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Abstract—Emerging non-volatile main memories (NVMMs)
provide persistency and low access latency than disk and SSD.
This motivates a number of works to build file systems based
on NVMM by reducing I/O stack overhead. Metadata plays an
important role in file system. In this paper, we revisit virtual file
system to find two main sources that limit metadata performance
and scalability. We thus explore to build a metadata optimized
file system for NVMM-DirectFS. In DirectFS, VFS cachelet is
first co-designed with VFS and NVMM file system to reduce
conventional VFS cache management overhead meanwhile retain-
ing file lookup performance. DirectFS then adopts a global hash
based metadata index to manage both VFS cachelet and metadata
in NVMM file system. This helps to avoid duplicated index
management in conventional VFS and physical file system. In
order to increase metadata operation scalability, DirectFS adopts
both fine-grained flags and atomic write to reduce limitations
during concurrency control and crash consistency guaranteeing.
We implement DirectFS in Linux kernel 4.18.8 and evaluate
it against state-of-the-art NVMM file systems. The evaluation
results show that DirectFS improves performance by up to 59.2%
for system calls. For real-world application varmail, DirectFS im-
proves performance by up to 66.0%. Besides, DirectFS scales well
for common metadata operations.

Index Terms—non-volatile memory, file system, virtual file
system, metadata performance, metadata scalability

I. INTRODUCTION

Emerging fast and byte-addressable Non-Volatile Memories
(NVMs), such as ReRAM [4], Phase Change Memory [2], [44]
and recent 3D-XPoint [19], allow one to store data persistently
in main memory. This motivates a number of works to build
file systems on the non-volatile main memory (NVMM) [9],
[13], [15], [16], [23], [37], [45], [50], [54]–[56]. Since NVMM
provides sub-microsecond latency that is much lower than
hard disk and solid state drive (SSD), the software overhead
of file system itself becomes the main factor affecting file
system performance. In addition, as the number of CPU cores
increases, it allows a large number of threads to access file
system simultaneously. Thus, the scalability of file system also
becomes critical. Recently, a number of NVMM file systems
are proposed to bypass page cache and generic block layer
to reduce software overhead [9], [10], [16], [55] and allocate
multiple resources to improve scalability [17], [29], [55].

Metadata plays an important role in file systems. In general,
metadata provides descriptive information about files, directo-
ries, and file system itself. Metadata is usually involved in
most file system operations, such as file creation/deletion and
concurrency control. For example, path lookup is a common
metadata operation before accessing a file. Previous work

shows that path lookup reaches 54% of total execution time
for some command-line applications [49]. Since NVMM file
systems greatly reduce data access latency, metadata perfor-
mance becomes critical especially for operating small files.
We observe that metadata operations account for 53.3% of the
total execution time when reading 1 M small files of 8 KB in
NVMM file system (evaluated on Intel Optane DC persistent
memory [20]), which is a typical scenario for thumbnails
and profile pictures workload in Internet services (e.g., social
network and e-commerce) [5]. Moreover, with the increasing
number of CPU cores, metadata scalability is also critical to
allow file system to catch up the hardware trends and fully
utilize multi-cores [36].

Traditionally, metadata is stored and managed separately
in two-layer: virtual file system (VFS) and physical file
system (such as ext4). In this paper, we revisit virtual file
system for NVMM file systems and find two main sources
that limit metadata performance and scalability. First, VFS
caches file system metadata (e.g., inode and dentry) in DRAM
to accelerate file operations by avoiding frequently accessing
underlying slow disks but is volatile. Physical file system
stores metadata in persistent storage media (SSD, disk) to
prevent data loss but is slow. For disk-based file systems, this
two-layer metadata management can optimize performance
on the basis of ensuring data persistence. However, NVMM
provides access latency of the same order of magnitude as
DRAM. Managing metadata separately in VFS and physical
file system results in redundant metadata management (e.g.,
metadata index management) as well as lookup overhead.

Secondly, the two-layer metadata management requires to
update both VFS and physical file system atomically for
metadata writes. For example, the create system call not
only requires building dentry, inode in physical file system
and the related metadata cache in VFS, but also requires
updating the metadata and the cached one of the parent
directory in both physical file system and VFS. During this
process, in order to provide concurrency control, VFS adopts
a lock to the directory in which write operations execute. This
limits NVMM file system scalability. Moreover, as for write
operations, the NVMM file system adopts techniques (e.g.
journaling and log-structuring) to provide crash consistency.
Guaranteeing crash consistency itself does not scale well when
multiple threads compete for journal or log resources. As
a result, these two limitations are combined together when
manipulating shared directory and further decrease file system



scalability. Although a few recent works propose to reduce
lock granularity by partitioning [24], [25], [29], [34], [47],
[55], metadata operations during both concurrency control and
crash consistency guaranteeing are still required to be scalable.

Similar to removing page cache to optimize data path [9],
[13], [16], [29], [55], one intuitive approach is to remove VFS
and directly manage metadata in NVMM file system. However,
VFS is an important abstraction on top of physical file sys-
tems, providing operation compatibility to various physical file
systems. Directly removing VFS breaks this compatibility. In
addition, NVMM has higher read latency than DRAM [20] and
reading metadata directly from NVMM suffers from lookup
performance degradation.

Thus, in this paper, we take the principle of retaining
VFS abstraction and co-design VFS and NVMM file system
to improve metadata performance and scalability. We first
propose VFS cachelet by revisiting the conventional VFS
cache design. VFS cachelet is a reduced read cache in VFS
for caching read-dominate per-file metadata to sustain file
lookup performance. For other metadata, we directly read from
underlying NVMM file system. In such doing, VFS cachelet
can reduce metadata management overhead (e.g. cache (de-
)construction/maintenance). Secondly, we design a global hash
based index to manage both VFS cachelet and metadata in
NVMM file system. This unified indexing approach avoids
duplicated index operations in conventional VFS and physical
file system. Finally, we fully exploit fine-grained flags and
atomic write to remove directory lock in VFS. In addition,
we design atomic write based logging structure to reduce
scalability limitations during crash consistency guaranteeing.

Based on the above co-designs between VFS and NVMM
file systems, we build DirectFS, a metadata optimized high
performance and scalability file system for non-volatile main
memory. We implement DirectFS in Linux kernel 4.18.8 and
compare it against state-of-the-art NVMM kernel-based file
systems ext4-dax [10], PMFS [16] and NOVA [55]. The
evaluation results show that compared to NOVA, DirectFS
reduces execution time by up to 59.2% and 36.86% on average
for widely used system calls. And DirectFS reduces execution
time by up to 66.3% and 27.0% on average to NOVA for
common command-line applications. For typical real-world
application scenarios, DirectFS outperforms NOVA by up to
50.0%, 66.0%, and 42.3% for small file access, varmail and
fileserver respectively. And DirectFS scales well for metadata
operations on the shared directory.

II. BACKGROUND AND MOTIVATION

A. Non-volatile main memories

Non-Volatile Memories (NVMs), such as ReRAM [4],
Phase Change Memory [2], [44] and Intel 3D-XPoint [19],
provide fast, non-volatile and byte-addressable accessing.
These techniques allow one to build file system on non-volatile
main memory (NVMM). Some works assume that NVMM
has the same read latency and 3x-10x write latency with
DRAM [30], [37], [51], [57], [61], and they mainly optimize

write operations on NVMM file systems. Recently, Intel re-
leases an enterprise product: the Intel Optane DC Persistent
Memory Module (Optane DC PMM), which provides true
hardware performance of NVMM. We observe that Optane DC
PMM has similar write latency to DRAM, but read latency is
about 3x-5x slow than DRAM (These results are consistent
with the previous work [20]).

B. VFS and metadata operations

Virtual File System (VFS) provides an abstraction for in-
teracting with multiple instances of physical file systems. For
example, VFS holds mounting points for different physical file
systems and hands over file-related system calls to specific
file system instance. In addition, VFS acts as a caching layer
for file access. In physical file systems, a dentry metadata
mainly contains file name and the corresponding inode num-
ber. An inode metadata records file properties (e.g., file size
and creation time). VFS caches these two types of metadata
as icache (inode cache) and dcache (dentry cache). Before
accessing a file, one needs to lookup VFS. Taking path lookup
as an example, one needs to first look up dcache for each path
component. In case of finding dcache (namely warm cache),
VFS ends the lookup process and returns the corresponding
metadata. Otherwise, one needs to lookup dentry and inode in
physical file system (namely cold cache). After successfully
locating the file in physical file system, VFS builds icache
and dcache for the fetched metadata. On the other hand,
metadata write operations, such as rename and create, require
updating both VFS and physical file system to maintain cache
consistency. For NVMM file systems, VFS caching results in
two-layer metadata operation overhead, including redundant
metadata management as well as lookup overhead.

There are two main types of metadata. One is file system
metadata, such as size and free space of file system. The free
space management is a factor affecting file operations effi-
ciency. We can use pre-allocating [29], [37], [55] to improve
the performance and scalability of free space management.
The other one is file metadata, including file properties (such
as file name, file size and file mtime) and file data location.
Since all file operations require accessing file properties first,
we mainly focus on the file properties metadata in this paper.
For file data location, existing works make efforts to optimize
file data block management [9], [16], [28], [55], [56]. These
works are orthogonal to us.

C. Metadata performance

Since low access latency of NVMM reduces the overhead
of reading/writing file data, metadata becomes an important
factor affecting file system performance. Existing two-layer
metadata management introduces extra overhead in NVMM
file system, including cache (de-)construction/lookup and
maintaining cache consistency between VFS and physical file
system.

We measure the execution time of metadata operations as
well as the total execution time in ext4-dax [10], NOVA [55],
PMFS [16] when reading/writing 1/8/32KB data. Note that,
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Fig. 1. The percentages of times spend on metadata operations when VFS
in cold cache. For xtics, 1KB presents file size, r/w presents read/write
operations and ED presents ext4-dax file system.
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Fig. 2. The impact of metadata cache. create, stat and remove present
system call in one-level directory. “ 2” and “ 3” refer to evaluation
running in two-level and three-level directory respectively.

file reads are tested without metadata being cached in VFS.
Figure 1 shows the time percentages of metadata operations 1.
We further divide metadata operations into four parts: metadata
cache (de-)construction/maintenance (VFS metadata), meta-
data operations in physical file system (PFS metadata, in-
cluding metadata read/write, rebuilding directory index and
guaranteeing crash consistency) and metadata lookup in
VFS (VFS lookup) and physical file system (PFS lookup).
For reading/writing 1KB data, the metadata operations account
for 63.5% of total execution time on average. Even for reading
32 KB data, the metadata takes about 33.3% of total execution
time. This is because one needs to lookup file in both VFS and
physical file system in case of no metadata cached in VFS.
Then extra efforts are required building dcache and icache in
VFS. Moreover, we test two metadata-dominant command-line
applications du and rm. On average, the metadata operations
account for 86.5% of total execution time. This is because per-
forming lookup or metadata updating in both VFS and physical
file system. Thus, the two-layer metadata management should
be optimized for NVMM file systems.

To analyze the impact of metadata cache on metadata per-
formance, we evaluate the performance of metadata operations
with metadata cache (VFS in Figure 2) and without metadata
cache (performing all metadata operations on physical NVMM
file system, PFS in Figure 2) based on NOVA [55]2.

Figure 2 shows the performance. Warm cache represents that
VFS contains file metadata before accessing the file, which
runs the experiment twice and drops the first one. Cold cache
means VFS does not contain file metadata which runs the ex-
periment once. Since VFS requires additional cache operation
overhead for metadata write operations, PFS performs well for
open and remove in warm cache and cold cache. For metadata
read operations (stat) in cold cache, PFS reduces execution
time by 55.5% compared to VFS. This is because when VFS
does not contain file metadata cache, one requires finding both

1The experiment configurations are the same in Section V.
2All VFS-based file systems, such as PMFS [16], SCMFS [54] show the

similar results to NOVA.

VFS and physical file system and building metadata cache in
VFS. PFS only performs file lookup operations on the physical
file system. For metadata read operations in warm cache, PFS
increases execution time by 89.5% compared to VFS. This
is because NVMM has poor read performance and traditional
physical file system lookup slowly than VFS, such as slow
index structure. Since the locality of file access, the VFS cache
hit rate is closed to 100% in some operations [49].

From these observations, we can see that although existing
VFS cache reduces the performance of some metadata oper-
ations for NVMM file systems, removing all metadata cache
is also not desirable due to the long NVMM read latency.
This motivates us to revisit metadata cache in VFS. To avoid
double metadata lookups, we design a global metadata index
to enable one-time lookup (Section III-C). Meanwhile, we
propose a reduced metadata cache (Section III-B) to sustain
lookup performance with reduced management costs.

D. Metadata scalability

For NVMM file systems, the scalability of metadata op-
erations is important. However, it is currently limited by
existing concurrency control with VFS and crash consistency
guaranteeing in NVMM file systems. As for concurrency
control, existing file systems use lock to guarantee atomic-
ity [9], [13], [15], [16], [37], [45], [54]–[56]. They use a
directory lock (rwlock) in VFS to sequentially perform all
metadata update operations on the directory. For example,
when two concurrent threads create files “foo1” and “foo2”
separately in directory “example”, their creation operations
are performed sequentially. The directory lock limits the
scalability of concurrent operations. We run mdtest [22] to
evaluate scalabilities of both VFS and physical file systems
when accessing files in a shared directory3. Figure 3 shows
the results of ext4-dax and NOVA with increasing threads.
For metadata write operations (create ED, create N), they
require operating on both VFS and physical file system and
show poor scalability because of directory lock. For metadata

3The experiment configurations are the same in Section V-C.



0
2
4
6
8
10
12
14
16
18

1 4 8 12 16 20 24

Th
ro
ug
hp
ut
(M
op
s/
s)

��: ext4-dax �: NOVA

create_ED
create_N
stat_ED

stat_N
stat_cold_N
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read operations (stat ED, stat N), VFS uses RCU-walk [27]
to support concurrent reads when metadata is cached (warm
cache), and it scales well with increasing threads. However,
when metadata is not cached (cold cache), the path lookup
stat cold N fails to scale due to lock contention in VFS.

As for crash consistency guaranteeing, file systems usually
use journaling and log-structuring techniques. The guarantee-
ing process suffers from multi-threads competing for log or
journal resources. Some NVMM file systems [10], [16] use
lock to protect multi-threaded contention. The lock reduces
metadata scalability. NOVA [55] allocates logs to each file to
improve scalability but cannot solve the contention when mul-
tiple threads operating on the shared directory. ScaleFS [47]
and Strata [29] allocate log to each thread or CPU core but
introducing expensive merge overhead when operating shared
directory.

In summary, on one hand, the concurrency control based
on VFS lock limits the scalability of metadata operations. We
remove VFS lock and adopt resource pre-allocation, atomic
write and asynchronous recycling to improve file metadata
scalability. On the other hand, the resource contentions during
crash consistency guaranteeing process also limit metadata
scalability. We extend dentry and use atomic based logging
to guarantee crash consistency and improve the scalability.

E. NVMM file systems

Recently, NVMM file systems are proposed to run on non-
volatile main memory [9], [10], [16], [54]–[56]. In general,
these NVMM file systems remove page cache and general
block layer to improve file I/O performance. In this paper,
we revisit VFS and co-design metadata optimizations between
VFS and physical file systems. Since we focus on meta-
data path in NVMM file system, we adopt the widely cited
NOVA [55], [56] as the design base of physical file system
as [28], [51]. As for metadata related design, we keep the
following techniques proposed in NOVA, including per-core
resource pre-allocate (such as inode and free/journal space)
as well as pre-file log space allocation. For data operations,
NOVA removes page cache and block layer to improve
data I/O performance. NOVA uses Copy-on-Write and log-
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structuring techniques to guarantee file data crash consistency.
DirectFS follows the same data path in NOVA.

III. DIRECTFS DESIGN

In order to reduce the performance and scalability overheads
of the two-layer metadata management in VFS and NVMM
file system, we co-design metadata optimization with VFS
and NVMM file system. In this section, we present DirectFS,
a metadata optimized NVMM file system by addressing the
co-design issues. We first describe the system overview of
DirectFS, then we present the detailed design of DirectFS.

A. DirectFS overview

Existing NVMM file systems, such as NOVA [55], [56],
ext4-dax [10], PMFS [16] and HiNFS [37], are built under
VFS. Figure 4 shows the system architecture and metadata
layout of DirectFS compared to existing file systems. For
existing file systems, they maintain metadata in both VFS
and physical file system and manage them separately. This
results in two-layer metadata management overhead, such as
(de-)constructing/maintaining dcache and icache in VFS as
well as managing dentry and inode in physical file system.

To balance the management overhead and file system per-
formance, we propose metadata optimizations for improving
both metadata performance and metadata scalability. Table I
shows the key metadata optimizations proposed in DirectFS.
We first propose cachelet (Section III-B) and global metadata
index (Section III-C) for improving metadata read/write per-
formance. To accelerate metadata read and hard link accessing,
we adopt inode quick path and nv pointer respectively (Sec-
tion III-D). We also use “..” dentry item in physical file system
to support getcwd operations.



TABLE I
KEY TECHNIQUES OF METADATA OPTIMIZATION IN DIRECTFS.

Optimizaiton
category

Optamized
operations Key techniques

Metadata
performance

Metadata
read

1. Building cachelet
2. Building global metadata index
3. Building inode quick path

Hard link Building nv pointer
Metadata

write
1. Building Cachelet
2. Building Global metadata index

Getcwd Using “..” dentry item

Metadata
concurrency

control

Creation 1. Pre-allocating dentry and inode
2. Atomic write on concurrency flags

Deletion 1. Atomic write on concurrency flags
2. Asynchronous recycling

Lookup Using RCU-lock and reference
count

Rename 1. Atomic write on concurrency flags
2. Suspending file lookup

Metadata
consistency

guaranteeing

Creation/
Deletion

1. Atomic write based extend dentry
2. logging

Rename Recording journal

We then scale the concurrency control for four meta-
data operations, including file creation, deletion, lookup and
rename (Section III-E). We pre-allocate dentry and inode
to avoid resource contention during file creation. Atomic
write is adopted to update concurrency flags for file cre-
ation/deletion/rename. We also use RCU-lock [39] and ref-
erence counter to mark the file being accessed. We apply
asynchronous recycling in the background to prevent the file
that is being accessed from being deleted. Since file rename
operation spans two files, DirectFS sets rename flag and
suspends the file lookup threads to ensure atomicity.

As for scaling crash consistency guarantee, we propose
extending the dentry (extend dentry) and use atomic write
based logging to extend dentry for file creation/deletion (Sec-
tion III-F). We also use journaling to guarantee the crash
consistency of rename operations.

Note that, DirectFS retains the general abstraction provided
by VFS and can co-exist with other physical file systems. As
shown in Figure 4, a flag F DIRECTFS is added into VFS
when DirectFS is mounted4. When accessing file system, once
this flag is encountered, subsequent metadata operations are
performed by DirectFS. Otherwise, the conventional metadata
operations process is performed.

B. VFS cachelet

Since the read latency of NVMM is higher than
DRAM [20], completely removing VFS cache is not desirable
as illustrated in Section II-C. Instead, we build VFS cachelet,
a reduced read cache with the minimum size to save manage-
ment cost and meanwhile retain lookup performance.

Traditionally, VFS cache contains dcache and icache. Since
dcache mainly contains file name which can be read from
the dentry in NVMM file system directly, we remove dcache

4The F DIRECTFS flag is actually added into the icache of the mounted
directory in VFS.

directly. The per-file metadata contained in icache mainly
includes file properties (e.g. file size and file operation flags),
file reference count and read-write lock. Unlike dcache, certain
metadata contained in icache provide runtime status of a file
and are commonly accessed by most file operations. Thus, by
analyzing all metadata related system calls, we keep the most
frequently read per-file metadata in VFS cachelet.

By analyzing all metadata related system calls, we keep the
most frequently read per-file metadata in VFS cachelet. For
each VFS cachelet entry, it includes file size (8 B), file access
permission (2 B), file type (2 B), file link counter (2 B), file
group/owner id (8 B), file inode number (8 B) and reference
count (8 B). In addition, each VFS cachelet entry uses 2 B for
file concurrency control flags (readable/delete/rename flags as
illustrated in Section III-E) and 40 B for a mutex lock used in
scaling concurrency control (illustrated in Section III-E). For a
given physical file system, the addresses of its file operations
are originally cached in VFS icache. DirectFS itself directly
records these function addresses instead of caching them in
each VFS cachelet entry. Finally, the security information
to support Linux extensible security module framework [6],
access control list [18] and file notification are remained in
VFS cachelet for security check. In such doing, each VFS
cachelet entry occupies 128 B, which is greatly reduced
compared to the original 768 B of a dcache and an icache.
This can help to save memory space especially when holding
a large volume of files.

C. Global hash based metadata index

Conventionally, metadata is separately indexed in both VFS
and physical file systems. This requires efforts to maintain two
complex indices, such as hash table in VFS and HTree [3],
[10], B-tree [8], [42], radix tree [55], [56] or hash table [37],
[50] in physical file systems. Moreover, two separate indices
bring twice index search for a file lookup in case of VFS
cache miss. Thus, we propose a global hash based metadata
index (mindex) to manage both VFS cachelet and metadata
in NVMM file system. Hash index outperforms tree-structure
index on NVMM in terms of both performance and scalability.
Although tree-like index structures support range scan, single-
key lookup dominates metadata operations in file systems (e.g.,
stat and access). Note that, the system call readdir actually
fully scans dentry data blocks instead of applying range scan
to directory index. Thus, the global hash based mindex is
sufficient to support common file system operations.

As shown in Figure 5(b), each entry in the global mindex
uses the name of a file and the inode number of its parent
directory as the entry key. The entry value contains the NVMM
address of the file dentry and the DRAM address of its
corresponding cachelet entry. In addition, the mindex entry
value includes the NVMM address of the file inode (namely
inode quick path as illustrated in Section III-D). Since the
global mindex stores indices for all dentries within a whole
NVMM file system, the hash table of mindex suffers from
table space issue. Rehash is an expensive operation [62]
and thus DirectFS applies garbage collection to reclaim less
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accessed dentries (see Section III-G). This guarantees access
performance of the global mindex without suffering from
rehash cost.

One can choose to persist the global mindex on NVMM.
By doing so, the global mindex can immediately serve queries
after system reboot. However, due to the long NVMM read
latency, accessing the global mindex from NVMM suffers
from expensive NVMM reads and thus reduces file lookup
performance. On the contrary, placing the global mindex on
DRAM turns to incur the rebuilding overhead. We measure
the building cost when opening a directory with 1 million
sub-files. It takes 113ms using a single thread. In case of
rebuilding the global mindex using 24 threads, it only takes
16ms. Besides, the rebuild operation is only performed when
the directory is first accessed. The cost is considered to be
acceptable. Therefore, we build global mindex on DRAM.

D. Metadata operations

Metadata read By using the global mindex, DirectFS di-
rectly looks up the dentry for a given path component (e.g. first
looking up “example” for the full path “/example/foo”). Once
the target dentry “example” is found, DirectFS needs to obtain
its inode from the dentry. In conventional physical file system,
inode is searched in the inode table according to its inode
number in dentry (Figure 5(a)). This lookup process usually
involves array search (e.g. fixed-sized inode table in ext4 [3]
and PMFS) or linked list/B+-tree search (e.g., variable-sized
inode table in NOVA and btrfs [42]). This degrades metadata
read performance. Instead, DirectFS builds an inode quick path
in the global mindex as shown in Figure 5(b) by recording
the NVMM address of an inode related with the dentry in
mindex entry. Therefore, if the inode address exists in the
global mindex when finding a file, DirectFS returns the inode
immediately to accelerate lookup performance. In case of ac-
cessing a dentry for the first time, DirectFS first finds the inode
by using the inode number (fetched from the dentry) in inode
table, and then adds the inode address in the global mindex to
build the inode quick path. After that, DirectFS searches the
next path component “foo” in the sub-entries of “example”.

The above process is repeated for each path component until
the last one is reached.

Handling hard link Hard link commonly exists in file
system. Assuming file “/home/foo1” is a hard link of file
“/home/foo”. After accessing file “foo”, its cachelet entry
is built in VFS. Then, file “foo1” is subsequently accessed.
DirectFS needs to check if there exists the same cachelet entry
for the same inode. Conventional VFS avoids establishing two
icaches for hard link by searching the whole icaches, which
is costly. Unlike VFS, as shown in Figure 5(b), DirectFS adds
a non-volatile pointer (namely nv pointer) in inode to refer
to its corresponding cachelet entry after the cachelet entry
is created. Each time DirectFS creates a cachelet entry, it
checks the nv pointer of the related inode. A new cachelet
entry is created if the nv pointer is NULL. In such doing,
DirectFS avoids creating duplicated cachelet entries for hard
link meanwhile without searching the whole VFS cachelet.

DirectFS reclaims VFS cachelet when the reference count
of the related file becomes 0. The nv pointer in the inode
is then set to NULL. Note that, when system crashes, the
nv pointer becomes invalid but without being set to NULL.
To identify invalid nv pointers, we embed an epoch number
in the nv pointer. The epoch number is increased by one after
crash. DirectFS only considers a nv pointer with latest epoch
number to be valid, which is similar to [13], [51].

Metadata write Metadata write operations in existing file
systems are similar to caching update. To provide VFS cache
consistency, one needs to modify both VFS and physical
file system. Taking creating “/example/foo” as an example.
VFS first looks up the target directory (“example”) (step
1). To prevent concurrent updates, VFS locks the directory
“example” (step 2). Then, one performs creation operations,
including allocating new inode and dentry of file “foo” in
physical file system (step 3) as well as creating its dcache and
icache in VFS (step 4). Meanwhile, one updates inode and
icache of the directory “example” (step 5) as well as updates
its dentry index in both physical file system and VFS (step 6).
Until then, VFS releases the lock on the directory “example”
(step 7) and the file creation ends.

In DirectFS, the above step 1 is executed using the global
mindex as described for metadata reads. Then step 3 is directly
executed and in step 4, only a VFS cachelet entry is created
for file “foo”. As for steps 5 to 6, DirectFS update the inode
and the related cachelet entry of directory “example”. Then,
DirectFS only requires to update the global mindex once
compared to the original step 6. This helps to reduce index
management overhead. DirectFS designs optimization to scale
concurrency control in Section III-E, and thus the steps 2 and
7 are not required any more.

Handling getcwd system call The system call getcwd
returns the full working path of the current process. Conven-
tionally, VFS has a pointer in each dcache referring to its
parent directory. VFS iterates dcaches of all path components
to obtain the full path. In DirectFS, we use the “..” dentry item
in physical file system to get the inode of parent directory.
We then search current directory inode number in the parent



directory to obtain current directory name. By repeating this
process, DirectFS gets the current working path of the process.

E. Scaling concurrency control

Common file operations usually involve multiple metadata
changes. Taking file creation for example, when creating a file,
file system creates its inode and dentry, and then updates the
inode of its parent directory. Due to the two-layer metadata
management, existing file systems rely on the directory lock in
VFS to guarantee the concurrency control of multi-metadata
updates. This limits metadata operation scalability especially
for concurrently accessing shared directory. DirectFS adopts
selective concurrency control to increase scalability of differ-
ent metadata operations.

Metadata operations usually involve read operations (such
as stat) and write operations. The write operations include
creating (mkdir, create), deleting (unlink, rmdir) and updat-
ing (chmod, chown) operations. Updating operations only
updates one attribution of a single file. Thus, DirectFS executes
them using atomic write to increase the concurrency. DirectFS
firstly atomically updates inode and then atomically updates
cachelet. The concurrent threads only read the cachelet to
obtain metadata information, which can read the old or new
metadata information. This is correct and can guarantee the
atomicity of update operations. Therefore, we mainly consider
the scalability of concurrency control for creation, deletion and
lookup (read) files.

Creation For creating a file, DirectFS first allocates dentry,
inode and VFS cachelet entry (step 1). And it marks the VFS
cachelet entry as unreadable by setting the readable flag to
0. After that, DirectFS inserts these structures into the global
mindex (step 2). Only after ensuring the metadata of the newly
created file is persisted into NVMM (step 3), DirectFS atom-
ically marks the cachelet entry as readable again by setting
the readable flag to 1 (step 4). Once the file is marked as
readable, the creation operation ends and the file is visible to
other concurrent threads. Step 2 ensures that only one thread
succeeds when multiple threads create the same file, avoiding
generating multiple files with the same name on a directory. In
order to provide concurrency control, DirectFS only sets the
readable flag of the corresponding cachelet entry to instead
of using the directory lock as in conventional VFS. This
allows multiple simultaneous metadata operations in the same
directory, such as concurrent file creations and lookups.

Note that, file creation also involves metadata allocation,
such as inode and dentry. DirectFS pre-allocates inodes to each
CPU core as in [55]. Moreover, DirectFS pre-allocates dentries
to each CPU core. DirectFS adopts both journaling and log
structuring to provide crash consistency (Section III-F). Thus,
DirectFS pre-allocates journal space to each CPU core and
log space to each directory. In such doing, metadata allocation
contention can be reduced.

Deletion For deleting a file, DirectFS first atomically sets
the delete flag in VFS cachelet entry of the target file (step
1). Then, DirectFS makes the deletion persistently by using
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Fig. 6. The design of log-structuring operations.

atomic write to inode (step 2). Finally, DirectFS marks the
file as invalid by updating VFS cachelet as deleted (step 3).
Once a file is marked as invalid, the file cannot be found by
other concurrent metadata operations. The delete flag in Step
1 prevents other threads from performing delete operations on
the file at the same time. Similar to file creation, setting the
delete flag of a cachelet entry allows concurrent metadata op-
erations in the same directory. DirectFS asynchronous recycles
the file data of the deleted file in the background only when
the file is not accessed by other threads. These help to scale
the concurrency control of file deletion in DirectFS.

Lookup When looking up a file/directory, DirectFS applies
efficient RCU lock [39] to allow concurrent deletions to-
wards any component along the path. The concurrent deletion
only invalidates the corresponding file without reclaiming
inode/dentry/VFS cachelet entry. The invalid file prevents any
subsequent lookup. Once DirectFS obtains the target inode, it
increases the reference count in cachelet entry before releasing
RCU lock. This indicates that the file/directory is incurring
certain operations (e.g., file read or write after lookup). By
doing so, concurrent lookup and deletion can be served cor-
rectly and the system scalability is increased.

Rename Unlike most metadata updates, rename manipu-
lates two files and needs to modify global mindex twice. The
atomicity of this operation cannot be guaranteed using atomic
write. rename first executes operations such as recording
journals and allocating new dentry, and finally modifies the
status of both source file and destination file. In order to
guarantee concurrency control, DirectFS adds a rename flag
in VFS cachelet entry to indicate the execution of rename
and block concurrent file lookup operations. However, the
rename flags of both source file and destination file are only set
when modifying their status. In such doing, DirectFS allows
concurrent metadata operations during the first stage of rename
operation.



F. Scaling crash consistency guaranteeing

In order to ensure crash consistency, DirectFS employs
log-structuring technique [31], [43], [55] to record metadata
changes. Taking file creation as an example. When creating a
file, file system creates its inode and dentry, and then updates
the inode of its parent directory by updating hard link and
mtime 5. To provide crash consistency, the newly created
dentry and the updated metadata of the parent directory are
logged6.

Existing log structuring adopts lock to guarantee the atomic-
ity of the logging, which limits the scalability of the logging. In
DirectFS, as shown in Figure 6, we extend the dentry (named
as extend dentry) to record the updated mtime of the parent
directory in addition to common dentry information (e.g., file
name and inode number). In such doing, DirectFS only needs
to record the 8 B address of extend dentry in log. This can be
done using an 8 B atomic write. Besides, we use Compare and
Swap (CAS) instruction to atomically allocate log space for
each thread. As a result, DirectFS benefits from the lockless
log structuring and improves the scalability of guaranteeing
crash consistency.

The extend dentry also records a flag indicating its own
validity (Figure 6). This flag is set to 1 when creating file
and set to 0 when deleting file. This flag is used in recovery
and file deletion. Note that, the extend dentry does not record
the hard link of parent directory. When recovering a directory,
DirectFS scans the types of all extend dentries in the directory,
and increases the hard link by 1 when finding a sub-directory.

Creation For creating a file, DirectFS allocates ex-
tend dentry, inode and then persists them ( 1© in Figure 6).
Then DirectFS atomically allocates log space using CAS
instruction ( 2© in Figure 6) and writes the address of ex-
tend dentry in log and persists it ( 3© in Figure 6). Then
DirectFS updates the mtime, hard link and global mindex of
parent directory7 ( 4© in Figure 6). If system crashes before per-
sisting the address of extend dentry, the extend dentry address
in log is NULL. DirectFS ignores all NULL extend dentry
addresses when rebuilding the directory from the log. If
system fails after persisting extend dentry address, DirectFS
can restore parent directory by reading extend dentries. In
such doing, DirectFS remains in consistent state.

Deletion For deleting a file, DirectFS directly sets the
tuple (valid flag, mtime) in the extend dentry of the file
to be <0, System.CurrentTimeStamp> to invalidate the ex-
tend dentry. This tuple occupies 5 B, in which the valid
flag takes 1 B and mtime takes 4 B. DirectFS adopts 8 B
atomic write for tuple update in extend dentry to ensure its
crash consistency. DirectFS then updates the inode of parent
directory by updating its hard link, mtime and global mindex.

5The hard link of the parent directory is only updated when a sub-directory
is created.

6Note that, the newly created inode is recorded in inode table before logging
the dentry, and is marked as valid after the logging finishes.

7DirectFS updates the mtime of parent directory only when the new mtime
is later than the mtime of parent directory. This is because the concurrent
threads may have updated the parent directory with a later mtime.

If system crashes after adopting 8 B atomic write, DirectFS
scans the log and updates mtime of parent directory for file
deletion according to the logged extend dentry. Besides, Di-
rectFS updates the hard link of parent directory by identifying
the type of extend dentry. Since atomic write incurs little
overhead, file deletion in DirectFS scales well.

Other operations For other metadata updates, such as
setattr and chmod, DirectFS first creates a property entry to
record updated metadata. Then, DirectFS uses 8 B atomic
write to log the address of property entry. DirectFS finally
updates the actual metadata (e.g., inode). The process also
scales well due to the low overhead of atomic write.

Rename Unlike most metadata updates, rename manip-
ulates two files which may span over different directories.
This involves logging extend dentries in two directories. Thus,
DirectFS adopts per-core journaling to guarantee the crash
consistency meanwhile exploiting atomic write based logging
to achieve improved scalability. When executing rename, Di-
rectFS starts a new transaction in journal and records rename
operation. Then, DirectFS performs rename by creating new
extend dentry in destination directory and deleting old one in
original directory. After that, DirectFS commits the transaction
in journaling.

Algorithm 1 Creating a new file in DirectFS
1: Allocate and initialize extend dentry, inode and VFS cachelet, and marks

VFS cachelet as unreadable
2: Persist inode and extend dentry using clflush
3: Insert extend dentry, inode and VFS cachelet in global mindex
4: new pos = compare and swap(log tail, log tail +8)
5: If log tail update fails due to no enough log space
6: Lock parent directory using VFS cachelet
7: Allocate 4 KB new space and assign the start address to new pos
8: log tail = new pos + 8
9: Unlock parent directory

10: Persist log tail using clflush and mfence
11: Record extend dentry address at new pos using atomic write
12: Persist extend dentry address using clflush and mfence
13: Update parent directory inode
14: Update parent directory VFS cachelet
15: Mark the file (VFS cachelet) in global mindex as readable

Case study We use file creation as an example to combine
both scaling concurrent control and scaling crash consistency
guaranteeing. Algorithm 1 describes this procedure. When
creating a file, DirectFS first allocates and initializes the
extend dentry, inode and VFS cachelet, marks VFS cachelet
as unreadable (line 1), and then persists extend dentry and
inode (line 2, we can use clflush, clflushopt or clwb). Then
DirectFS inserts extend dentry, inode and VFS cachelet in
global mindex (line 3). Then DirectFS atomically allocates
log space by updating the log tail (lines 4-10), logs the
extend dentry address (line 11) and persists it (line 12). After
that, DirectFS updates inode (line 13) and VFS cachelet (line
14) of parent directory. Finally, DirectFS marks the file in
global mindex as readable (line 15). In case of lacking
enough log space, DirectFS acquires the mutex lock in the
VFS cachelet of the parent directory and allocates another
4 KB space (line 6-9). The 4 KB space allows 512 log



entry allocations, which avoids frequent allocation and lock
contention.

G. Garbage collection

DirectFS executes garbage collection to reclaim spaces
occupied by less-frequently accessed global mindex entires
and the deleted files. Currently, DirectFS adopts a simple
reference-based eviction policy for evicting global mindex
entries. We use the reference count of a directory as the
indicator of its hotness. Once the reference count of a directory
becomes 0, we add it into a recycle queue for reclaiming. The
recycle queue is processed with a first-in first-out policy as a
FIFO eviction [53]. However, we also provide second chance
to the directory if it is re-accessed again by removing it from
the recycle queue.

DirectFS uses asynchronous recycling to reclaim spaces of
deleted files, including invalid entries (extend dentry, prop-
erty entry)/inodes as well as log spaces. DirectFS starts to
reclaim invalid entries/inodes when the number of invalid
entries in a directory exceeds certain threshold (e.g., 100
dentries in this paper) or the reference count of a directory
becomes 0 (no thread access). On the other hand, since
the log only records addresses of extend dentries, each log
entry occupies 8 B. To increase the reclaiming efficiency,
DirectFS starts to reclaim log space only when the summed
space of invalid log entries reach 4 KB. DirectFS copies all
valid log entries into a new and compacted log space. Then
DirectFS replaces the old log with the new one.

H. Recovery

In case of remount after a normal shutdown, DirectFS sim-
ply restores all consistent metadata (e.g. pre-allocated spaces
and extend dentry) without scanning journals and logs. During
the recovery after system failure, DirectFS first scans per-core
journal to apply any uncommitted transactions (mainly for
rename operations). Then, DirectFS starts a recovery thread on
each CPU core and scans log for each valid inode pre-allocated
to this core. For example, DirectFS can apply the latest mtime
to a corresponding directory and recover hard link as men-
tioned in Section III-E. By counting recorded extend dentry,
DirectFS can reclaim any unused extend dentry to avoid space
leakage. This recovery process can be executed in parallel
on each CPU core. Our evaluation shows that DirectFS takes
10 ms to identify all allocated dentries for 10 M files by using
24 threads.

IV. IMPLEMENTATION

DirectFS is implemented based on NOVA [55] in Linux
kernel 4.18.8. To show the metadata cache optimization for
other NVMM file systems, including VFS cachelet and global
mindex, we also implement metadata cache optimization in
DirectFS for PMFS [16]. Since DirectFS is a metadata opti-
mized file system, we can share data path and data structure
of NOVA but implement all proposed metadata techniques.
Similar to NOVA, DirectFS removes page cache and generic
block layer. For data consistency, DirectFS updates data by

using Copy-on-Write, and updates metadata by using log-
structuring technique. Besides, DirectFS uses RCU-lock [39]
to support multiple threads reading a shared file and a mutex
lock in VFS cachelet to support concurrent writing a shared
file.

DirectFS implements the global mindex using chained hash
table. Each bucket in the hash table is a linked list for solving
hash collisions [40]. Thus, the global mindex supports con-
current writes among buckets. Each bucket allows concurrent
reads but exclusive write. The number of indexed files depends
on the chain length. For example, the hash table can index 256
K files when the chain length is 1 (using 2MB memory space).
To increase the number of indexed files, one can increase the
chain length but at the cost of reduced lookup performance.
Currently, DirectFS does not limit the chain length. However,
DirectFS adopts the eviction policy (see Section III-G) to
balance the lookup performance and hash table space.

In total, implementing DirectFS requires total 6,076 lines
of C codes. Note that, our proposed metadata techniques in
DirectFS can also be implemented in any other NVMM file
systems, such as PMFS and HiNFS.

However, DirectFS currently has some limitations. DirectFS
requires the first several member attributes of dentry/inode
structures to be fixed, such as file name, mtime and file size.
These attributes are co-managed by both VFS and physical
file system. Fixing these member attributes allows VFS and
physical file system to directly access them. However, the left
member attributes are free to any specific file system. Sec-
ondly, DirectFS mainly focuses on building reduced metadata
cache. As for sub-mounting another file system, DirectFS can
support another DirectFS, but does not allow VFS-based file
systems (such as ext4-dax) to be sub-mounted. We leave this
feature to be implemented as the future work.

V. EVALUATION

In this section we evaluate DirectFS and answer the follow-
ing questions:

1) How does DirectFS perform against conventional
NVMM file systems with VFS? How do our proposed
metadata optimizations affect the performance of Di-
rectFS, including inode quick path and global hash based
mindex?

2) How is DirectFS scaled when multiple threads update
metadata?

A. Experimental setup

Compared systems We compare DirectFS with ext4-
dax [10] (using default data order mode), PMFS [16], and
NOVA [55]. All these file systems are kernel-based file sys-
tems with VFS. We also implement metadata cache optimiza-
tion on PMFS and NOVA, which can support basic system
calls. We show their performance in Section V-B1. We run all
experiments in CentOS 7.6.1810 with Linux kernel 4.18.8 by
porting PMFS and NOVA to the same kernel. All experimental
results are the average of at least 3 runs.



TABLE II
THE EXECUTION TIME (US) OF SYSTEM CALLS ON DIFFERENT FILE

SYSTEMS. “NQP” REFERS TO METADATA CACHE OPTIMIZATION WITHOUT
INODE QUICK. “ 2” AND “ 3” REFER TO EVALUATION RUNNING IN

TWO-LEVEL DIRECTORY AND THREE-LEVEL DIRECTORY RESPECTIVELY.
“ C” INDICATES WARM CACHE.

Time(us) PMFS PMFS Nnqp PMFS N NOVA NOVA Nnqp NOVA N DirectFS
stat 37.5 1.2 1.1 4.5 2.2 2.1 2.1

stat 2 37.7 1.2 1.2 5.2 2.2 2.2 2.2
stat 3 37.7 1.3 1.3 5.2 2.3 2.3 2.3
stat c 0.8 0.9 0.9 1.1 1.2 0.8 0.8

stat 2 c 0.9 0.9 0.9 1.0 1.2 0.8 0.8
stat 3 c 0.9 0.9 0.9 1.0 1.3 0.9 0.9

open 63.0 10.9 10.9 12.8 9.5 9.4 8.0
mkdir 59.8 11.2 11.1 14.0 12.0 11.9 10.6
open c 61.6 10.8 10.4 12.1 9.2 9.0 6.9
mkdir c 23.0 11.0 11.0 12.6 10.1 10.0 8.7
unlink 29.6 5.2 5.1 11.6 5.6 5.5 3.4
rmdir 48.6 5.8 5.7 15.0 8.1 8.1 4.8

unlink c 10.4 5.2 5.1 9.1 4.0 3.7 2.3
rmdir c 29.3 5.7 5.5 10.4 5.7 5.3 2.6

Hardware configurations We conduct all experiments on
a server equipped with two Intel(R) Xeon(R) Gold 6271
processors, each having 24 cores (disable hyper-threading) and
a shared 33 MB last level cache (LLC). The memory size is 64
GB and the NVMM size is 512 GB (two Optan DC PMM) for
each NUMA node. We only run evaluation on NUMA node
0 to avoid the impact of NUMA architecture on performance.

B. Metadata performance

We first evaluate metadata performance of DirectFS against
both cold VFS cache and warm VFS cache. In cold cache,
all metadata operations require to be served by physical file
systems. In contrast, for warm cache, VFS serves the cached
metadata. To evaluate the performance effect of inode quick
path, we also run metadata cache optimization without inode
quick path (namely nqp).

1) Microbenchmarks: We use 5 common system calls:
stat/open (creating a new file)/mkdir/unlink/rmdir as micro-
benchmarks. We run these system calls (except stat) in a
single-level directory with operating 10 K files. To evaluate
metadata cache optimization when operating multi-level direc-
tories, we test stat in single-level directory (stat), two-level di-
rectory (stat 2) and three-level directory (stat 3) respectively.
In this evaluation, we show the performance of metadata cache
optimization with existing NVMM file systems. We implement
metadata cache optimization, including VFS cachelet and
global mindex on PMFS (PMFS N) and NOVA (NOVA N)
to show the performance of basic system calls. Table II shows
the execution time for system call.

For metadata read operations in cold cache (stat), PMFS N
and NOVA N reduce execution time by 96.9% and 53.5% for
PMFS and NOVA respectively. The reductions mainly come
from the reduced metadata lookup operations in physical file
system and the overhead of creating dcache and icache in VFS.
When operating multi-level directories (stat 2 and stat 3),
metadata cache optimization in DirectFS still outperforms
existing file systems. Since PMFS does not build directory
index, it performs worst in finding files. After building global
mindex for PMFS (PMFS Nnqp, PMFS N), NOVA N and

DirectFS performs worse than PMFS. This is because PMFS
can quickly locate inode by calculating offset, and NOVA N
and DirectFS locate inode by looking up inode table. In
case of warm cache for metadata read operations (stat c),
thanks to building global mindex and adding inode quick path,
PMFS N and NOVA N provide comparable performance for
PMFS and NOVA respectively. NOVA Nnqp does not contain
inode quick path, it preforms worse than NOVA N by 19.0%.
PMFS Nnqp performs similar to PMFS N because it can
quickly locate inode by calculating offset.

For metadata writes(open/unlink/mkdir/rmdir), Metadata
cache optimization (PMFS N and NOVA N) reduces the
execution time by 75.3% and 36.8% on average com-
pared to PMFS and NOVA respectively. This is because
it performs lookup operations once and reduces cache (de-
)construction/maintenance overhead in VFS. Besides, Di-
rectFS recycles file metadata structures (dentry, inode and
cachelet) asynchronously when performing unlink and rmdir
operations. Since DirectFS also uses pre-allocation and atomic
writes to execute metadata updates, it reduces the execution
time by 28.9% on average compared to NOVA N.

2) Macrobenchmarks: We use 5 widely-used command-
line applications running in the Linux source directory [48]
to evaluate the end-to-end performance: find (searching for
”test.c” file), du -s (showing whole directory size), rm -rf
(deleting all files) and tar -xzf (decompress and unpack code)
and gzip compress code. Table III shows execution time of the
tested applications.

In case of cold cache, DirectFS outperforms ext4-dax,
PMFS and NOVA by 24.1%, 14.3% and 32.8% respectively.
This is because DirectFS optimizes metadata lookup opera-
tions and reduces cache (de-)construction/maintenance over-
head. Besides, DirectFS reduces metadata write operation by
using pre-allocates and atomic write. Because PMFS does not
build directory index, so it saves the overhead of rebuilding
directory index. On the other hand, the average number of
files under each directory in Linux source is 12. Thus PMFS
performs better than NOVA and ext4-dax for du and find as
shown in Table III.

In case of warm cache, ext4-dax, PMFS and NOVA can
perform almost all metadata read operations in VFS. Di-
rectFS provides comparable performance. DirectFS nqp per-
forms worse than DirectFS due to the lack of inode quick path.
For tar and gzip, DirectFS achieves little improvement as the
data I/O occupies most time of the application.

C. Metadata scalability

We show the scalability of metadata operations in Di-
rectFS when multiple threads operating a shared directory.
We evaluate file lookup, remove and rename. Since PMFS
performs similar performance to NOVA and ext4-dax, we do
not show the results of PMFS.

We first use mdtest [22], a metadata benchmark, to evaluate
metadata scalability for multiple threads operating a shared
directory in case of warm cache (we have similar scalability
for cold cache). All threads operate 1 M files and perform



0
2
4
6
8
10
12
14
16
18
20

� � � �� �� �� ��

Th
ro
ug
hp
ut
(M
op
s/
s)

Number of threads

ext4-dax
NOVA
DirectFS_r
DirectFS_b
DirectFS_noGC
DirectFS

(a) File lookup

0

1

2

3

4

5

6

7

� � � �� �� �� ��

Th
ro
ug
hp
ut
(M
op
s/
s)

Number of threads

(b) File remove

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

� � � �� �� �� ��

Th
ro
ug
hp
ut
(M
op
s/
s)

Number of threads

ext4-dax
NOVA
DirectFS_nocon
DirectFS

(c) rename

0

2

4

6

8

10

12

14

16

� � � �� �� �� ��

Th
ro
ug
hp
ut
(M
op
s/
s)

Number of threads

(d) stat with rename

Fig. 7. Metadata scalability

TABLE III
THE EXECUTION TIME (S) OF COMMON COMMAND APPLICATIONS ON

DIFFERENT FILE SYSTEMS. “ c” MEANS WARM CACHE.

Time(s) ext4-dax PMFS NOVA DirectFS nqp DirectFS
du 0.42 0.30 0.54 0.38 0.38
tar 8.12 8.93 7.66 7.65 7.63

find 0.25 0.18 0.26 0.17 0.16
gzip 22.10 22.96 21.91 21.41 21.30
rm 0.78 1.03 1.15 0.44 0.43

du c 0.15 0.14 0.16 0.20 0.14
tar c 7.60 8.43 7.13 7.14 7.06

find c 0.10 0.09 0.10 0.09 0.09
gzip c 21.81 22.94 21.67 21.37 21.26
rm c 0.64 1.04 1.01 0.35 0.34

metadata operations. To evaluate the performance impact of
global mindex, we implement radix tree (DirectFS r) and B-
tree (DirectFS b) as global mindex separately. To show the
GC performance of global mindex in DirectFS, we access 5
M files in the file system before running the evaluation. If the
GC operation is not performed (DirectFS noGC), the length
of hash chain increases, reducing file lookup performance.

File lookup For lookup operation in warm cache, ext4-dax
and NOVA access metadata in VFS and scale well as show
in Figure 7(a). Both DirectFS and DirectFS r adopt RCU-
lock and thus achieve similar scalability. Since the lookup
performance of radix tree is worse than that of hash table,
DirectFS r performs a little worse than DirectFS in terms of
throughput. The lookup operation in DirectFS b is protected
by rwlock, and thus achieves poor scalability. DirectFS noGC
does not contain GC thread to recycle index entries that are no

longer accessed in the global mindex, resulting poor lookup
performance.

File remove Since VFS locks the whole directory to
limit concurrent metadata access when operating the shared
directory, ext4-dax and NOVA fail to scale file remove as
shown in Figure 7(b). Compared to fine grained lock in hash
table, radix tree and B-tree require locking a sub-tree. Thus,
both DirectFS r and DirectFS b fail to scale file deletion. Di-
rectFS noGC shows poor performance due to long file lookup
performance. Since DirectFS removes VFS directory lock and
reduces logging contention by using atomic write, it provides
high concurrency, it provides high scalability for file remove
operations. Note that, the performance of DirectFS degrades
after reaching 24 threads when deleting files. This is because
we run a garbage collection thread in the background to
recycle the deleted file (Section III-G). The garbage collection
thread co-runs with file deletion threads on the same CPU
processor of 24 cores. When reaching 24 deletion threads, the
garbage collection thread introduces extra CPU contention and
thus degrades the performance.

File rename We evaluate the scalability of rename oper-
ation by using FXMARK [36] in a shared directory. We also
evaluate DirectFS nocon without optimizing the scalability of
consistency (Section III-F), and multiple threads compete for
the lock to log. Figure 7(c) shows the results. DirectFS pre-
allocates resources (e.g. journal and dentry) to each CPU
core and adopts atomic writes to avoid using lock. Thus,
DirectFS achieves better scalability than other file systems.
Because DirectFS uses rename flag to block other metadata



operations (including other concurrent rename operations)
during updating file status, it scales poorly after reaching 20
threads. Meanwhile, DirectFS nocon stops scaling file rename
after reaching 4 threads because of the lock of logging.

Figure 7(d) shows the performance of path lookup in warm
cache when there is a concurrent rename thread executing on
the same path. The rename lock of VFS does not limit the scal-
ability of file lookup operations. This is because VFS caches
all file metadata in case of warm cache, and the path lookup
can be served in VFS. Therefore, ext4-dax and NOVA scale
well in Figure 7(d). DirectFS instead adds rename flag for
parent directory and suspends metadata lookup (Section III-E)
to support concurrent rename. This introduces little overhead
and DirectFS also scales well as shown in Figure 7(d).

D. Application scenarios

We now evaluate DirectFS under three application sce-
narios. We first evaluate DirectFS reading and writing 1 K
small files (ranging from 1 KB to 32 KB). This is typ-
ical thumbnail/profile picture workload in Internet services
(e.g. social network [5] and e-commerce). Note that, we
run DirectFS using one thread here and multi-thread runs
can execute in same directories without the scalability lim-
itation (shown in Section V-C). This application scenario
involves open/read/write/close metadata operations. Figure 8
shows the results. We do not show PMFS as it does not
build directory index and performs poor in locating files.
DirectFS improves the throughput by 35.6% and 38.3% com-
pared to ext4-dax and NOVA for 1 KB files. When file
size increases to 32 KB, DirectFS still improves throughput
by 35.0% and 17.7% compared to ext4-dax and NOVA re-
spectively. These improvements come from reducing cache
(de)construction/maintain and lookup operations in physical
file system. Besides, DirectFS uses pre-allocate and atomic
write operations to improve metadata performance.

We then run filebench [1], a file system benchmark that
simulates a large variety of workloads by specifying different
models. We run fileserver and varmail and the test results
are shown in Figure 9. Since these applications usually run
with multi-thread, we test them with different threads. We
set varmail with 10 K files, the average file size is 16
KB, IO size is 1 MB and the read/write ratio is 1:1. Di-
rectFS obtains 27% improvement for single thread. This is
because DirectFS reduces metadata cache update and lookup
overheads. Besides, DirectFS optimizes the metadata update
operations by using pre-allocates and atomic write. For 16
threads, DirectFS outperforms NOVA by 66.0%. This is be-
cause DirectFS further optimizes the scalability of metadata
operations. We set fileserver with 10 K files, the average file
size is 128 KB, IO size is 1 MB and the read/write ratio is 1:2.
For single threads, DirectFS outperforms NOVA by 42.3%.
As the number of threads increases, the throughput difference
between DirectFS and NOVA becomes smaller, this is because
the bandwidth of NVMM limits the performance.

E. Latency breakdown

Figure 10 shows the metadata execution time normalized
to ext4-dax in case of cold VFS cache. Similar to Figure 1,
we also divide metadata operations into VFS metadata (meta-
data cache (de-)construction/maintenance) and PFS metadata
(including metadata read/write in physical file system, direc-
tory index or global mindex rebuilding, and logging). Since
DirectFS executes one-time lookup, we do not divide lookup
here. Note that, lookup in ext4-dax and NOVA includes oper-
ations in both VFS and physical file system. DirectFS adopts
global hash based mindex to locate metadata. Hash index
performs more efficiently than Htree (ext4-dax) and Radix
tree (NOVA) in terms of point query. As shown in Figure 10,
both mechanisms help DirectFS to reduce the lookup time for
all metadata operations. DirectFS only needs to allocate and
manage a small VFS cachelet. Thus, the latency of metadata
cache (VFS metadata) becomes smaller in DirectFS.

For physical metadata operations (PFS metadata in Fig-
ure 10), both NOVA and DirectFS require re-building directory
index or global mindex in DRAM when accessing existing
files (small file reads, du and rm). Instead, ext4-dax only
requires reading persistent directory index into page cache.
As a result, both NOVA and DirectFS spend more time on
physical metadata operations than ext4-dax for small file reads
and du. The global hash based mindex in DirectFS rebuilds
faster than radix tree does in NOVA. This results in less
physical metadata operation times in DirectFS than NOVA.
For file remove operations (rm), DirectFS only marks deleted
dentries as invalid. Instead, NOVA and ext4-dax needs to re-
claim dentry when deleting file. This helps DirectFS to reduce
physical metadata operation time. Therefore, DirectFS per-
forms less physical metadata operation times than ext4-dax
for rm. For writing small files, all three file systems require
updating directory index. However, ext4-dax requires first
writing metadata into page cache and then flushing to NVMM,
which adds extra latency to physical metadata operations.
DirectFS builds global mindex which is faster than NOVA.
Besides, DirectFS optimizes metadata update by using pre-
allocate and atomic write. Thus, DirectFS consumes less time
on physical metadata operations.

VI. RELATED WORK

NVMM based file system Recently, a number of research
efforts build file systems on NVMM. Most focus on optimizing
data path by removing block layer and page cache [9], [10],
[16], [37], [45], [54]–[56], [60]. Among these works, NOVA-
Fortis [56] further provides strong consistency. HiNFS [37]
adds write buffer to reduce the impact of long NVMM write
latency. In contrast, DirectFS mainly focuses on optimizing
metadata path. SoupFS [13] targets to reduce the critical
path latency by delaying almost all synchronous metadata
updates. SPFS builds a single-level persistent memory file
system by completely removing metadata cache but turns out
to performing worse than existing NVMM file systems [61]. In
contrast, DirectFS optimizes metadata cache and outperforms
state-of-the-art NVMM file systems.
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On the other hand, a few research works build user-level file
systems to directly access data in user space avoiding trapping
into the kernel [12], [23], [26], [29], [50]. These file systems
do not rely on VFS to cache metadata. However, Strata [29]
itself provides read-only metadata cache in user space, and still
needs to maintain metadata cache consistency between user
space process and Strata kernel. Aerie [50] manages metadata
through a trusted user-level FS service, which suffers from
extra inter-process communication overhead. SplitFS [23] and
ZoFS [12] do not optimize metadata operations. The ap-
proaches of DirectFS can be used in these works. DevFS [26]
also provides file system lib in user space without interacting
the kernel but targets to build file system inside solid state
drive (SSD).

Metadata optimization A number of research works op-
timize metadata operations. For example, TableFS [41] uses
log-structured merge tree to accelerate metadata writes. Re-
conFS [35] buffers directory tree in DRAM to reduce SSD
write amplification. BetrFS [21] provides write-optimized in-
dex to reduce random metadata operation overhead. In con-
trast, DirectFS is built on byte-addressable NVMM without
small write issues on block device. To reduce path lookup
overhead, previous works [14], [49] replace component-by-
component translation by adding a cache on VFS. Existing

NVMM file systems mainly optimize metadata operations in
physical file systems [9], [13], [16], [54], [55]. Unlike these
works, DirectFS mainly focuses on building a small metadata
cache and uses unified management to reduce metadata cache
overhead. ByVFS [51] removes dcache in VFS to improve
path lookup performance. However, it retains icache in VFS
and does not take metadata scalability into account. Full path
lookup proposed in previous works [14], [21], [33], [52], [58],
[59] can also be applied to DirectFS.

File system scalability To improve scalability, SpanFS [25]
partitions physical file system to domains to reduce data con-
tention, IceFS [34] groups files or directories into physically
isolated containers, and meanwhile Multilane [24] partitions
the entire IO stack, including VFS, physical file system
and driver. ScaleFS [47] builds an in-memory file system
to support concurrent data structure and then merges in-
memory updates to on-disk file system. NOVA [55], [56] pre-
allocates free spaces and maintains separate logs for each file
to improve concurrency. Previous work [46] allows concurrent
updates on data structures and parallelizes I/O operations for
journaling file systems. DirectFS is different from these works
in that it targets NVMM file system and handles scalability
issue by carefully resolving resource contentions. pNOVA [28]
accelerates the parallel writing and reading for individual files.
The proposed techniques can be used in DirectFS to improve
single file I/O concurrency.

Index structure Previous works mainly focus on reducing
consistency overhead and space consumption, and improving
concurrency control for using different indexes on NVMM [7],
[11], [32], [38], [40], [57], [62]. Existing NVMM file systems
employ radix tree [55], hash table [13], [50], and Htree [10] for
each directory index. Instead, DirectFS adopts chained hash
table as global mindex to support fast lookup and improve
scalability.

VII. CONCLUSION

Metadata is an important part of file systems. In this paper,
we revisit virtual file system to find two main sources that
limit metadata performance and scalability. We thus explore to
build a metadata optimized file system for NVMM-DirectFS.



In DirectFS, VFS cachelet is first co-designed with VFS
and NVMM file system to reduce conventional VFS cache
management overhead meanwhile retaining file lookup per-
formance. DirectFS then adopts a global hash based meta-
data index to manage both VFS cachelet and metadata in
NVMM file system. This helps to avoid duplicated index
management in conventional VFS and physical file system.
Besides, DirectFS adopts fine-grained flags and atomic write
for concurrency control and consistency guarantee to improve
metadata scalability. We implement DirectFS in Linux kernel
and evaluate it against state-of-the-art NVMM file systems.
The results show DirectFS improves metadata access perfor-
mance as well as scales for concurrent operations.
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