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Abstract—Analyzing archived stream data such as sensor data,
packet data, and log data provides valuable insights into past
events. Tape technology has been improving in both capacity
and performance and thus is suitable for archiving such a large
amount of stream data at low cost. However, due to tape’s
performance characteristics, read performance is poor when data
is stored on tape in the same format as on SSD or HDD. In this
paper, we propose a method to improve read performance by
placing data on tape in a columnar layout aware of physical
structure of tape called wrap. Our preliminary evaluation using
a realistic workload shows our method to be 53% faster than
traditional wrap-unaware columnar layout.

Index Terms—tape, connected car, sensor data

I. INTRODUCTION

Real-time monitoring of stream data such as sensor data,
packet data, and log data is widely used for monitoring the
status or detecting failures of the device that generated the
stream data. In addition, analyzing archived stream data pro-
vides valuable insights into past events. For example, analysis
of archived packet data can be used for forensic purposes in
the investigation of cyber-attacks.

Due to the prevalence of IoT, an increasing number of IoT
devices are generating a large amount of structured stream
data. For example, a connected car periodically generates data
called CAN bus data consisting of a timestamp and a large
number of sensor values. Analysis of archived CAN bus data
provides various insights. Such insights include identifying a
driver [1], analyzing a driver’s behavior [2] [3], diagnosing a
car [4], improving fuel efficiency [5], and detecting a lane-
change [6].

Long-term archiving of CAN bus data is challenging due to
its huge volume. The volume of CAN bus data generated by
a single connected car is large, and the number of connected
cars is increasing rapidly. It is estimated that tens of millions
of connected cars will be generating hundreds of megabytes
of CAN bus data per month in 2025 [7]. Given such a large
amount of CAN bus data, it is important to archive CAN bus
data at the lowest possible cost.

Tape is suitable for long-term archiving of a large amount
of data. Tape is the cheapest of all storage devices and this

trend is expected to continue [8]. In addition, tape technology
has also been improving in sequential access performance as
a result of the increase in recording density.

However, while tape’s sequential access performance has
been improving, its random access performance remains poor.
As we show in Section II, when sensor data is placed on tape
in the same format as on SSD or HDD, analytical workloads
such as data mining and machine learning access the data in
a non-sequential manner.

A workaround is to cache frequently accessed data in other
fast storage devices such as SSD or HDD. However, analytical
workloads are known to often perform the same processing on
different portions of existing data [9], accessing a large portion
of data only a few times. In such workloads, caching data in
SSD or HDD is not cost-effective.

In this paper, we propose a method to improve read perfor-
mance by placing data on tape in a columnar layout aware of
physical structure of tape called wrap.

Our preliminary evaluation using a realistic workload shows
our method to be 53% faster than traditional wrap-unaware
columnar layout.

The remaining of this paper is organized as follows. In
Section II, we give a background on tape technology and
clarify the problems that analytical workloads encounter when
reading data on tape. In Section III, we propose Wrap-aware
Columnar Layout. In Section IV, we propose an architecture
to store data in Wrap-aware Columnar Layout. The results
of our preliminary evaluation using a realistic workload are
shown in Section V. We present related work in Section VI.
Finally, Section VII concludes the paper.

II. BACKGROUND

A. Tape performance characteristics

Linear Tape-Open (LTO) is a widely used magnetic tape
technology. Figure 1 shows the head movement when reading
data on a tape cartridge. BOT and EOT stand for beginning
of tape and end of tape respectively.

A tape cartridge consists of multiple recording areas called
wraps. In the case of LTO-7, the number of wraps is 112.
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Fig. 1. Head movement when reading data on tape cartridge

When reading data from the entire tape cartridge, the head
starts reading from BOT toward EOT of the first wrap. When
the head reaches EOT of the wrap, it switches to the next wrap
and continues reading while moving toward BOT.

Tapes have the following performance characteristics.
• Sequential access performance is high.
• Random reads are slow because they issue costly seeks

between reads.

B. Challenges of storing data in column-oriented format on
tape

As an example, we assume stream data shown in Figure 2.

timestamp column 1 column 2 … column j

t1 v11 v12 v1j

t2 v21 v22 v2j

t3 v31 v32 v3j

t4 v41 v42 v4j

t5 v51 v52 v5j

ti vi1 vi2 vij

Fig. 2. Example of stream data

Each record consists of a timestamp and many columns.
One such example is CAN bus data generated by connected
cars.

File formats for storing stream data are classified into row-
oriented format and column-oriented format. Row-oriented
format, such as Avro, stores records by row as shown in Figure
3. Column-oriented format, such as Parquet, stores records by
column as shown in Figure 4.

all fields at t1 all fields at t2 all fields at tj

File

Fig. 3. Row-oriented format

t1 t2 ti v11 v21 vi1 v1j v2j vij

timestamp of all rows column 1 of all rows column j of all rows

File

Fig. 4. Column-oriented format

Analytical workloads such as sensor data analysis read a
few columns of many rows instead of reading all the columns

of a few rows [10]. Therefore, column-oriented format is
suitable for such workloads, in which each column can be
read sequentially.

However, storing stream data in column-oriented format on
tape involves the following problems.

Structured stream data arrives at storage systems row by
row. Thus, in order to store it in column-oriented format, the
data first needs to be buffered and then converted into column-
oriented format.

The ideal data layout for analytical workloads is one in
which a single column-oriented format file is stored in one
cartridge. An example is shown in Figure 5. In this case, since
all the data in a column are continuously arranged, the column
can be read sequentially, thus making the best use of tape’s
sequential access performance.

timestamp column 1 column 2 ..... column j

Tape Cartridge

Fig. 5. One column-oriented file stored in one cartridge

However, in order to realize the ideal data layout, stream
data needs to be buffered until its size reaches the size of
an entire cartridge and grouped by columns and then written
to the cartridge as a single file. Since this grouping process
issues a large number of random reads, the buffer needs to
be an expensive and high-performance storage device such
as DRAM or SSD. LTO-12, the newest standard on LTO
roadmap, has a capacity of 192 TB per cartridge. Moreover,
tapes are expected to continue to increase in capacity in the
future. Having a buffer of such a large capacity is costly.

A more feasible way is to use a smaller-capacity buffer, sort
the data when the buffer gets full, and write it to the cartridge.
In this case, many column-oriented files of the same size as
the buffer are stored in a single cartridge (Fig.6). In order to
read a column from all files stored in the cartridge, seeks and
reads need to be repeated (cartridge size)/(buffer size) times.
This is costly and thus storing data in many column-oriented
files does not bring any performance improvement.

Tape Cartridge

timestamp column 1 column 2 column j.....

Fig. 6. Many column-oriented files in one cartridge

To solve these problems, in Section III, we propose Wrap-
aware Columnar Layout that can improve read performance
with a buffer of much smaller size than a tape cartridge.

III. WRAP-AWARE COLUMNAR LAYOUT

As described in Section II, a tape cartridge has physical
structures called wraps. Physical address within a wrap is



called LPOS. In the region where data is stored, LPOS takes
a value between 2650 and 171144. The left end of Figure 7
corresponds to 2650 and the right end corresponds to 171144.
LPOS is a value determined by servo information written in
servo bands of a cartridge.

Head movements across wraps can be used for shortcuts.
For example, when the head moves from point A on wrap
1 to point B on wrap 2, the head does not need to move to
the end of wrap 1. Instead, it can move the shortest distance
between the two points (Figure 7 ).

Lower LPOS

head movement
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B wrap 1
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wrap 0

Higher LPOS

Fig. 7. Head movement when moving between two points on different wraps

Thus, by arranging data in a column across wraps so that
its LPOSes on different wraps are close to each other, it is
possible to speed up reads to the same column.

We propose to write stream data to a cartridge in the
following procedure.

1) When the size of data in the buffer reaches the size of
a wrap, the data is grouped by columns, and written to
the cartridge as one column-oriented file.

2) Padding is performed so that the next write starts exactly
at the beginning of the next wrap.

3) When the size of data in the buffer reaches the size of a
wrap again, the data is grouped by columns, and written
to the cartridge as one column-oriented file. This time,
the arrangement order of columns is reverse to that of
the write to the previous wrap.

4) Padding is performed so that the next write starts exactly
at the beginning of the next wrap.

5) 1-4 are repeated until the cartridge becomes full.
This method can arrange the data of the same column in

close LPOSes on different wraps while keeping the size of
the buffer small. As a result, as shown in Figure 8, when
reading a column across wraps, the data of the next wrap can
be read by moving the head between wraps just after reading
the data of the previous wrap.

However, it should be noted that Figure 8 shows the ideal
case. Actually, it is almost impossible to arrange a column in
exactly the same LPOSes due to factors described in Section
IV. Thus, some seeks occur after head movements between
wraps. However, even in such a case, shortening seek distance
improves read performance.

IV. ARCHITECTURE

We show an architecture to archive stream data in Wrap-
aware Columnar Layout in Figure 9.
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Fig. 8. Head movement when reading the same column from multiple wraps
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Fig. 9. Architecture

Archive Node is connected to Tape Library. Stream Writer
and Read Proxy run on Archive Node.

Stream Writer buffers and converts stream data and then
writes it to a cartridge in Wrap-aware Columnar Layout.

Read Proxy reads and returns data from the cartridge in
response to a read request from clients. We assume clients to
be analytical applications such as Apache Spark [11].

Cartridges are formatted with LTFS [12], which is a POSIX
-compliant filesystem for tape.

Next, we describe the details of Stream Writer and Read
Proxy.

A. Stream Writer

When the number of records of the stream data on the buffer
reaches the predetermined threshold, Stream Writer converts
the data into a column-oriented format file and writes it to the
cartridge. Since we assume clients to be analytical applications
such as Apache Spark, we use Parquet, which is widely used
in Hadoop ecosystem, as column-oriented format.

In order for Stream Writer to be able to write a column-
oriented format file of the same size as a wrap, it needs to
know the following two pieces of information.

First, it needs to know the capacity of a wrap to write to.
Since LTO specifications do not define the size of a wrap, we
have to determine the size of wraps through measurements.
We performed the following measurements before conducting
experiments described in Section V.



In the measurements, We wrote many 100 MB files to a
cartridge. After writing each file, we synced the tape drive’s
buffer to ensure that the file is persisted on tape. Then, we
checked the LPOS of the current head position using a SCSI
command called REQUEST SENSE. The size of a wrap was
determined to be the total sum of files’ sizes that were written
to the wrap.

As a result, we determined the size of all wraps of an LTO-
7 cartridge to be 54,000 MB. We confirmed that when files of
this size are written to wraps, the LPOS at the left end of the
files falls within the range of 2650-4500 and the LPOS at the
right end falls within the range of 169500-171000.

After writing a file to a wrap, Stream Writer pads the
cartridge with 50 MB files until the head reaches the starting
position of the next wrap. The starting LPOS of an even-
number wrap, where the head moves toward EOT, is 3000
and the starting LPOS of an odd-number wrap, where the head
moves toward BOT, is 171000.

Second, Stream Writer needs to know the number of records
of stream data corresponding to the capacity of a wrap.
Column-oriented file formats such as Parquet use various
compression algorithms to compress columns in order to
improve space efficiency. Therefore, the actual file size can
not be predicted until the stream data is converted to a file.
However, we can assume that the compression ratio of a
column is stable over time. Thus, we can find the number
of records corresponding to the capacity of a wrap through
preliminary experiments and use it as a threshold in production
environments. If the converted file size exceeds the wrap
capacity, Stream Writer can reduce the number of records and
retry conversion.

B. Read Proxy

Read Proxy reads data from the cartridge for clients. This
process is needed to serialize reads from processes running in
parallel, which often happens in analytical applications such
as Spark.

A Spark application is split into stages composed of many
parallel tasks. Early stages read input data from a storage
system. When receiving multiple files as input, Spark launches
as many map tasks as the files. Each map task takes one
file as input and performs processing. Thus, if one map task
takes as input a column-oriented format file stored in a wrap,
multiple map tasks access each file in parallel. These accesses
are performed wrap by wrap rather than column by column
as depicted in Figure 8.

To deal with this problem, we implemented Read Proxy that
serializes accesses from multiple clients to files on LTFS. It is
implemented as a user-space file system using FUSE. It works
as follows.

1) When a map task accesses a special directory, which
is the mount point of the user-space filesystem, Read
Proxy blocks all the accesses to the directory.

2) Read Proxy reads the files from the cartridge column by
column.

3) When Read Proxy reads all the requested columns
into memory, it generates one file on tmpfs, which is
Linux’s in-memory file system, for each file stored in the
cartridge. The generated files are also in Parquet format
and sparse files that contain only the requested columns
and the footer extracted from the corresponding source
file.

4) Read Proxy returns the corresponding file to each map
task.

V. EVALUATION

We conducted a preliminary evaluation using a realistic
workload to figure out how much read performance improve-
ment Wrap-aware Columnar Layout achieves compared to
traditional wrap-unaware columnar layout.

A. Dataset and Workload

We generated a dataset for evaluation in the following
procedure. First, using a vehicle simulator, we collected CAN
bus data generated by a connected car in one minute. The
rate at which records are generated is one record per 100
milliseconds. The number of columns of this CAN data is
966 including a timestamp. Then, we augmented the generated
data by repeatedly copying it with different VIN (vehicle
identification number) and timestamp. As a result, we acquired
a dataset that corresponds to CAN bus data generated by 1,000
connected cars in 6,204 minutes. Thus, the total number of
records is 3,722,400,000. The generated records are ordered
by timestamp in ascending order.

The dataset was split into Parquet files using one of the
following three data layouts. For each data layout, the dataset
was stored in a separate cartridge.

• Split the dataset into 1 GB Parquet files (Many Files
Layout), corresponding to Figure 6.

• Split the dataset into Parquet files of wrap size and
store each of them on each wrap (Wrap-aware Columnar
Layout), corresponding to Figure 8.

• Store the entire dataset as a single Parquet file (Single
File Layout), corresponding to Figure 5.

As a realistic workload, we assume a Spark application that
identifies geographical locations where the car speed is likely
to increase. The application reads six out of 966 columns. The
information on the six columns is shown in Table I.

Each column is compressed with a different algorithm
depending on the column type. Therefore, the size of each
column varies greatly depending on its selectivity and the
compression algorithm. In addition, timestamp differs greatly
in total size across data layouts, which is seemingly due to the
characteristics of the encoding used.

The dataset sizes in each layout are 305 GB (Many Files
Layout), 324 GB (Wrap-aware Columnar Layout), and 328
GB (Single File Layout). The number of records in this dataset
was chosen so that it occupies six wraps on an LTO-7 cartridge
when stored in Wrap-aware Columnar Layout.

For the above three data layouts, we measured read time.



TABLE I
COLUMN INFORMATION

column name column index column type total size [MB]
(Many Files Layout)

total size [MB]
(Wrap-aware

Columnar Layout)

total size [MB]
(Single File Layout)

VIN 2 string 27 25 24
timestamp 8 long 6,076 25,084 28,998

latitude 9 float 707 707 707
longitude 10 float 335 335 335

speed 49 long 3,723 3,722 3,722
acceleration 67 float 2,016 2,016 2,016

In order to focus on read time instead of the entire exe-
cution time of the application, we measured read time with
a simple benchmark without running the Spark application.
The benchmark measures time taken to read column(s) from
the dataset and copy them into tmpfs without uncompressing
them, making a sparse file readable from the Spark application.

In Many Files Layout and Single File Layout, the bench-
mark reads data file by file.

In Wrap-aware Columnar Layout, the benchmark reads data
column by column. When reading six columns, it uses a naive
scheduling algorithm that always starts reading a column from
the first wrap. Thus, whenever it finishes reading a column,
the tape head moves back to the first wrap and starts reading
the next column.

Before starting all measurements, the following procedure
was performed.

1) In order to exclude the seek time to access the footer of
a Parquet file from the time to be measured, the footers
of all Parquet files are read and pinned in memory. A
footer contains data layout information of the entire file
and thus needs to be read before columns are read.

2) The tape head is set to the beginning of the first wrap
that stores the dataset.

3) Page cache is cleared.
Reading a Parquet footer before reading data degrades read

performance severely. Thus, in production environments, we
suppose they should be stored separately from data in other
storage devices such as HDD.

B. Experimental Setup

The setup consists of a server and a tape library connected
by SAS 3.0.

The server consists of two 2.40 GHz 64-bit processors
and 192 GB DDR4 RAM. CentOS 7.6 and FUSE 2.9.2 are
installed on the server.

The tape library has four LTO-7 drives, only one of which
was used for the experiment. Cartridges are formatted with
LTFS format specification 2.4.0. Hardware compression of the
drive was disabled.

C. Results

Figure 10 shows the results when one column is read. Times
labeled ”read” and ”seek” show the actual read and seek times
measured by adding traceability to LTFS. Time labeled ”other”
shows other overheads.

As expected, in Many Files Layout, total read time is
constant regardless of the column to be read, and seek time
occupies most of the total read time.

Interestingly, when reading four columns (latitude, longi-
tude, speed, acceleration), Wrap-aware Column Layout out-
performs Single File Layout. This is because the four columns
are placed at lower LPOSes in Wrap-aware Columnar Layout
due to their small column indexes (see Table I). On the other
hand, the four columns happen to be placed at higher LPOSes
(between 140,000 and 90,000) in the first wrap in Single File
Layout.

Columns other than timestamp have the same size in all
layouts, but in Many Files Layout, it takes longer to read
columns than in other layouts. This is considered to be due to
the overhead involved in switching the head from seek mode
to read mode.

Figure 11 shows results when six columns are read.
In Wrap-aware Columnar Layout, seek time is significantly

longer than when reading one column. This is partly due
to more head movements across wraps caused by the naive
scheduling, which moves the tape head back to the first wrap
before starting reading the next column. Seek time should be
shortened by optimizing scheduling. For example, the sched-
uler could start reading a column from the last wrap without
moving back to the first wrap, or read multiple columns
together if they are continuous on a wrap (e.g. timestamp,
latitude and longitude in our experiment).

On the other hand, in Single File Layout, seek time is shorter
than when reading one column. This is because when reading
six columns, the tape head moves forward by reading more
columns instead of skipping them.

In all layouts, other overhead is longer when reading six
columns than when reading one column. We observed that
the overhead is roughly proportional to actual read time. This
is considered to be the overhead incurred by FUSE, which
LTFS is implemented on and splits a large read request into
many small read requests (e.g. 128 KiB).

VI. RELATED WORK

There are many studies that explore ways of improving read
performance of tape.

a) Request Scheduling: Reordering read requests can
greatly improve read performance.
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Fig. 10. Read time when reading one column
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There is some work that proposes reordering requests such
that they are executed in order of increasing logical addresses
[13] [14] [15].

Recently, inspired by other studies [16] [17], Meria [18]
showed that reordering requests in consideration of physical
locations of accessed data can much further improve read
performance.

b) Data Layout Optimization: We are not the first to
propose to place data in a wrap-aware manner.

Fujihara et al. [19] proposed to place unstructured stream
data such as video from multiple surveillance cameras in a
wrap-aware manner so that each stream can be read fast.

However, to the best of our knowledge, ours is the first
study to convert structured stream data into a columnar format,
place it in a wrap-aware manner and perform quantitative
performance analysis using a realistic workload.

c) Reducing Media Exchange: Separability of expensive
drives from inexpensive cartridges allows users to increase the
ratio of cartridges to drives and makes tape technology the
cheapest of all storage devices.

On the flip side, the overhead of exchanging cartridges has
been a major cause of performance degradation when using

tape. Bessone et al. proposed to delay a cartridge exchange
until the amount of requested data reaches a threshold to
improve read throughput [20].

Kathpal et al. proposed to schedule map tasks of a MapRe-
duce job performed on tape in such a way that data in the
same cartridge can be processed together [13].

Iwata et al. [21] proposed to reduce the number of media
changes during log analysis by changing the layout between
replicas on optical media.

VII. CONCLUSION

In this paper, we proposed a method to improve read per-
formance by placing data on tape in a columnar layout aware
of physical structure of tape called wrap. Our preliminary
evaluation using a realistic workload shows our method to
be 53% faster than traditional wrap-unaware columnar layout.

We plan to extend this work in the following two directions.
First, we plan to optimize scheduling. Naive scheduling was

used in this paper. However, seek time for reading multiple
columns can be greatly reduced by changing the order in which
the wraps are read to reduce the head movements between
wraps, or by reading multiple columns together if they are
continuous on the wrap.

Second, we plan to optimize data layout considering the
access pattern of columns. One possible optimization is to
place frequently accessed columns at LPOSes close to BOT.
Another possible optimization is to arrange columns, which
tend to be accessed at the same time, continuously on a wrap.
With these optimizations, read performance of Wrap-aware
Columnar Layout could even outperform that of Single File
Layout.
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