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Abstract—Emerging Non-Volatile Main Memory (NVMM) tech-
nologies generally feature high density, low energy consumption
and cost per bit compared to DRAM. However, the limited
write endurance of NVMM poses a significant challenge of using
NVMM as an substitute for DRAM. This paper proposes a
space-oblivious compression and wear-leveling based memory
architecture to improve the write endurance of NVMM. As
memory blocks of many applications usually contain a large
amount of zero bytes and frequent values, we propose a non-
uniform compression encoding scheme that integrates Zero
Deduplication with Frequent Value Compression (called ZD-FVC)
to reduce bit-writes on NVMM. Moreover, we leverage the
memory space available through compression to achieve an intra-
block wear leveling policy. It rotates the writing positions of a
compressed data block within the data’s initial memory space,
and thus enhances write endurance by balancing the bit-writes
per NVMM cell. ZD-FVC can be integrated into the NVMM
module and implemented entirely by hardware, without any
intervention of Operating Systems. We implement ZD-FVC in
Gem5 and NVMain simulators, and evaluate it with several
programs from SPEC CPU2006. Experimental results shows that
ZD-FVC is much better than several state-of-the-art approaches.
Particularly, ZD-FVC can improve data compression ratio by
55% compared to Frequent Value Compression. Compared with
the Data Comparison Write, ZD-FVC is able to significantly
improve the lifetime of NVMM by 3.3X on average, and also
reduces NVMM write latency by 31% and energy consumption
by 19% on average.

Index Terms—Non-Volatile Memory (NVM), Memory Com-
pression, Wear-leveling

I. INTRODUCTION

With the contiguously increasing memory footprint of big
data applications, today’s computing systems require large
capacity of main memory for high performance data pro-
cessing. The traditional Dynamic Random Access Memory
(DRAM) technologies are facing scalability challenges in
terms of memory density and static energy consumption [1]].
Emerging Non-Volatile Main Memory (NVMM) technologies,
such as Phase Change Memory (PCM) [2||, Resistive Random
Access Memory (ReRAM) [3]], and 3D XPoint [4], offer high
capacity, DRAM-like performance, near-zero standby power
consumption, and byte addressability [S]]. These good features
make them to be potential substitutes for DRAM. They are
expected to be commercially available in the near future.

Despite the promising advantages of NVMM against
DRAM, NVMM generally features higher write latency and
energy consumption, and much lower write endurance [6].
Among these drawbacks, the most important challenge is that
a NVMM cell can only sustain 108 to 10'° write operations
before it wears out, while DRAM cells are able to sustain
about 105 write operations [2], [7], [8]. To improve NVMMs’
lifetime, a common approach is to reduce the bit-writes on
NVMM cells. Another approach is to adopt wear leveling
techniques [8]], [9] to distribute write operations across NVMM
cells uniformly.

There have been many studies on bit-write reduction of
NVMM, such as DRAM caching [7], [10]-[12], write ra-
tioning [13]], [14)], Data Comparison Write (DCW) [15], Flip-
N-Write (FNW) [16]], and cache/memory compression [8]],
[17]-[19]. DRAM caching and write rationing schemes usu-
ally require OS-level support or special hardware extensions.
For example, DRAM caching schemes often rely on hard-
ware/software cooperated page access counting (costly) to
migrate hot pages to the DRAM buffer. These schemes of-
ten result in additional software/hardware penalties, limiting
the potential optimization on latency, energy efficiency, and
endurance of NVMMs. The FNW-based schemes reduce the
number of bit-writes by conditionally flipping the bits to be
written if the proportion of updated bits is larger than 50%.
However, FNW fails to exploit data redundancy to further
reduce bit-writes on NVMM.

Memory compression technologies [20]—[22] have been
studied for decades. Most proposals aim to save the space
of main memory. A typical commercial example is IBMs
MXT architecture [20]], which is a hardware implementation of
dictionary-based compression algorithm— LZ77 [23]]. Almost
all memory compression technologies face a challenging prob-
lem of addressing compressed memory blocks. To access a
compressed memory block, IBMs MXT requires an additional
memory access to retrieve the address of compressed data.
Ekman and Stenstrom [21] propose to store the address
metadata of a compressed memory block associated with each
CPU TLB entry. Linearly Compressed Pages (LCP) [24],
[25] simplify the addressing of compressed memory blocks
by conditionally compressing cache lines to a fixed size.



Those mechanisms either increase memory access latency, or
complicate architectural and OS-level memory management.

In this paper, we propose a space-oblivious NVMM com-
pression architecture that is specifically designed for enhanc-
ing NVMM write endurance. As NVMM is able to offer large
capacity of main memory, its lifetime is a more critical factor
for commercial use. Unlike the previous memory compres-
sion mechanisms that focus on saving memory space, our
space-oblivious NVMM compression architecture is particu-
larly designed for bit-write reduction and wear leveling. The
proposed architecture, which is integrated into the NVMM
module, leverages compression and decompression engines to
write/read 64-byte data blocks, which are typically a cache
line size. This allows CPU to seamlessly communicate with
the NVMM module. The major contributions of this paper are
as follows.

o It has been observed that many applications’ memory
content often contains a large portion of zero bytes [[18]],
[21]], [26] and frequent values [27]-[33]. We propose a
new compression encoding scheme that integrates Zero
Deduplication with Frequent Value Compression (called
ZD-FVC) to reduce bit-writes on NVMM. Particularly,
because the zero blocks account for a significant pro-
portion of frequent values, ZD-FVC elaborately encodes
the zero and non-zero data blocks with 1-bit and 4-bit
tags, respectively. Like the Huffman coding, this non-
uniform encoding scheme significantly reduces the size
of compression metadata and improves memory compres-
sion ratio.

« We propose an intra-block wear leveling scheme by lever-
aging the space available through compression. It rotates
the writing positions of a compressed data block within
the data’s initial memory space, and thus further enhances
NVMM write endurance by balancing the bit-writes on
memory cells. Our fine-grained wear leveling scheme
is orthogonal and complementary to previous page-level
and row-level wear leveling schemes for NVMM lifetime
extension.

« We propose a simple-yet-efficient NVMM architecture
that enables compression and wear leveling entirely by
hardware, invisible to CPU and OSes. We achieve this
goal by carefully in-place storing the compressed data
and metadata, and by utilizing the reserved bits of error-
correcting code (ECC) to encode the tags for compression
and wear leveling.

We implement our space-oblivious and lightweight memory
compression architecture in Gem5 [34] and NVMain [35]] sim-
ulators, and evaluate it with a wide range of benchmarks from
SPEC CPU2006. The experimental results show that ZD-FVC
is better than several state-of-the-art approaches, such as Data
Comparison Write (DCW) [15]l, Flip-N-Write (FNW) [16],
Frequent Value Compression (FVC) [27||, Frequent Pattern
Compression (FPC) [36], and Base-Delta-Immediate Com-
pression (BDI) [37]]. Compared to the classic FVC, ZD-FVC
can improve data compression ratio by 55%. Compared to

DCW, our approach is able to reduce bit-writes on NVMM
by 15%, and significantly improves the lifetime of NVMM by
3.3X on average. Correspondingly, the NVMM access latency
and energy consumption are also reduced by 31% and 19%,
respectively.

The rest of this paper is organized as follows. Section
introduces the background and related work. Section mo-
tivates our ZD-FVC based NVMM architecture. Section [V]
presents the design details of ZD-FVC. Section [V] describes
the experimental methodology and results. We conclude in
Section [V1l

II. BACKGROUND AND RELATED WORK

First, we introduce the existing typical memory compres-
sion algorithms. Second, we introduce the related work of
enhancing NVMM write endurance by data compression and
bit manipulation.

A. Cache and Memory Compression Algorithms

Several studies have shown that cache and memory data
are highly redundant. Compression technologies can reduce
data redundancy, and thus increase available cache/memory
capacity, reduce read/write latency and power consumption,
and improve write endurance [19], [26], [38[]-[43]]. How-
ever, these technologies lead to compression/decompression
overhead during write/read operations. Thus, the compression
algorithms should be simple and efficient. Here, we introduce
several typical cache/memory compression algorithms.

Zero-Based Compression. Dynamic Zero Compression
(DZC) [26] is proposed to encode a zero-valued byte with
one bit, and thus reduces energy consumption when ac-
cessing the compressed zero bytes. Zero-Content Augmented
(ZCA) cache [18] utilizes an address tag and validity bits
to represent null cache lines. These compression schemes all
utilize addition tag bits to represent zero blocks. Generally,
when a memory block is partitioned into smaller size of
sub-blocks, there are more opportunities to identify the zero
sub-blocks for compression. However, the metadata storage
overhead for encoding these zero sub-blocks also increases.
Our zero deduplication scheme makes a tradeoff between data
compression ratios and the metadata size to select an optimal
data granularity for compression. Moreover, we in-place store
compression metadata (a bitmap) with the compressed data,
do not cause addition storage overhead to locate the zero and
non-zero sub-blocks.

Frequent Value Compression (FVC) [27]. The basic idea
of FVC is to encode frequent values in cache/memory with
short codes. As a number of values (such as 0, -1, 1, and
2) are frequently accessed in cache/memory, FVC uses 3 bits
(such as 000, 001, 010, and O11) to identify these frequent
values. If data is not a frequent value, FVC uses a 3-bit code
‘111 to identify it and stores the raw data directly in cache
or memory. Thus, if only seven frequent values are encoded,
FVC needs 3 bits to encode each sub-block. The metadata
can cause high storage overhead when the size of sub-block
is small. Our ZD-FVC particularly exploits the observation



that the zero values account for a significant proportion of
the total frequent values, and designs a new encoding scheme
to represent the zero values (1 bit) and non-zero values (4
bits), respectively. As a result, ZD-FVC significantly reduces
the size of compression metadata and improves the memory
compression ratio.

Frequent Pattern Compression (FPC) [36]. FPC is pro-
posed to compress data that satisfies some specific patterns.
They can be encoded with less bits than the raw data. For
example, a 64-bit zero value can be represented by a 3-bit
code, and a long integer (e.g., 126) can be encoded with a
3-bit prefix and 1 byte of real value.

Base-Delta-Immediate Compression (BDI) [37]. BDI com-
presses data by comparing it with a given base value and only
storing the delta value. Observing that data within the same
cache lines may have only a little difference, BDI represents
sub-blocks within a cache line using a base value combined
with a delta array. To achieve a higher compression ratio, BDI
compresses the same cache line with different combinations of
bases and deltas, and chooses the minimum size of compressed
data as the output of BDI. Compared with BDI, our scheme
is more simple for implementation, introducing less hardware
overhead. Moreover, ZD-FVC can reduce the storage overhead
of compression tags from 4 bits to 2 bits for each memory
block. Thus, ZD-FVC often achieves higher compression ratio
than BDI.

B. Bit-Write Reduction through Bit Manipulation

A number of studies have proposed to exploit bit ma-
nipulations to reduce bit-writes on NVMM, and thus save
energy and extend NVMM’s lifetime. Yang et al. propose data
comparison write (DCW) [15], which only writes the changed
bits on NVMM cells, and thus reduces bit-writes on NVMM.
Cho et al. propose Flip-N-Write (FNW) [[16] to reduce the bit-
writes by conditionally flipping the bits when the proportion of
changed bits in a word is larger than 50%. These schemes are
orthogonal to cache/memory compression methods [26]], [27]],
[36], [37], and thus are complementary to the compression
approaches for further reducing the bit-writes on NVMM.

C. Bit-Write Reduction through Memory Compression

In the recent years, a number of compression-based ap-
proaches [19]], [38]-[43]] have been proposed to reduce bit-
writes on NVMM, and thus improve write performance, en-
ergy efficiency, and endurance of NVMM. Deb et al. [40] pro-
pose several technologies to enable hardware-based memory
compression, such as compression metadata management, data
compressibility prediction, and permuted mapping scheme for
compressed data blocks. Palangappa et al. [19]], [41] propose
compression-expansion (CompEx) coding, which integrates
FPC/BDI with expansion coding to reduce write latency
and energy consumption, and to improve write endurance
of MLC/TLC NVMM. Xu et al. [42] propose to make a
tradeoff between data compression ratio and additional storage
overhead of compression metadata, and select an optimal en-
coding scheme to maximize the bit-write reduction. Guo et al.

propose dynamic frequent pattern compression (DFPC) [43]],
which samples and analyzes the distribution of data values
to be written, and discovers frequent patterns for compression
during the execution of applications. Dgien et al. [38] propose
to utilize FPC and DCW to reduce bit-writes on NVMM, and
further exploits wear leveling to enhance the endurance of
NVMM. Li et al. [39] propose an in-place compression archi-
tecture using BDI algorithm to reduce energy consumption of
NVMM. Garcia et al. [8]] compose on-chip cache replacement,
memory compression, and wear leveling techniques together
to improve the lifetime of NVMM.

Overall, these studies all explore the existing cache/memory
compression algorithms and their extensions to address the
energy, latency, and endurance problems of NVMM. Our
proposal integrates zero-deduplication compression with FVC
elaborately through a novel memory encoding design. This
simple-yet-efficient NVMM compression architecture can par-
ticularly exploit the relatively high proportion of zero bytes in
memory blocks, and thus significantly reduces the compression
metadata of FVC to improve memory compression ratio.

III. MOTIVATION AND DESIGN

In this section, we conduct a set of experiments to analyze
the memory content of programs in SPEC CPU2006, and then
present data distribution of zero and other frequent values. The
observations motivate our NVMM compression architecture.

A. Zero-valued Memory Blocks

Many studies have observed that memory and cache usually
contain a large fraction of zero blocks [18], [21], [22], [26],
[44]. The fraction of zero-valued data may exceed more than
50% of applications’ total memory traffic. Our experimental
results also validate this observation. Figure |I| shows the
fraction of memory only containing zero bytes when the
memory is partitioned into blocks of 1B, 2B, 4B, 8B, 16B,
32B, and 64B for several benchmarks in SPEC CPU2006.
There are 55% and 51% zero-valued memory on average
when the data sizes are 1B and 2B, respectively. Even 15%
of 64B sized blocks are all zeros. This observation is also
validated by other benchmarks such as Media-Bench, TPC-C,
and SPECjbb 2000 [26]], [36]]. For several applications, such
as gce, mile, povray, and astar, the fraction of zero blocks
increases significantly when the block size becomes smaller,
implying that a small block size has a high potential to improve
memory compressibility.

B. Optimal Block Size for Compression

For a 64-byte memory block, one can use a bitmap to
identify whether a partitioned sub-block is zero, and then
sequentially store non-zero blocks following the bitmap. In
this paper, we call this zero-based compression mechanism as
Zero Deduplication (ZD). For example, we can use 64 bits
to encode and locate the zero bytes if the memory block
is partitioned into 1B sub-blocks, or use 32 bits to encode
2B sub-blocks. Although using small sub-blocks potentially
improves the compression ratio, the bitmap size increases
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Fig. 1: The fraction of zero blocks in applications’ memory traffic when the data is partitioned into blocks at the granularity of 1B, 2B, 4B,

8B, 16B, 32B, and 64B, respectively
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Fig. 2: The data size after using zero-based compression when the
data block is at the granularity of 1B, 2B, 4B, and 8B, respectively

accordingly. To determine the optimal block size for compres-
sion, we should make a tradeoff between the data compression
ratio and the storage overhead of compression metadata. We
conducted a set of experiments to study the optimal block
size for compression. As the proportion of zero content is less
than 30% when the block size is larger than 8B, Figure [2]
only shows the proportions of data reduced by compression
when the memory block is partitioned into 1B, 2B, 4B, and
8B sub-blocks, respectively. We find that the data size after
compression is reduced by about 70% on average when the
block size is set as 2B. As a result, in our prototype system,
we compress memory blocks at the granularity of 2 bytes.

C. Frequent Value Compression

It has been observed that many applications’ memory
contain a considerable amount of frequent values [27]—[31],
[45]. We can encode these frequently-used values to further
compress the non-zero data. We count the top frequent values
appeared in the memory traffic of SPEC CPU2006. Figure
shows that the top 8 frequent values account for about 70%
of total memory traffic on average. The experimental results
are similar to the observations of previous work [27]—[31],
[45]]. Since FVC decodes zero and non-zero values with the
same sized tags, it may lead to high storage overhead of
compression metadata. In our experiments, the top 8 frequent
values are 0, 1, 2, 4, 3, -1, 5, and 8. However, the zero values
account for a majority of frequent values. This motivates us to
design a non-uniform encoding scheme to mitigate the storage
overhead of compression metadata for encoding zero values.
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Fig. 3: The fraction of zero blocks and the top 8 frequent values in
application’s memory when the block size is 2B

Because the zero values are encoded with 1 bit ‘0’ at the Zero
Deduplication stage, we use only 3 bits (‘000-110") to encode
the other frequent values, and use the remaining code ‘111’
to represent the uncompressed data.

D. Differential Write

A write operation often leads to a number of bit flips, which
refer to a switch of bit values either from 0 to 1 or vice-
versa. Reducing bit flips can enhance the NVMM'’s lifetime
and reduce write energy consumption. Although memory
compression is an effective mechanism to reduce data to be
written, it does not necessarily reduce the number of bit flips
if the compression ratio is low. Because the compression may
change the position of incompressible data blocks, and thus
cause even more bit flips than the data-comparison write
(DCW) scheme [15]. In such case, we exploit the differential
write mechanism to further reduce the bit flips. When the
compressed data is written to the NVMM, we compare the
value of new data (possibly compressed) with the value of
existing data in the NVMM, and only update the changed
bits.

E. Wear Leveling

The above memory compression schemes often can signif-
icantly reduce the data size of partitioned memory blocks.
Unlike the previous compression approaches for space saving,
our NVMM compression architecture is space-oblivious in
the sense that the saved memory space is only exploited
for wear leveling. We can rotate the starting address of the
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Fig. 4: An overview of our NVMM compression architecture

compressed data within the data’s initial memory space, and
thus balance bit writes on NVMM cells to improve NVMM
write endurance. For example, if a 64-byte memory block
can be compressed into 16 bytes, the compressed data can be
alternately placed on four positions within the block’s initial
memory space.

In summary, the above observations motivate us to develop a
space-oblivious compression for wear leveling in the following
rationales. First, the memory layout for compression and
wear leveling is based on fixed blocks. Through experimental
profiling, we choose the optimal block size to be 2 bytes for
the best compression ratio. Second, we elaborately integrate
zero-based compression with frequent value compression to
mitigate the storage overhead of compression metadata, and
further leverage the partial write scheme to reduce bit-writes
on NVMM. Finally, we exploit the memory space saved by
compression to achieve fine-grained wear leveling, and thus
extend the lifetime of NVMM.

IV. MEMORY COMPRESSION AND WEAR LEVELING

Figure [] illustrates the proposed space-oblivious NVMM
compression architecture, which is integrated into the NVMM
module. The ZD-FVC compression and decompression en-
gines implement our two memory compression mechanisms:
Zero Deduplication (ZD) and Frequent Value Compression
(FVC). When the compressed data is written to the NVMM
array, we implement a wear leveling policy by exploiting
the memory space saved by compression. We encode 2-bit
compression tags (comp_tag) and 2-bit wear leveling tags
(addr_tag) in the field typically reserved for error-correcting
code (ECC). The comp_tag represents whether and how a data
block is compressed. The addr_tag represents the location
(starting address) of the compressed data block within the
data’s initial memory space.

When a cache line is evicted from the on-chip last level
cache, the data is first compressed by the ZD-FVC compres-
sion engine, and then stored in the NVMM array with the
wear leveling scheme. Meanwhile, the comp_tag and addr_tag
are encoded accordingly for future read operations. Upon a
cache miss, the ZD-FVC decompression engine reads the data
(possibly compressed) from the NVMM array according to
the addr_tag, and decompresses the data according to the

2[2]2]2 |2|2|2|2|
B|B[B|B B|B[B[B
(a) 64B cache line, split into 32 blocks of 2B data

comp_tag 64 bytes raw data
ololele) HHAE
B|B[B|B B|B|B|B

(b) comp_tag = 0, data is not compressible
comp_tag l——non-zero data—»

|zero_prefix 2| 2 unused memory space |
(32 bits) |B B

(c) comp_tag = 1, data is compressible

Fig. 5: The data organization after using Zero Deduplication

comp_tag. At last, the decompressed data is sent to the CPU
cache.

In the following, we will describe the incremental imple-
mentation of our compression and wear leveling schemes step
by step. To better understand ZD-FVC, we decouple the ZD-
FVC algorithm into two stages: ZD and FVC.

A. Zero Deduplication

In this section, we introduce our zero deduplication (ZD)
scheme. Figure [5] shows the data organization of a 64-byte
cache line after using ZD. As suggested in Section we
divide the cache line into 32 sub-blocks, and use 1 bit to
represent each 2B sub-block. Totally, we need a 32-bit bitmap
(called zero_prefix) to identify the zero-valued sub-blocks.

At first, all 2B sub-blocks are compared with zero in
parallel. If they are equal to zero, the corresponding bit in
the zero_prefix is set to 0. Otherwise, the corresponding bit is
set to 1. If the number of zero bits in the zero_prefix is not
larger than 2, implying the number of zero blocks in the cache
line is too small, this 64B data block is not compressible with
ZD because the zero_prefix spends 4 bytes. In this case, we
set the comp_tag to 0 and store the 64B raw data directly in
the NVMM, as shown in Figure [5(b).

If the number of non-zero blocks is larger than 2, the 64B
data block is compressible with ZD. We first set the comp_tag
to 1, and then store the 32-bits zero_prefix in the first 4B of the
memory block, followed by non-zero sub-blocks sequentially,
as shown in Figure [5|c). The position of zero and non-zero
sub-blocks can be inferred by the 32-bit zero_prefix. As a
result, we only need to store the non-zero sub-blocks in ZD.
When the memory block is decompressed, we can simply
decode the 32-bit zero_prefix to locate the non-zero sub-blocks
because they are aligned on a 2-byte boundary.

B. Zero Deduplication Integrated with Frequent Value Com-
pression

As presented in Section [[II-C| applications’ memory often
contains a considerable proportion of frequent values. We
utilize frequent value compression (FVC) [27] to improve the
compression ratio. We use 3 bits to encode the top 8 frequent
values except zero, and thus further reduce the amount of
data to be written. We integrate zero deduplication with
frequent value compression together to implement a simple-
yet-efficient compression mechanism, as shown in Figure [6]
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(d) comp_tag = 01, all 32 blocks are zero bytes

To identify whether and how a memory block is compressed,
we extend the comp_tag to 2 bits, which represent four cases,
as described in Table[I} (1) ‘00 represents the 64 bytes cache
line is compressed by neither ZD nor FVC. (2) ‘01’ represents
the 32 sub-blocks are all zero values, as shown in Figure @d).
(3) “10’ represents that the data is only compressed by ZD, as
shown in Figure[f[b). (4) ‘11° represents that the data has been
compressed by both ZD and FVC, as shown in Figure[6|c). We
use aligned FVC codes (fvc_prefix) to represent these frequent
values.

Because all-zero 64-byte memory blocks account for about
15% of applications’ memory traffic on average (see Figure [I)),
we particularly use the compression tag ‘01’ to represent
these null blocks. The all-zero memory blocks can be easily
identified by testing the 32-bit zero_prefix. As a result, the
space for storing the 32-bit zero_prefix and zero-valued sub-
blocks are entirely saved. This further reduces bit-writes on the
NVMM. We note that this simple-yet-efficient optimization
may require additional logic circuits for other compression
algorithms such as FVC, FPC, and BDI.

TABLE I: Codes and Descriptions of Comp_tag

Codes Descriptions
00 uncompressed data
01 the whole 64-byte data is all zeros
10 compressed only by ZD
11 compressed by both ZD and FVC (ZD-FVC)

TABLE II: Frequent Value Encoding

Frequent

Values (2B) -1 ! 2 3 4 5 8 Other
Encoding 1550 | 001 | o010 | 011 | 100 | 101 | 110 | 111
(3 bits)

We encode the top 7 frequently-used non-zero values with
3 bits, as shown in Table We note that the zero sub-
blocks have been encoded by the zero_prefix at the zero
deduplication stage, we can use the code ‘111’ to identify
other incompressible sub-blocks. For a frequent value, we
only store its fvc code in the fvc_prefix. For an uncompressed
value, we need to store the code ‘111’ and its raw data

00af

| 0000 0001 0002 000a 0000 0000 | 0001 | 0004 | 0000

(@) 64B cachelm spll of 2B data
zero_prefix 28B

|7ooo 3ffd 0001 0002 000a 0001|0004| 00af unusesia”;zmmy
(b) After usmg ZD, there are-36B data

zero_prefix  fvc_prefix 508

00af unused memory space

| 7000 | 3ffd | 2b80 | 0000 | 0067 | 000a

(c) After using ZD-FVC, there are 14B data

Fig. 7: An example for illustrating ZD-FVC

after the fvc_prefix. As a result, we can encode all non-zero
blocks and store their codes sequentially in the fvc_prefix.
The uncompressed sub-blocks are stored sequentially after the
fve_prefix, as shown in Figure [6c).

If the memory space used by the fvc_prefix and the uncom-
pressed data is smaller than the total size of non-zero data,
we apply FVC to further compress the frequent values. The
comp_tag is set to ‘11°, and the fvc_prefix is stored after the
zero_prefix, followed by the uncompressed raw data. If FVC
can not reduce the size of non-zero blocks, the compressed
data using ZD is directly stored in the NVMM array, and the
comp_tag is set to ‘10” accordingly.

Here, we analyze the storage overhead of compression
encoding in ZD-FVC, i.e., the total size of zero_prefix and
Jfve_prefix. For each zero sub-block, ZD-FVC only uses one bit
to identify it. For each non-zero sub-block, ZD and FVC use
1 bit and 3 bits in the zero_prefix and fvc_prefix, respectively.
Totally, ZD-FVC uses 4 bits to represent a non-zero block,
and 1 bit to represent a zero block.

We can analytically compare ZD-FVC with the classic FVC.
Assume the number of zero and non-zero 2B sub-blocks within
a 64B memory block are a and b, respectively, and ¢ blocks
are not compressible with FVC. a4 4b bits are used to encode
the zero and non-zero sub-blocks in ZD-FVC, while 96 bits
((64/2) x 3) are required to encode the sub-blocks in FVC.
We can derive that ZD-FVC has higher compression ratio than
FVC if the condition in Equation [1]is satisfied.

a+4b+2x8<96+2x 8¢ (1)

where a + b = 32. We can deduce that ZD-FVC is better than
FVC if the number of zero sub-blocks within a 64B memory
block is larger than 11, i.e., the proportion of zero sub-blocks
should exceed 34%. This requirement is satisfied by many
applications, as shown in Figure [3]

In the following, we use an example to illustrate data
compression with ZD-FVC, as shown in Figure [/| Each data
block presents a hexadecimal value. In the first stage, ZD
removes the zero-valued 2B sub-blocks, and uses only 1 bit to
identify each zero block in the zero_prefix. For each non-zero
sub-block, ZD sets the corresponding bit in the zero_prefix
and places the raw data after the zero_prefix. For example, the
first four sub-blocks (‘0x0000’, ‘0x0001°, ‘0x0002°, ‘0x000a’)
in the Figure a) are represented by bits ‘0’, ‘1’, ‘I’, and
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Fig. 8: An illustration of ZD-FVC decompression

‘1°, respectively. They correspond to ‘0111’ (‘0Ox7’) in the
zero_prefix, as shown in Figure [7[b). After using ZD, the 64-
byte data is reduced to 36 bytes, including 4-bytes zero_prefix
and 32-bytes non-zero data. The remaining 28 bytes memory
space is saved.

In the second stage, we use FVC to compress the non-
zero data. For example, the first four non-zero data (‘0x0001°,
‘0x0002’, ‘0x000a’, ‘Oxffff’) are encoded with codes ‘001’
‘010°, “111°, and ‘000’ respectively. Putting these codes to-
gether, we get a bit string 001010111000’ i.e., ‘0x2b8’.
Thus, the first three characters of fuc_prefix is ‘2b8’, as shown
in Figure [7[c). After FVC is performed, the uncompressed
sub-blocks are stored behind the fvc_prefix, such as ‘0x000a’
and ‘0Ox00af’. Finally, the 64-byte data is compressed to 14
bytes, including 4-byte zero_prefix, 6-byte fvc_prefix, and 4-
byte uncompressed data. As a result, ZD-FVC reduces bit-
writes of 50-byte data.

Note that the described two stages are only illustrated for
better understanding the ZD-FVC algorithm. Actually, ZD
can be integrated with FVC in the hardware implementation.
ZD-FVC only compares the data block with the zero and
frequent values once, and the zero_prefix and fvc_prefix are
generated concurrently. ZD-FVC does not require additional
SRAM to store the non-zero data intermediately during the
zero deduplication stage. It only needs a few 16-bit comparator
and multiplexers for compression/decompression, incurring
very limited hardware overhead.

C. Decompression of ZD-FVC

We illustrate the decompression of ZD-FVC using an
example, as shown in Figure At first, we should read
the comp_tag to determine whether the memory block is
uncompressed or zero-valued. If the comp_tag is ‘00’, the data
is directly fetched to CPU. If the comp_tag is ‘01°, the ZD-
FVC decompression engine generates a null memory block.
If the comp_tag is ‘10°, implying the FVC is not applied, we
directly use De-ZD to decompress the data, as illustrated in
Figure [§] The bits in the zero_prefix is checked in parallel
to find out the 2B zero-valued sub-blocks and non-zero sub-
blocks, which are fetched into the read buffer and sent to
CPU. If the comp_tag is ‘11°, we use De-FVC to decode

comp_tag |

10/
11

| | |
I I 1
Compressed data| | ! |
including prefix| |

| unused memory space |
| |

addr_tag ! I(2) addr_tag = 00} data is compressible
comp_tagi i i i
I unused memory Compressed data P m;mo |
11 space (16 bytes) including prefix rcAsDacs
addr_tag {(b) addr_tag = 01 data is compressible
comp_tag | | | |
| unused memory C}omprgssed dgta unused |
11 space (32 bytes) including prefix memory space
addr_tag i i(c) addr_tag = 11, data is compressible
comp_tag | ) i i
| "'unused memory | | Compressed data
11 | space (48 bytes) | including prefix
addr_tag (d) addr_tag = 10, data is compressible

Fig. 9: An illustration of our wear leveling scheme

the non-zero frequent values, as illustrated in Figure |8} From
the fvc_prefix, the decompression engine can infer the number
of sub-blocks compressed by FVC, and use the aligned 3-bit
codes to decode the frequent values and uncompressed sub-
blocks in place. In the following, the decompression of non-
zero blocks is the same as the progress of De-ZD.

D. Wear Leveling

To exploit the memory space saved by ZD-FVC, we imple-
ment a wear leveling scheme to extend the lifetime of NVMM.
As the compression ratio of ZD-FVC is as high as 4 on average
in our experiments, we divide the 64-byte memory block into
four sections evenly. We also use 2-bit addr_tag to locate the
starting address of compressed data. When the addr_tag is
‘00’, ‘01°, “11°, and ‘10, the compressed data is stored from
the first, 17th, 33th, and 49th byte of the memory block, as
shown in Figure Eka), (b), (¢), (d), respectively. When the data
is not compressed, i.e, comp_tag = ‘00’, the raw data are
stored at the beginning of the memory block. When the 64-
byte data is all zeros, i.e, comp_tag =‘01", ZD-FVC does not
store anything in the memory block.

In order to rotate the position for storing the compressed
data, we design an address rotating algorithm, as described
in Algorithm [I] The current data address (addr_tag) is de-
termined by the value of comp_tag, the previous addr_tag,
and the size of compressed data. The basic principle of our
algorithm is to rotate the value of addr_tag among ‘00’, ‘01,
‘11’, and ‘10’ iteratively. We set the progression order of the
addr_tag as “00-01-11-10” to mitigate write wear of ECC
bits. However, when the 64-byte data is uncompressed, the
addr_tag must be set to ‘00’ to guarantee that the 64-byte
uncompressed data can be stored in place (line 2-4). When
we get the starting address (line 5), we have to check whether
the remaining memory space can hold the compressed data
(line 7-20). If not, we roll back to prior position and check
again, until we find a proper position to store the data. In
this way, we can evenly distribute the number of bit-writes on
NVMM cells, and thus extend the lifetime of NVMM.

Theoretically, our wear leveling algorithm supports any
size (less than 64 bytes) of data rotating within a memory
block. Thus, it can be adopted by many compression algo-



rithms. However, compression algorithms with high compress
ratios can exploit more space for wear leveling. Moreover,
our hardware-based wear leveling scheme only use a 2-
bit addr_tag to locate the starting address of data, without
any involvement of OS or more complicated hardware-based
address remapping mechanisms.

Algorithm 1 Address Rotating

1: function ROTATION(comp_tag, addr_tag, size)
2 if comp_tag = ‘00’ then

3 addr_tag < ‘00’;

4 return addr_tag;

5: addr_tag < addr_tag + 1;
6.
7
8

/lrotate to the next position
while T'rue do
if addr_tag = ‘00’ then
: return addr_tag;
9: if addr_tag = ‘01’ then

10: if size <= 48 bytes then

11: return addr_tag;

12: addr_tag < addr_tag — 1; //roll back to the prior position
13: if addr_tag = ‘11’ then

14: if size <= 32 bytes then

15: return addr_tag;

16: addr_tag < addr_tag — 1; //roll back to the prior position
17: if addr_tag = ‘10’ then

18: if size <= 16 bytes then

19: return addr_tag;

20: addr_tag < addr_tag — 1; //roll back to the prior position

E. Discussion

Reversed space in ECC codes. For 64-byte cachelines or
memory blocks, modern computer architectures often use ad-
ditional 8 bytes to store the ECC codes. There are many ways
to construct the ECC codes. For example, if we use Hamming
codes that are widely-used in DRAM memories [46], a code
of s bits can protect ¢ bits information, where 2(s—1) > s+t
When we use a 8-bit code, we can correct single error and
detect double errors for a data region as large as 120 bits.
Thus, we only need 5 x 8 = 40 bits to protect a 512-bit
memory block, and the remaining 24 bits can be used to store
the compression and wear-leveling tags. On the other hand,
a 60-bit BCH code can protect a data field up to 1023 bits
from up to 6 errors [47]]. This implies that a 512-bit memory
block can be also protected by a 60-bit BCH code, and the
remaining 4 spare bits can be used for storing the compression
tags and wear-leveling tags. Overall, we can use some spare
bits within ECC codes to encode the compression states,
without compromising the capability of ECC. This avoids the
additional storage overhead introduced by the compression and
wear-leveling tags.

Write wear due to ECC bits. The ECC bits have a side
effect on write endurance because they may be updated upon
each NVMM write. For write-intensive applications, the ECC
coding would wear out faster than the NVMM cells to be
protected. As we use some reversed ECC bits to store the
addr_tag and comp_tag bits, they also lead to write wear on
the ECC bits. Recently, the Floating-ECC [48] and sliding-
mode ECC architectures [49] have been proposed to circulate
the writes of ECC bits across a cache line. We can seamlessly

integrate these techniques with ZD-FVC to mitigate the write
wear due to ECC bits.

Integrate with coarse-grained wear leveling schemes.
Our fine-grained wear leveling scheme is only conducted
within memory blocks at the 64-byte cacheline granularity.
However, there are also “harmful” NVMM access patterns
that write the same memory blocks frequently. In this case,
our scheme is sub-optimal because it only targets at intra-
block wear leveling by placing the compressed data in dif-
ferent sub-regions of a block. Our scheme is orthogonal and
complementary to other coarse-grained wear leveling schemes,
such as row level [50] and page level [7]. We can adopt
these schemes seamlessly to spread frequent write operations
uniformly across the entire NVMM capacity through a map-
ping table. On the other hand, there also have been some
studies on extending NVMM lifetime by retiring the cells with
permanent failures [51]-[54]. For example, Error-Correcting
Pointers (ECP) [54] permanently encodes the locations of
failed cells into a table and assigns other cells to replace them.
These schemes are also complementary to our work to further
improve the write endurance of NVMM.

V. EVALUATION

In this section, we first present the experimental method-
ology for evaluating our NVMM compression architecture,
and then study the effectiveness of ZD-FVC in terms of
memory compression ratio, reduction of bit-writes, access
latency, energy consumption, and lifetime of NVMM.

A. Experimental Methodology

Experimental setting. We simulate our NVMM compres-
sion architecture with GemS5 [|34] and NVMain [35] simulators.
The gem5 is a widely-used full-system architectural simula-
tor for computer architecture research. NVMain is a cycle-
accurate architectural NVM simulator. The system configura-
tion is described in Table

TABLE III: System Configuration

CPU out-of-order, 2 GHz, 8 cores
L1 cache | 32 KB separated icache and dcache, 2 cycles
L2 cache 1 MB, 20 cycles
L3 cache 16 MB, 50 cycles
Capacity: 4 GB
Controller: FRFCFS scheduler
PCM Bus Frequency: 400 MHz
Timing (tCAS-tRCD-tRP-tRAS): 5-22-60-17 (cycles)
Energy: 81.2 PJ/bit for read, 1684.8 PJ/bit for write

Benchmarks. We use twelve programs from SPEC CPU
2006 benchmark [55] and Problem Based Benchmark Suite
(PBBS) [56] in our experiments. These applications’ memory
access traffic show different distributions of zero blocks and
frequent values, as shown in Figure (1| and [3] We run each
benchmark for 10 million instructions. The total memory
traffic and read-to-write ratios are shown in Table [Vl

Comparisons. We compare ZD and ZD-FVC with several
state-of-the-art bit manipulation and memory compression



TABLE 1IV: Memory Traffic and Read-to-Write Ratios

Benchmarks | Total Memory Traffic (MB) | Read/Write
gcc 218.87 5.14
bwaves 810.98 1.19
milc 550.71 6.33
zeusmp 613.57 4.40
gobmk 113.69 1.15
dealll 7.37 1.04
povray 4.08 1.33
hmmer 141.80 1.01
tonto 3.45 1.21
astar 189.66 1.71
PBBS-nbody 356.34 1.64
PBBS-isort 347.97 1.01

schemes, such as Data Comparison Write (DCW) [15]], Flip-
N-Write (FNW) [16], Frequent Value Compression (FVC) [27],
Frequent Pattern Compression (FPC) [36], and Base-Delta-
Immediate Compression (BDI) [37]. DCW is a typical dif-
ferential write scheme that writes only modified bits in the
NVMM array. FNW flips the data bits when the proportion of
bits to be changed is larger than 50%. FVC compresses data
by encoding the frequent values. FPC compresses data with
some given patterns. BDI compresses data using a base value
combining with an array of deltas. It chooses the minimum
size of data compressed in parallel as its output. ZD and ZD-
FVC all compress 2-byte sub-blocks in a cache line.

B. Memory Compression Ratio

Figure ['115] shows data compression ratios of FVC, FPC,
BDI, ZD and ZD-FVC, respectively. FVC, FPC, BDI, ZD,
and ZD-FVC reduce the data size to be written on NVMM
by 61.3%, 69.9%, 53.7%, 70.0%, and 75.0% on average,
respectively. Correspondingly, the average compression ratios
of FVC, FPC, BDI, ZD, and ZD-FVC are 2.6, 3.3, 2.2, 3.3, and
4.0, respectively. Compared with FVC, ZD-FVC improves the
compression ratio by 53%. Particularly, the data compression
ratio is significantly improved for bwaves, zeusmp, gobmk,
and dealll.

The improvement of compression ratio is mainly attributed
to two special designs. First, we particularly use the compres-
sion tag ‘01’ to represent the all-zero memory blocks, which
account for about 15% of applications’ memory access traffic
on average (see Figure [I). This mechanism significantly re-
duces the storage overhead of compression encoding. Second,
we observe that the proportion of 2B zero sub-blocks is even
larger than 70% of all frequent values in applications’ memory
(see Figure[3), and design a new encoding scheme to represent
the zero sub-blocks and non-zero sub-blocks with 1 bits and
4 bits, respectively. This scheme further reduces the storage
overhead of compression encoding.

C. Reduction of Bit-writes

Figure shows the reduction of bit-writes for each ap-
plication using DCW, FNW, FVC, FPC, BDI, ZD, and ZD-
FVC, respectively, all normalized to DCW. Due to the high
compression ratio and a differential write mechanism, ZD-
FVC can reduce the bit-writes by 14.9%, 10.4%, 19.1%,
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Fig. 10: Data compression ratios of different schemes

and 7.5% on average compared with DCW, FNW, FVC,
and FPC, respectively. For FVC, although the data size after
compression is reduced, surprisingly, it causes even more bit-
writes than DCW. This phenomenon is much clear for bwaves,
gobmk, povray, and omnetpp, which contain a large propor-
tion of zero-valued sub-blocks. Because compression usually
changes the writing position of incompressible sub-blocks
after compression, and thus can not exploit the differential
write mechanism to write only changed bits. For example, if
the difference between the new data and the old data is only
one bit, DCW only writes the modified one bit. In contrast,
compression may cause a significant difference between the
compressed data and the old data (possibly compressed),
resulting in a lot of bit-writes.

D. NVMM Access Latency

Memory compression/decompression usually lead to addi-
tion latencies when data is written to or read from NVMM.
However, memory compression also offers opportunities to
reduce the memory traffic for reading/writing the compressed
data, and thus reduce the access latency of NVMM. The
additional compression/decompression latencies have been
discussed in the work [[15[], [16], [27], [36], [37]. To study
whether and how ZD-FVC can reduce the NVMM read/write
latencies, we properly model the compression/decompression
latencies for different compression schemes based on the
implementation complexity of hardware [37], as shown in
Table For a write operation, we cautiously set the com-
pression latency of ZD-FVC as 8 memory cycles, i.e., the
sum of compression latencies of ZD and FVC. In practice,
ZD can be integrated into FVC, incurring less compression
latency. For a read operation, since the data may be com-
pressed or not compressed, we model the additional read
latencies with different values for the two different cases.
When data (possibly compressed) is read from the NVMM
array, we need one additional cycle to check whether the
compression tag is ‘00’. If the data is not compressed, ZD-
FVC decompression engine directly sends the data to CPU.
These compression/decompression latencies are modeled as
an addition to NVMM write and read latencies, respectively.

Figure [I2] shows the normalized NVMM access latency
of each benchmark with DCW, FNW, FVC, FPC, BDI, ZD,
and ZD-FVC, respectively, all relative to DCW. The results
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Fig. 12: Normalized NVMM access latency for different schemes.

TABLE V: Compression/Decompression Latencies Added to
NVMM Writes and Reads

Schemes Read-12 (cycles) Read-2P (cycles)
DCW
FNW
FVC
FPC
BDI
7D

7ZD-FVC 1

aData is not compressed. PData is compressed.

Write (cycles)
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are accumulated read/write latencies observed by the NVMM
module. For FNW, the NVMM access latency is higher than
DCW because FNW needs to perform bit-flipping when the
fraction of bit flips is more than 50%. FVC, FPC, BDI, ZD,
and ZD-FVC introduce additional compression and decom-
pression latencies, however, they can be offset by the reduced
memory access latencies due to memory compression. Thus,
they all present lower memory access latencies compared to
DCW and FNW. Although the compression and decompres-
sion latencies of ZD-FVC are higher than other schemes in
our setting, ZD-FVC can still achieve lower NVMM access
latency compared with other schemes because its compression
ratio is much larger.

E. Energy Consumption

Although memory compression can reduce write en-
ergy consumption through bit-write reduction, data compres-
sion/decompression consume non-trivial energy. The energy
consumption of compressing and decompressing a 64B mem-
ory block is modeled as 1.2 PJ and 2.1 PJ [57], respec-
tively. Figure shows the normalized energy consumption
of NVMM for different applications with DCW, FNW, FVC,

FPC, BDI, ZD, and ZD-FVC. All results are relative to DCW.
ZD-FVC is able to reduce NVMM energy consumption by
19.1%, 14.9%, 19.6%, and 7.7% compared with DCW, FNW,
FVC, and FPC, respectively. Because the energy consumption
of NVMM write operations is almost 20 times higher than
that of NVMM reads, the reduction of energy consumption is
roughly consistent with the bit-write reduction. As ZD-FVC
achieves a higher degree of bit-write reduction, it leads to
much lower energy consumption compared to other schemes.

F. Lifetime

In the following, we analyze the impact of memory com-
pression and wear leveling schemes on the lifetime of NVMM
cells that is only confined to the memory region used by the
benchmarks. Generally, NVMM lifetime is proportional to the
available capacity, and is inversely proportional to the number
of bit-writes. Memory compression can reduce the size of
data to be written, and thus increase the available NVMM
capacity to some extent. Assume the capacity of NVMM used
by applications is C, the memory compression ratio is R,
and the number of bit-writes on NVMM is N. The available
capacity after compression becomes C' x R. Similar to previous
works [7], [42], [5O], we use Equation [2| to estimate the
lifetime of NVMM cells used by the evaluated applications.

CxR
N

Figure |14 shows the lifetime extension for each benchmark
with DCW, FNW, FVC, FPC, BDI, ZD, and ZD-FVC, re-
spectively, all normalized to DCW. ZD-FVC can significantly
improve the lifetime of NVMM by 3.3X, 3.1X, 74.2%, 18.4%,
and 85.9% compared with DCW, FNW, FVC, FPC, and BDI,
respectively. Moreover, ZD-FVC shows a 63.6X improvement

2
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of NVMM lifetime compared to a scheme in which the raw
data is completely overwritten. Our approach is particularly
effective for workloads whose memory content contains a large
fraction of zero blocks, such as bwaves, zeusmp, gobmk, and
dealll. The enhanced lifetime is mainly attributed to the high
memory compression ratio and reduced bit-writes.

VI. CONCLUSION

In this paper, we propose a space-oblivious compression
and wear-leveling based memory architecture to improve the
write endurance of NVMM. We observe that memory blocks
in many applications usually contain a large amount of zero
bytes and frequent values. Thus, we propose a new memory
compression scheme called ZD-FVC, which integrates zero
deduplication with frequent value compression to reduce the
data traffic written to NVMM. Moreover, we also leverage the
available memory space through compression to implement
an intra-block wear leveling scheme. It rotates the writes of
compressed data blocks within the data’s initial memory space,
and thus enhances NVMM endurance by balancing the bit-
writes per cell. We evaluate ZD-FVC with a wide range of
benchmarks from SPEC CPU2006. Experimental results show
that ZD-FVC performs better in compression ratio, latency,
energy efficiency, and lifetime than several state-of-the-art
approaches, such as DCW, FNW, FVC, FPC, and BDI.
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