead involved in partial
updates. Although the cache absorbs many partial writes, a
significant amount of partial writes are written to the flash
memory, as depicted in Figure 19. As shown in the figure, 57%
writes are partial writes, whereas, 43% are full page writes.
On average, 4% writes are mapped to the MSB pages, thereby
significantly reducing the write response time, whereas LSB
and CSB pages share 54% and 42% writes, respectively, as
depicted in Figure 18.

Write response time. As we discussed in the preceding
subsection, the high-latency MSB writes are reduced exces-
sively in PAPA scheme. Therefore, the write response time
is also improved significantly, as depicted in Figure 20. The

0.2

0.4

0.6

0.8

1

1.2

prxy proj fin mds hm prn exch tpcc tpce Average

N
o

rm
al

iz
ed

 w
r.

 r
es

. t
im

e

Workloads

Baseline LSBfirst Size-based PAPA

Fig. 20: Normalized write response time in various
workloads for different schemes with cache enabled. The
write response time is normalized to the baseline scheme.

best improvement in write response time can be seen in tpcc
trace for PAPA, owing the large number of partial writes
which are written to low-latency LSB/CSB pages. However,
the average reduction in write response time in PAPA is 50%,
as depicted in Figure 20. To conclude, our proposed scheme,
PAPA, maximizes the low-latency LSB writes and minimizes
the high-latency MSB writes and improves the response time
effectively both in presence and absence of the internal cache.

VII. CONCLUSION

Different types of pages in the TLC flash memory ex-
hibit variable read/write latencies. In addition, partial updates
perform worst when updating an MSB page, as partial up-
dates perform an additional read operation for ensuring data
integrity. Conventional TLC programming designs follow a
type-blind page allocation, thereby providing an opportunity to
explore and utilize a new type-directed page allocation scheme
for performance enhancement. In this study, we proposed
the PAPA scheme for the TLC flash memory. The proposed
scheme simultaneously considers the size of each transaction
and flash page types for performing page allocation. We
employed a relaxed program order to meet the requirements
of our type-directed page allocation. The PAPA scheme prior-
itizes low-latency LSB pages for partial page writes and high-
latency CSB/MSB pages for full page writes. We evaluated the
performance of the PAPA scheme using a rich set of workload
traces. We observed that the SSD throughput, write response
time, and RMW latency improved by 14%, 55%, and 34%,
on average, respectively.

REFERENCES

[1] D. Sharma, “System design for mainstream tlc ssd meeting the perfor-
mance challenge,” in Proc. Flash Memory SUMMIT, 2014, pp. 1–20.

[2] W. Choi, M. Jung, and M. Kandemir, “Invalid data-aware coding to
enhance the read performance of high-density flash memories,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 482–493.

[3] W. Zhang, Q. Cao, H. Jiang, and J. Yao, “Improving overall performance
of tlc ssd by exploiting dissimilarity of flash pages,” IEEE Transactions
on Parallel and Distributed Systems, 2019.

[4] L. M. Grupp, J. D. Davis, and S. Swanson, “The harey tortoise: manag-
ing heterogeneous write performance in ssds,” in Presented as part of
the 2013 {USENIX} Annual Technical Conference ({USENIX}{ATC}
13), 2013, pp. 79–90.

[5] S. Jin, J. Kim, J. Kim, J. Huh, and S. Maeng, “Sector log: fine-grained
storage management for solid state drives,” in Proceedings of the 2011
ACM Symposium on Applied Computing. ACM, 2011, pp. 360–367.

[6] M. Kang, W. Lee, and S. Kim, “Subpage-aware solid state drive for
improving lifetime and performance,” IEEE Transactions on Computers,
vol. 67, no. 10, pp. 1492–1505, 2018.

[7] Y. Feng, D. Feng, C. Yu, W. Tong, and J. Liu, “Mapping granularity
adaptive ftl based on flash page re-programming,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017,
pp. 374–379.

[8] J. Park, J. Jeong, S. Lee, Y. Song, and J. Kim, “Improving performance
and lifetime of nand storage systems using relaxed program sequence,”
in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 2016, pp. 1–6.

[9] A. Tavakkol, P. Mehrvarzy, M. Arjomand, and H. Sarbazi-Azad, “Per-
formance evaluation of dynamic page allocation strategies in ssds,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems, vol. 1, no. 2, p. 7, 2016.

[10] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error
characterization, mitigation, and recovery in flash-memory-based solid-
state drives,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1666–1704,
2017.

[11] C.-W. Chang, G.-Y. Chen, Y.-J. Chen, C.-W. Yeh, P. Y. Eng, A. Cheung,
and C.-L. Yang, “Exploiting write heterogeneity of morphable mlc/slc
ssds in datacenters with service-level objectives,” IEEE Transactions on
Computers, vol. 66, no. 8, pp. 1457–1463, 2017.

[12] Y. Li, C. Hsu, and K. Oowada, “Non-volatile memory and method with
improved first pass programming,” Aug. 19 2014, uS Patent 8,811,091.

[13] M. Murugan and D. H. Du, “Hybrot: Towards improved performance in
hybrid slc-mlc devices,” in 2012 IEEE 20th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems. IEEE, 2012, pp. 481–484.

[14] L.-P. Chang, “A hybrid approach to nand-flash-based solid-state disks,”
IEEE Transactions on Computers, vol. 59, no. 10, pp. 1337–1349, 2010.

[15] S. Im and D. Shin, “Comboftl: Improving performance and lifespan of
mlc flash memory using slc flash buffer,” Journal of Systems Architec-
ture, vol. 56, no. 12, pp. 641–653, 2010.

[16] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “Flexfs: A flexible flash
file system for mlc nand flash memory.” in USENIX annual technical
conference, 2009, pp. 1–14.

[17] W. Wang, W. Pan, T. Xie, and D. Zhou, “How many mlcs should
impersonate slcs to optimize ssd performance?” in Proceedings of the
Second International Symposium on Memory Systems. ACM, 2016, pp.
238–247.

[18] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
impact and interplay of ssd parallelism through advanced commands,
allocation strategy and data granularity,” in Proceedings of the interna-
tional conference on Supercomputing. ACM, 2011, pp. 96–107.

[19] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator
for nand flash-based solid-state drives,” in 2009 First International
Conference on Advances in System Simulation. IEEE, 2009, pp. 125–
131.

[20] U. trace repository, “Umass trace repository.” [Online]. Available:
http://traces.cs.umass.edu/index.php/Storage/Storage

[21] S. I. Repository, “Snia repository.” [Online]. Available:
http://iotta.snia.org/traces/130

[22] M. Kwon, J. Zhang, G. Park, W. Choi, D. Donofrio, J. Shalf, M. Kan-
demir, and M. Jung, “Tracetracker: Hardware/software co-evaluation for
large-scale i/o workload reconstruction,” in 2017 IEEE International

Symposium on Workload Characterization (IISWC). IEEE, 2017, pp.
87–96.

