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Abstract—As data centers expand, increasingly growing tradi-
tional grid energy consumption and carbon dioxide emission-
s have caused considerable challenges. Therefore, many data
centers have focused on renewable energy. However, such data
centers fail to maintain high performance while trying to fully
utilize renewable energy, as they cannot make a balance between
the uncontrollable storage-based workload and variable renew-
able energy. This paper proposes PreMatch, a tiered caching
storage system that considers both high-performance demands
and renewable energy utilization. PreMatch deploys a Solid State
Drive (SSD) cache and an Hard Disk Drive (HDD) cache for
the disk-based massive storage system, which can provide a
data transfer station while maintaining the reliability. We also
design an adaptive energy scheduling scheme to make the active
devices proportional to the dominant one of the green energy
and workload. To make decisions in advance, we introduce
Long Short-Term Memory (LSTM) neural network to forecast
the information on workload and green energy. Experimental
results show that the storage system using PreMatch can achieve
the same performance as Workload-Driven Scheme (WDS), but
consumes only half grid energy of WDS and has higher green
energy utilization.

Index Terms—Renewable energy, Data center, LSTM, SSD
cache

I. INTRODUCTION

With the rise of Internet and the emergence of various
applications, the scale of the virtual world is expanding
rapidly. And the virtual world is mainly built on massive data
centers and consumes roughly 2% of the world’s electricity.
More seriously, the ever-increasing Internet data is driving the
growth of the energy consumption of data centers rapidly. So
making data centers work with cheaper and environmental-
friendly renewable energy is meaningful. Using green energy
can not only reduce the carbon footprint and slow down global
warming, it also makes business sense. Over the last six years,
the electricity cost of the wind and solar green energy came
down so fast. A major new report from Bloomberg New
Energy Finance [1] shows that the green energy electricity
will be cheaper than most of the existing coal and gas plants
in the world by 2027. In particular, Google has reached 100%
renewable energy deployment in 2017 without traditional
energy, consuming about 2.6 gigawatts of wind/solar energy
to supply for both their data centers and offices [2].

However, not all the data center components have been
prepared for the variable green energy, especially the storage

system. As it consumes about 20% of the total energy [3], it is
quite significant to reduce the traditional energy consumption
of the storage system.

For the purpose of low traditional energy consumption, high
green energy utilization and high performance, many studies
have been done and can be divided into workload-driven and
supply-oriented schemes.

Workload-driven schemes mainly tend to update the number
of active devices according to workload variations [4, 5]. These
schemes get satisfactory performance but could rarely leverage
abundant green energy. Furthermore, some methods [6] use
energy buffer units (such as batteries) to store the spare green
energy and discharge when necessary. Thus, the green energy
peak can be shifted to make up the green energy trough.
However, various problems arise with the large-scale use of
energy buffer units in data centers, such as environmental
contamination, energy loss, and equipment cost.

Supply-oriented schemes usually update the number of
active devices according to the green energy supply [4, 7-9].
These schemes delay most of the latency-insensitive tasks to
match the green energy, or try to migrate workloads between
devices. However, many online applications, such as web ser-
vices, are latency-sensitive. The mismatch [10] between green
energy supply and workload will have a significant impact
on the performance, especially when the green energy trough
meets the workload peak. We can use some high-performance
devices as the cache of disk-based storage systems to improve
the performance [11-13], but it is not easy to deal with the
mismatch of green energy and workload.

Either way, effective schedulers should be aware of the
variances in the workload intensity or the green energy supply.
But the nonlinear workload and green energy supply are too
complicated to be modeled analytically. Fortunately, one of
the machine learning (ML) technologies—Long Short-Term
Memory (LSTM) [14] can solve this problem. Because LSTM
neural network is able to retain a lot of information from the
historical data, and it has been demonstrated to be efficient in
various fields that have a sequential nature [15-17].

In this paper, we propose an integrated storage system
scheduling method for data centers called PreMatch (Predic-
tion Match), which aims at obtaining significant grid energy
saving with little performance degradation and high green



energy utilization. We use SSDs as a cache of our disk-based
storage system to intercept requests and shift the storage work-
load, as SSDs [18] offer faster access speed and consume less
energy than HDDs. Through the SSD cache, we can reduce
the access to the underlying disks and offer opportunities to
match the variation of green energy.

With consideration of the energy saving and storage perfor-
mance, we design an adaptive cost-effective system-scheduling
scheme, where the active devices will depend on the dominant
one of green energy and workload dynamically. To avoid
frequent fluctuations of performance, we also introduce the
local and long-range variation trend. Meanwhile, to figure out
the workload and green energy conditions, we employ the
LSTM neural network.

The results show that the predicted data is accurate and our
PreMatch with predicted information works almost as well as
the PreMatch with real-world information. And the storage
system using PreMatch can achieve the same performance as
WDS, but consumes only half grid energy of WDS and has
higher green energy utilization. Meanwhile, PreMatch works
well when used in large-scale storage systems.

In summary, we make the following contributions:
o We leverage LSTM to predict both the workload and

green energy information for system scheduling and
introduce the local and long-range variation trend to avoid
frequent fluctuations.

e We use an SSD cache to shift the workload for grid
energy saving. Base on this architecture, we design an
adaptive cost-effective energy scheduling scheme, which
can adapt to the variation of workload and renewable
energy and focus on the dominant one dynamically.

+ We implemented PreMatch as a simulated system based
on a block-level distributed storage called Sheepdog [19].
And the results show that PreMatch saves much grid
energy with little performance degradation.

The rest of this paper is organized as follows: Section II,
Section III and Section IV describe the design of PreMatch
in general and in detail respectively, the implementation is
introduced in Section V, and the experiments are illustrated in
Section VI. Section VII discusses related work, and Section
VIII gives a summary of our work.

II. OVERALL DESIGN
A. Goal

PreMatch aims at maximizing the green energy utilization,
minimizing the grid energy consumption and suffering little
performance degradation.

To this end, the active devices are made proportional to the
periodically dominant one of the green energy and workload.
Thus when the workload is heavy, we can alleviate inactive
device accesses by activate all the devices to avoid the latency
penalty. When the workload is light, we can control the
number of active devices to match the green energy variation
and save grid energy.

However, even when the workload is light, latency-sensitive
requests makes it hard for the storage system to match the
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Fig. 1: The idea processes for write and read

variable green energy. To alleviate this problem, we employ an
SSD cache. Through the SSD cache, we can divide the process
of a request, whether latency sensitive or insensitive, into two
stages: online SSD cache stage and offline underlying disk
stage. Through the online stage, clients can obtain excellent
performance and the peak workload can be partly shifted by
the SSD cache with little energy consumption. Meanwhile, the
underlying disks could be powered off to save energy during
the online stage. In the other hand, the storage system can
adjust the offline stage process to match the variation of green
energy supply and workload, which will ultimately lead to
high green energy utilization and much grid energy saving.

Fig. 1 shows the idea processes for write and read requests.
In Fig. 1, the write request is firstly processed by the SSD
cache with an acknowledgement returned to the client, and
the final offline write stage is delayed until the green energy
supply is sufficient or the SSD cache is almost full. And the
read request can be immediately processed by the SSD cache
if the required data has been fetched from a underlying disk
in advance.

Meanwhile, the specific green energy and workload condi-
tions have significant effects on the total performance and grid
energy saving. To make the storage system scheduling cost-
effective, we employ LSTM to predict the future workload
and green energy information. With the future information,
we can schedule the storage system in advance and provide a
good tradeoff between performance and energy consumption.

B. Architecture of PreMatch

As shown in Fig. 2, PreMatch comprises three parts: key
information prediction, system scheduling, and storage archi-
tecture.

The key information prediction part trains the LSTM models
by the historical data of workload and green energy, and
utilizes the trained network models to predict the future
information. System scheduling part mainly comprises the
power control scheme and disk selection method. Combining
the information from key information prediction and storage
architecture parts, system scheduling part will figure out the
proper number of active disks and decide the disk selection
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method. Finally, the storage architecture part will schedule the
devices as the system scheduling part wishes.

Key information prediction and system scheduling will be
described in section 4 and section 3 respectively. Next, we

ill_explain the storage architecture in detail.
bl Stm%ge architectire

As shown in Fig. 2, the storage architecture mainly com-
prises energy equipment, the client, a cache layer, and a main
disk storage pool.

The energy equipment offers a mixture of solar power, wind
power, and traditional grid power. We use the grid-tie [20]
to synchronize the green energy and the grid power, and the
dominating supply is the green power. Grid power is used as
standby power and will be used when the green energy can’t
satisfy the minimum demand of the storage system.

The main disk storage pool is a distributed HDD storage
system, and disks in the storage pool are named P-disks. In
detail, the main storage pool is grouped into three replicas: the
primary replica and two non-primary replicas. Access requests
of the storage system are entirely served by the cache layer
and the primary replica, and the non-primary replicas mainly
exist to guarantee the data reliability of the primary replica.
Thus the non-primary P-disks could be powered off to save
energy when green energy is insufficient and storage workload
is light, and the related reliability concerns are addressed by
the cache layer.

The cache layer is composed of SSD cache and HDD cache.
The SSD cache is used to store the frequently and recently
accessed data. Through the SSD cache, we can divide the
process of a request, whether latency sensitive or not, into
two stages: online SSD cache stage and offline underlying disk
stage. Through the online stage, clients can obtain excellent
performance and the peak workload can be partly shifted by
the SSD cache with little energy consumption. Meanwhile, we
can control the execution time of offline stage to match the
variation of a green energy supply, which can improve green
energy utilization and save grid energy.

The HDD cache is logically divided into two zones: a
RAID (Redundant Array of Independent Disks)-Log zone
and an HDD-Remain zone. The HDD-Remain zone is used
as a supplement of the SSD cache, as SSDs have a lower
capacity/price rate and the hybrid cache layer will be more
cost-effective. The RAID-Log zone is used to guarantee the

reliability of the written data in the SSD cache and the HDD-
Remain zone.

As shown in Fig. 3, The upcoming write requests from
the client will be written into the SSD cache and the RAID-
Log zone simultaneously. When the SSD cache is full, the
newly written data will be stored in the HDD-Remain zone
instead. For example, the coming object 7 is written into the
HDD-Remain zone, as there is no place in the SSD cache. In
the RAID-Log zone, we use RAIDS here, and the fixed data
objects 3, 4, and 5 are stored in a stripe with the generated
parity object P1.
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Fig. 3: The division of HDD cache

III. PREMATCH SCHEDULING

Our system scheduling comprises the power control policy
and the P-disk selection method.

We compartmentalize the whole action time into many
continuous local decision-making cycles, and one long-range
cycle consists of many local cycles. At the end of every
local decision-making cycle, a new specific system scheduling
method will be generated for the following local decision-
making cycle.

A. Power Control Policy

In our policy, the SSD cache and the HDD cache will always
be active regardless of the green energy conditions. Green
energy will be utilized to supply the primary replica firstly, and
then the non-primary replicas. When green energy can’t satisfy
the normal service, the grid energy will be used. Besides, all
of the replications in the storage pool will be interchanged to
be the primary replica in Round-Robin order for every long
execution cycle (a week, a month, and so on).



For simplicity, we plan to make a quantitative classification
on the workload. Considering the time-varying characteristics
of the workload, we set a time window T}.,4. (6 hours as
an example) to narrow the range of measurement, which will
be dynamically moved to contain the current local decision-
making cycle.

TABLE I: The definition of variables

Variables definition

local(t + 1) the following local decision-making cycle

Wiocal(t+1) workload variation trend of local(t + 1)

Glocal(t+1) green energy variation trend of local(t + 1)

Wiocal_mode(t+1) workload mode of local(t + 1)

Waisk(t+1) number of P-disks workload needs in local (t+
1

Gaisk(t+1) nl)lmber of disks green energy can supply in
local(t + 1)

Gaisk_last number of P-disks green energy can supply in

the last local decision-making cycle

Power ne-disk energy required to power on one disk

Essp+HDD the energy to activate both the SSD and HDD
cache

K number of replicas

M each replica contains M P-disks

Wiong-range(t+1) workload variation trend of the following long-
range cycle

green energy variation trend of the following
long-range cycle

the final number of active primary P-disks in
local(t + 1)

the final number of active non-primary P-disks
in local(t + 1)

Glong-range(t+1)
Nprim_disk(t+1)

NNon_Prim_disk(t+1)

Winaz and W, represent the maximum and minimum
workload (the request number) in the T4, 4. period respec-
tively. Woyerali—avg means the average workload for all of
the historical workload.

Finally, the workload is divided into two modes by the
request number: Heavy mode and Light mode.

e Heavy mode. Which means the top fS
percent of the workload, belongs to range
[MAX(Woverall—avg7 Wmaz - ﬂ(WnLar - Wmin))a OO)

We use Wiyeraii—avg as the minimum value limit
for high mode workload recognition to avoid weak
identification.

o Light mode. Which means the remain workload, belongs
to range [OyMAX(Wm)erall—avgaWmam - ﬂ(Wmaz -

To control the energy consumption of a storage system,
the number of active devices is significantly important. In
our PreMatch, the active P-disks are made proportional to the
periodically dominant one of the green energy and workload
dynamically. Thus when the workload is heavy in the fol-
lowing local decision-making cycle, we can alleviate inactive
P-disk accesses by powering on all the primary P-disks in the
primary replica to avoid latency penalty. Because it takes about
11 seconds to switch a disk from standby to ready [21]. When
the workload is light, we can control the number of active P-
disks to match the green energy variation to save grid energy. If
inactive P-disk access happens, we will power on the accessed
P-disk by grid energy during the local decision-making cycle.

However, when there are conflicts between the local and
long-range variation trends, frequent switchings of P-disks will
result in device wear and performance fluctuation. Therefore,
considering the local and long-range variation trends of both
workload and green energy, the optimum number of active
P-disks will be described in algorithm 1.

To describe the power control policy clearly, we have
defined some variables in Table I. And we use Prim_disk and
Non_Prim_disk to represent primary P-disk and non-primary
P-disk respectively.

Algorithm 1 Power Control Policy With Predicted
Information
Require: Wlocal(t+1)’
Wdisk(t)7 Gdisk_last,
Glong—range(t+1)-
Ensure: NPrim_disk(tJrl)s NNon_Prim_disk(tJrl)
1: The SSD cache is always on
2: The HDD cache will be on unless the green energy can
supply all the storage devices and the HDD cache is clear
of dirty data
3: if Wiocai(t41) is downward but Wi, g range(i+1) 1S upward
then
4:  Ignore the local variation and keep the same number of
active P-disks as the last local decision-making cycle
50 Waiske+1) < Waisk(t)
6: else
7:  We will follow the workload value in the following local
decision-making cycle
if Wiocal_mode(t+1) belongs to Heavymode then
Open all of the M primary P-disks

Wlocal_mode(t-i—l)a Glocal(t+1)7

K, M,

long-range(t+1)»

10: Waiske4+1) <= M
11:  else

12: Waisk+1) <0
13:  end if

14: end if

15: Ecache <= Essp+uDD/POWerone-disk

16: if Gdisk(t+l) > Ecache then

17: Gdisk(tJrl) ~ MIN((Gdisk(tJrl) - Ecache); K * M)
18: else

190 Gaskey1) <0

20: end if

210 0f Gaisk(e+1) = Waisk(e41) then

22: if  Giocale+1) is  downward but the related
Glong—range(t+1) is upward then

23: Nprim_disk(t+1) =
MAX(NPT'im_disk(t)a Wdisk(t—i—l))

24: We will power off the Non-primary P-disks to reply
the decreased green energy

25: NNon_Prim_disk(t+1) = NNon_Prim_disk‘(t) -
(Gaisk_tast — Gaisk(t+1))

26:  else

27: if  Giocai(¢+1) 1s upward but the related
Glong-range(t+1) 18 downward then

28: NPrim_disk(t+1) <~

MAX (Nprim_disk(t), Waisk(t+1))



29: if Wdisk(t+1) = M then

30: The increased green energy will be used to
supply the possibly added primary P-disks for
priority

31: Ntem ~ Gdisk(t+1) - Gdisk_last - (M -
NPrim,_disk(t))

32: else

33: Niem < Gaisk(t+1) — Gdisk_last

34: end if

35: Then the remain added green energy will be used

to supply the Non-primary P-disks

36: NNon_Prim_disk(tJrl) <~ NNon_Prim_disk(t) +
Ntem

37: else

38: NP'I”L'7n_disk(t+1) <~ MIN(Gdisk(t-‘rl)a M)

39: NNon_Prim_disk(t+1) <~ Gdisk(t-&-l)
NPrim_disk(t+1)

40: end if

41:  end if

42: else

43: NPrim_disk(t-‘rl) =M

44 NNon_Prim_disk(t+l) <=0

45: end if

46: NNon_Prim_disk:(t+1) = MAX(NNon_Prim_disk(t)a 0)

47: NNon_PTim_disk(t+l) ~ MIN(NNon_Prim_disk:(t)v (K -
1)« M)

If the workload is downward in the local decision-making
cycle but upward in the long-range cycle, we will ignore the
local variation and keep the same number of active P-disks
as the last local decision-making cycle. Otherwise, we will
follow the workload mode in the local decision-making cycle.

When the local and long-range variation trends of the green
energy supply conflict, we will turn to confirm the number
of P-disks the green energy can supply and the workload
needs in the local decision-making cycle. If workload needs
more active primary P-disks than green energy can supply,
we would power on enough primary P-disks as the workload
needs. Otherwise, we will guarantee that the primary P-disks
are not influenced by the local green energy variation. To this
end, we will only power off the non-primary P-disks with
the temporarily decreased green energy respectively. And the
increased green energy will be used to supply the possibly
added primary P-disks for priority.

B. P-disk Selection

Knowing the proper number of active P-disks, then we
should decide the specific P-disk selection rules. Before that,
we will make a short announcement. To guarantee the perfor-
mance of the SSD cache, dirty data in the SSD cache and the
HDD-Remain zone will only be synchronized to the primary
replica. And the non-primary replicas can only get the up-to-
date written data from the RAID-Log zone.

1) Metadata Management:

Firstly, to manage the required metadata of all the data in
the storage system, we use two Least Recently Used (LRU)

lists and a Hot Data Level (HotLev) list and mainly focus on
the location and hotness information.

As shown in Fig. 4, the LRU1 list records the metadata entry
of the recently accessed data, and the twice-visited metadata
entry will be moved to the LRU2 list. The HotLev list manages
the metadata entry by the hotness level. There are n (10 for
example in our experiment) hotness levels, and each level
contains a range of hotness value. And the hotness value will
decay exponentially in time. The accessed metadata entry in
the HotLev list will be raised to the head of the LRU1 list.
Meanwhile, the metadata entry evicted by two LRU lists will
be thoroughly moved to the HotLev list.
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Fig. 4: The metadata information that we require

Each entry in Fig. 4 is designed as (obj_id, P-disk_id,
hotness, location, dirty_flag). The obj_id represents the
logical address, the P-disk_id represents the P-disk that the
data belongs to, the hotness means the accessed popularity,
the location shows where the data is stored (SSD cache,
HDD-Reserved zone, RAID-Log zone or P-disks), and the
dirty_flag shows that the data is dirty(dirty_flag=1) or
clean(dirty_flag=0).

2) Primary P-disk Selection:

To select the cost-effective primary P-disks, we should
record the real-time power state (on or off) and the sum of
data that belongs to HotLevl and HotLev2 for each primary
P-disk (HotLev(1 + 2)_Num). And we only record the data
that exists in the primary P-disks.

First, we can order all the primary P-disks by the
HotLev(1 + 2)_Num from largest to smallest. Then, we
can spin up the inactive primary P-disk with the largest
HotLev(1+ 2)_Num until the Np,in,_disk(1+1) €quals zero.
Finally, the remaining active primary P-disks should be spun
down, before which we should prefetch the HotLevl and
HotLev2 data that only exists in these primary P-disks to the
HDD cache.

3) Non-primary P-disk Selection:

As non-primary P-disks will be spun up only when the green
energy is sufficient or the HDD cache is almost full of dirty
data, it will be cost-effective to activate the non-primary P-
disk that has the largest number of dirty data in the RAID-Log
zone.



To select the cost-effective non-primary P-disks, we record
the real-time information of the dirty data in the RAID-
Log zone (Dirty_Num). In detail, we should classify the
dirty data by the non-primary P-disk ID. We only record the
information for one non-primary replica, as we always spin
up or down the related non-primary P-disks simultaneously.

First, we can order all non-primary P-disks by the
Dirty_Num from largest to smallest. Then, we can spin up
the inactive non-primary P-disk with the largest Dirty_Num
until the Nnopn_prim_disk(t+1) €quals zero. Finally, The remain
active non-primary P-disks should be spun down.

C. Destage and Prefetch

When part of the P-disks are spun up in the following
local decision-making cycle, dirty data in the SSD cache and
the HDD-Reserved zone will be synchronized to the active
primary P-disks, and dirty data in the RAID-Log zone will
be synchronized to the active non-primary P-disks. However,
when the workload is heavy, the destage task to the primary
P-disks will be temporarily stopped to guarantee the perfor-
mance. Besides, when both of the SSD and the HDD cache
are almost full of dirty data, the system will be forced to do
the destage process. If green energy is insufficient, traditional
grid energy will be utilized to support the destage.

Meanwhile, when the workload is light, part of the hottest
data in the active primary P-disks will be prefetched to the
cache. And there will also be data exchanges between the
SSD cache and the HDD-Reserved zone, which can guarantee
that the SSD cache maintains the hottest data. But to avoid
data migration fluctuations, we prefetch at most one-twentieth
(an example in this article) the size of SSD cache hottest data
from the primary P-disks at once.

To relieve the destage impact on the normal cache access,
we also split the destage task into many pieces and deploy
these pieces in the whole local decision-making cycle.

IV. KEY INFORMATION PREDICTION

It is clear that we need the local and long-range variation
trends (upward or downward) of the workload and green
energy, as well as the accurate value of the following local
decision-making cycle. Indeed, both of the local and global
variation trends can be obtained from the historical and
following local and long-range cycle respectively. Thus, we
only need to predict the accurate values of the following local
and long-range cycle, and the upward and downward variation
trend are labeled as 1 and O respectively.
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In this paper, we use 10 minutes and 1 hour as the local
decision-making cycle and the long-range cycle respectively.
As shown in Fig. 5, we take the green energy for an example.
There are many irregular fluctuations in the hourly time
interval data curve of workload and green energy supply. When
zooming in for 10-minute time interval observation, the data
curve is more erratic.

To achieve accurate prediction, we eventually adopt the
LSTM neural network architecture [14], which has been
demonstrated to be efficient in various fields that have a
sequential nature. The LSTM neural network is a recurrent
neural network and is able to capture the long-term depen-
dencies in the time-series data.

The LSTM structure is shown in Fig. 6 and comprises three
layers: the input layer, LSTM cell layer, and output layer. We
predict the accurate values of the following local and long-
range cycle on the past 36 10-minute and 24 hourly time
internal data respectively. And 36 and 24 are the look-back
time steps. The prediction models for the workload and green
energy are completely independent, and there will be four
LSTM network models at last. For all of the LSTM network
models, all of the LSTM cells in one model share the same
weights and there are 10 hidden units in each LSTM cell.

V. EXPERIMENT SETUP

With the limited experimental environment, we evaluate the
effect of the PreMatch by using the simulation method. The
system implementation module diagram is shown in Fig. 7.

Metadata
module
Scale ¢
module
¢ Cache layer
Workload <«
module
Prediction ¢
module Main Disk
Energy > Storage Pool
module
Storage module

Fig. 7: Simulation module diagram

The Scale module is used to control the scale of the
system. As the storage pool is designed as an n-way replicated
distributed storage system, and the SSD cache is organized
by consistent hashing, we can scale up and down the storage
system easily.

The Energy module is used to adapt the renewable energy
supply to different scales. Both of the wind and solar datasets



are collected from the National Renewable Energy Laboratory
[22]. As the sunshine intensity and wind speed vary in different
seasons, we randomly chose a hybrid week-long solar and
wind trace in summer and winter respectively from Dodge
City. The characteristics of two hybrid green energy traces
(Summer, Winter) are listed in Table II, which shows the green
power name, average power output, the ratio of low power
period that is less than 1 MW and the total time. Besides, the
two traces can be linearly scaled to match different storage
scales.

TABLE II: The characteristics of green energy traces

TABLE IV: Hardware details

oS Linux version 2.6.35.6-45.fc14.x86_64
CPU Intel (R) Xeon (R) CPU E5506@2.13GHz
Hard Disk Seagate ST2000DMO008 2TB SATA 7200rpm
SSD SAMSUNG 850 EVO 120G SATA3
Average Latency 6 ms
Disk Maximum data transfer rate 220 MB/Sec
Parameters Idle Power 39 W
Standby Power 03 W
Active Power 50 W
Sequential Read/Write(up to) 520 MB/s
SSD Random Read (up to) 94000 I0PS
Parameters Random Write (up to) 88000 IOPS
’ Active Power 37W
Idle Power 0.5W

D Avg(MW)  low-power ratio  note
Winter 15.17 42.66% 7 days
Winter3 14.24 41.9% 3 days of Winter
Summer 17.4 13.49% 7 days
Summer3 16.46 20.07% 3 days of Summer

In the Workload module, many clients are simulated, and
each client will create some threads to dispatch the same
trace, such as usr trace, to the Storage module at a time. The
workload traces are collected from the MSR with a total of
36 different traces[23]. We chose two week-long traces, whose
characteristics are listed in Table III. Because running a seven-
day trace non-stop is infeasible, our experiment accelerates the
test by a factor of 60. And the top 10 percent of the workload
is defined as heavy mode.

TABLE III: The features of traces

Traces  Write Ratio IOPS  Avg. Req
usr 59% 83.87  22.66KB
rsrch 91% 21.17  8.93KB

The Prediction module, using the LSTM neural network, is
responsible for providing accurate future information for the
Workload and Energy module respectively. All of the workload
and green energy traces are divided into two parts: a four-
day training dataset, and a three-day testing dataset. We train
the LSTM networks with the training datasets, and then will
evaluate our schemes with the testing datasets.

The Metadata module deals with the required metadata of
all the data in the storage system.

The Storage module is responsible for the simulation of
actual HDDs and SSDs. The HDD cache and the main storage
pool use the same simulated disks. Simulated SSDs and disks
parameters are generated from the real devices, which are
shown in Table IV. In the simulation, we just provide the
request access time calculated by the request type, size and
device conditions. Moreover, we install the modified sheepdog
[19] in three similar physical servers to simulate the primary
replica server nodes and two non-primary replica server nodes
respectively. The parameters of the real server are also shown
in Table IV.

To evaluate our PreMatch, there are four configurations used
for comparison.

o Standard: This scheme is an SSD-cache based data
center without any power management policy.

« WDS (WorkLoad-Driven Scheme): We keep the cache
and the primary replica active, and will power on any
P-disk when the storage system desires.

o PreMatch: A standard data center with our novel system
scheduling scheme. The predicted information is used in
this mode, and both the SSD and HDD cache are always
kept active.

o PreMatch-T (PreMatch True): The only difference with
PreMatch is that we use the real-world information in-
stead in this mode.

VI. EVALUATION

In this section, we will keep the number of devices in the
data center with a proportion of 1 SSD cache: 3 HDD cache:
30 P-disks. And we take the storage system with 30 P-disks
for an example.

A. Accuracy of Prediction

Table V shows the prediction accuracy of the key character-
istics on the workload and green energy traces. It is clear that
most of the accuracy values of workload are above 95%. The
accuracy of green energy in the local decision-making cycle
is evaluated by the RMSE (Root Mean Squared Error), and it
is small too. Fig. 8 shows the true and predicted data curve
of the winter3 trace. We can see that the predicted curve is
almost coincided with the true winters trace.

TABLE V: The prediction accuracy of the key characteristics

workload local mode local varia- long-range
tion variation
usr 97.22% 95.35 % 97.14%
rsrch 97.47% 95.59% 95.71%
Green energy RMSE of local local varia- long-range
value tion variation
Winter3 1.54 86.77% 80.28%
Summer3 1.84 80.26% 79.05 %

B. Energy Consumption Comparison

Fig. 9 shows the energy consumed by four configurations
under various green energy and workload traces. The upper
part of the splicing cylinder represents the grid energy actually
used, and the lower part represents the green energy actually
used. First, PreMatch can save more grid energy than other
methods under various traces. The primary replica is always
on in WDS, whereas PreMatch will only activate the primary
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Fig. 8: The true and predicted data curve of the winter3 trace

replica when the workload is heavy or the green energy is
sufficient. Therefore, much grid energy will be wasted in
WDS. We can also see that PreMatch consumes more green
energy than WDS, as much green energy will be wasted when
the green energy supply exceeds the primary replica demands
and the non-primary replicas needn’t be powered on.
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Fig. 9: Total energy consumption of four configurations under
various traces

Under summer3 trace, PreMatch can reduce a little more
grid energy, because summer3 has the smaller low ratio
(20.07%) and higher average value (16.46MW) than winter3
trace as shown in Table II, thus the summer3 trace can
provide more efficient green energy. And under rsrch +
summer3, PreMatch delivers the highest grid energy saving,
and reduce grid energy up to 98.5% when compared to the s-
tandard method. Meanwhile, PreMatch consumes only the half
grid energy of WDS at most. Besides, under usr + summer3
and rsrch + winter3, we get the maximum utilization ratio
(95.8%) and minimum utilization ratio (94.4%) respectively.
In the WDS, the green energy will only be used when the
workload demands, plenty of the green energy is wasted when
the workload is light.
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Fig. 10: Real-time grid energy consumption of PreMatch and
PreMatch-T under rsrch and Summer3

We can also see that PreMatch consumes more traditional

grid energy than PreMatch-T, especially under the rsrch and
Summer3 traces. To make it clear, we introduce the Fig. 10,

which describes the real-time grid energy consumption of
PreMatch and PreMatch-T under the rsrch and Summer3
traces. In Fig. 10, we can see that PreMatch consumes more
grid energy than PreMatch-T when the green energy is unable
to supply all of the P-disks. Because larger predicted value
of green energy in the local decision-making cycle will bring
more active P-disks, and the extra activated P-disks will be
supported by the grid energy, such as the 17th and 61th
hours. In addition, the light mode workload period in the
real-world workload trace might be predicted as the heavy
mode in PreMatch, which will also waste some grid energy
when the green energy is insufficient (the 23th and 24th
hours). Therefore, PreMatch consumes more grid energy than
PreMatch-T.

C. Performance Comparison
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Fig. 11: The performance of four configurations under various
green energy and workload traces

Fig. 11 shows the performance of four configurations under
various power and workload traces. First, we can see that
standard configuration has the best performance, as all of
the replicas are active all the time. WDS performs only a
little worse than the standard method, as the primary replica
is always on and the performance will only be affected by
the destage. PreMatch will only activate the primary replica
when the workload is heavy or the green energy is sufficient,
so PreMatch delivers the worst performance. And we can
find that PreMatch performs a little better under summer3
than winter3. Because the summer3 trace can provide more
efficient green energy than winter3.

In PreMatch, the SSD cache hit ratio is very high, so only a
small fraction of data accesses will be redirected to the main
storage pool when the workload is light. Furthermore, we will
activate the whole primary replica when the workload is heavy,
thus inactive P-disk access will not bother us. Therefore, con-
sidering the high green energy utilization ratio and significant
grid energy saving, the performance degradation of PreMatch
is acceptable and graceful.

We can also find that PreMatch-T always performs a little
better than PreMatch in most cases. Because the wrong
variation trend prediction in green energy will result in more
conflicts between the local and long-range variation trends,
which might lead to the performance degradation in PreMatch.
As when variation trend conflicts happens in the green energy,
we will guarantee that the primary P-disks are not influenced
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under rsrch and Summer3 traces

by the conflicts, and non-primary P-disks will be operated by
the green energy part that changes.

Besides, the wrong predictions in the workload local mode
will also give rise to performance degradation. Because several
heavy workload modes might be recognized as light modes,
and the primary replica could not be activated as the real-
world traces expected when the green energy is insufficient,
thus the performance will decline. To make it clear, the
Fig. 12 is introduced, which shows the real-time performance
of PreMatch and PreMatch-T under rsrch and Summer3.
For example, we can see that the PreMatch-T performs better
than PreMatch at the 25th and 27th hours. The reason is that
PreMatch-T knows the correct heavy workload modes, and
consumes more grid energy than PreMatch at the 25th and
27th hours, which is shown in Fig. 10.

In conclusion, our PreMatch, using the predicted green
energy and workload information, consumes a little more grid
energy and performs a little worse than PreMatch-T, but the
difference is acceptable. And not like the optimal PreMach-T,
our PreMatch is genuinely viable.

D. Large Scale Analysis

To evaluate PreMatch in different scale sizes, we set the
number of P-disks in the storage pool as 3000, 15000 and
30000. For simplicity, we take the tests under usr+summer3
as examples for comparison.
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Fig. 13: Energy consumption of different storage scales under
usr + summer3
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Fig. 14: Performance of different storage scales under usr +
summer3

As shown in Fig. 13 and Fig. 14, The results of different
scale sizes demonstrate the same regularity as our previous
tests (30 P-disks). Meanwhile, with the rise of the storage
scale, green energy utilization rate rises a little. Because the
extra green energy that could not supply one device can be
reused with an enlargement factor. In a word, though there are
some limitations in our simulation tests, our PreMatch could
match different storage scale sizes well.

VII. RELATED WORK

Green Energy utilization. Rutgers University and HP Labs
have built the data centers partly powered by green energy
to verify their methods [24, 25]. And several researchers [26]
have studied the simulation method to reduce carbon emissions
and cost. Chao Li et al. have developed sustainability, scale and
power security [27, 28] studies on green data center. SolarCore
[29] try to temporarily reduce the server energy consumption
when solar power is low. Blink [9] uses a staggered blinking
schedule to address the variability of wind and solar power.
The energy storage devices [6] are always used as standby
power to avoid lack of green energy, but bring in energy loss
and equipment cost.

Workload-driven schemes. B. Aksanli, et al. have proposed
two separate job arrival queues to process mixed workloads
in data centers [30]. GreenSlot [7], GreenHadoop [4], and
GreenSwitch [24] maximize the green energy usage by defer-
ring a batch of latency-insensitive jobs. Li, et al. [8] migrated
workloads across all the servers and GreenGear [31] leverages
the heterogeneity to match green energy. GreenCassandra [32]
saves grid energy by guaranteeing that one data replica is
always on. Our PreMatch aims at saving grid energy by
spinning down disks as many as possible when the workload
is light and green energy is insufficient within a data center.

Usages of SSDs. Generally, SSD [18] can act as a cache for
HDD or make up a hybrid storage system with HDD [11, 13,
33, 34]. Lazy-SSD [35] focuses on the endurance problem of
the SSD cache, and design a caching algorithm to avoid cache
pollution and preserve popular blocks in cache for a longer
period of time. Article [36] put the popular data in the SSD
and part of the disks to save energy. In the video area, article
[37] use an SSD and a parity disk on S-RAID to optimize the
random reads and writes, and address the sequential writes
by part of the disks. Article [38] focuses on the reliability of
the energy-saving hybrid storage system. In total, some of the
energy-saving methods are orthogonal to our overall design,
and could be used in our primary replica.

LSTM Neural Network. The LSTM neural network is
one popular variation of the recurrent neural network, and it
is able to capture the long term dependencies in the time-
series data [14]. LSTM has been demonstrated to work well
in various domains that have a time-series nature, and some
researchers have studied the usage of LSTM in some complex
applications [15-17]. Paper [17] investigates the effectiveness
of using LSTM to do a prediction for constructing dynam-
ic energy management algorithms in chip multiprocessors.
And article [15] focuses on the forecasting of CPU usage



of machines in data centers. In article [16], a hierarchical
framework was proposed for cloud resource allocation and
power management, and the LSTM was used to provide the
requests arrival interval.

VIII. CONCLUSION

When using green energy in HDD-based storage systems,
the workload-driven schemes get satisfactory performance but
could rarely leverage the abundant green energy, while supply-
oriented schemes reduce the performance of latency-sensitive
workloads. This paper proposes PreMatch to take into consid-
eration both of the workload and green energy by LSTM. In
detail, we utilize an SSD cache to shift part of the workload,
and design an adaptive cost-effective scheme to maintain an
available number of active HDDs to provide service and save
grid energy according to the predicted information. Compared
with the storage system using WDS, PreMatch can further
improves 35% additional green energy utilization ratio and
reduces at least 50% grid energy with little performance
degradation. Besides, PreMatch can work well with large-scale
storage systems.
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