HMEH: write-optimal extendible hashing for hybrid
DRAM-NVM memory

Xiaomin Zou !, Fang Wang'*, Dan Feng?, Janxi Chenl, Chaojie Liu?, Fan Li!, Nan Su?

Huazhong University of Science and Technology?, China
Shandong Massive Information Technology Research Institute?, China

VAVE=
A ¥ =

e Background and motivation
e Our Work: HMEH

e Performance Evaluation

e Conclusion

Background : Non-Volatile Memory (NVM)

»NVM is expected to complement or replace DRAM as
main memory

CPU
v non-volatile t
v large capacity Cache hierarchy

v high performance
v’ low standby power

® limited write endurance
® asymmetric properties

Intel Optane DC Persistent Memory

Background : NVM-based hash structures

> Hashing structures are widely used in storage systems
v' main memory database

v" in-cache index é redis M

v in-memory key-value store

> Previous work is insufficient for real NVM device
® PFHT [INFLOW 2015] i
® Path hashing [MSST 2017]
® Level hashing [OSDI 2018]
® CCEH [FAST 2019]

Motivation : The design of hashing structure

» Static hashing structure vs Dynamic hashing structure

® Static hashing: Cost inefficiency for resizing hash table

® Dynamic hashing: need extra directory access and the read latency
of optane DCPMM is higher

\ 4
\\ >
\ &
=
4

b \

rl Directory | 00 0L 1

10 1
rehash all items Buckets >/ j &g/ &

Static hashing structure dynamic hashing structure

Motivation : High overhead for data consistency

» Data consistency guarantee

® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

[Program reordering
volatile

St value;
Non-volatile{ ® ; ; D]

St key;

Motivation : High overhead for data consistency

» Data consistency guarantee

® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

CPU Program reordering
- St value;
, value) reordered
volatile St key;

Non-volatile
[ey []

Motivation : High overhead for data consistency

» Data consistency guarantee

® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

volatile [

Program reordering

St value;) reordered
St key;

Inconsistency

Motivation : High overhead for data consistency

» Data consistency guarantee
® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

v’ Flush: flush cache lines
v’ Fence: order CPU cache line flush

CPU Program reordering
_ St value;
volatile

__________________ Fence();

Non-volatile St key;
Flush()
key = value

Motivation : High overhead for data consistency

» Data consistency guarantee

® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

v’ Flush: flush cache lines
v’ Fence: order CPU cache line flush

CPU Program reordering
_ St value;
volatile

__________________ Fence();

Non-volatile St key;
Flush()
key = value

Motivation : High overhead for data consistency

» Data consistency guarantee

® the evaluation with/without Fence and Flush in optane DCPMM
v/ CCEH[FAST 2019], LEVL[OSDI 2018], linear hashing, and cuckoo hashing

14

5y Ll 7‘ | E W"/ Fence and Fllush
/ % ' w/o Fence and Flush |
without Fence and Flush 2 = 7
instructions, the throughputs Qosr = — 7 /7 |
of these hashing schemes are é R — — — —)
Qmproved by 20.3% to 29.1% %%.4- — = = —
c 02F — — —]
— — — — —
> Our goals R e LEVL cuCK

v high-performance dynamic hashing with low data consistency overhead and fast recovery 1

1

Our Scheme: HMEH

» HMEH: Extendible Hashing for Hybrid DRAM-NVM Memory

v Flat-structured Directory for fast access and radix-tree Directory for recovery
v Directory - segment - cacheline-sized bucket

s TN 7 Wi\

Hashkey| (00 10 0000| &val4 | Bucket 00
Segmentindex'\ Bucket index 0001f &val2 | Bucket 01

N 0010|&val6 | Bucket10 A\ _
—_—— e — K Bucket 11 Ifradix-tree Directory |

r .
| Flat-structured Directory
f Segment

[T |
L | \ 1100 &val0| Bucket 00 l\ - l_ l_ l_ L

| | 1201] &valg| Bucket 01

1110/ &val9| Bucket 10
K j K& Bucket 11 j
12

HMEH : Two directories

» Flat-structured Directory VS Radix-tree Directory
v Radix tree is friendly to NVM
v exploit RT-directory to rebuild FS-directory upon recovery
v every segment is pointed by 26 directory entries

Local depth: 1 011
2 0 1‘T/ 01
__________________ _’,’:____ S
3 (01 01 01
y \ | 4 \ 4 v"’ ¥ \ 4 |
Global depth:3| 000 | 001 | 010 | 011 | 10 10 110 | 111

13

HMEH : Low data consistency overhead

> Cross-KV mechanism

v Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v" Avoid lots of Flush and Fence instructions

key value [CPU J Program reordering

St value;

Fence();

Non-volatile St key;
Flush()

14

HMEH : Low data consistency overhead

> Cross-KV mechanism

v Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v" Avoid lots of Flush and Fence instructions

y value

[CPU J Program reordering
ke

St value;

Fence();

Non-volatile St key;
Flush()

15

HMEH : Low data consistency overhead

> Cross-KV mechanism

v Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v" Avoid lots of Flush and Fence instructions

CPU Program reordering
|
volatile

St value;

Fence();

Non-volatile St key;
Flush()

16

HMEH : Low data consistency overhead

> Cross-KV mechanism

v Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v" Avoid lots of Flush and Fence instructions

[CPU J Program reordering
K1 Vi|K2 V2
volatile

St value;

Fence();

Non-volatile St key;
Flush()

17

HMEH : Low data consistency overhead

> Cross-KV mechanism

v Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v" Avoid lots of Flush and Fence instructions

CPU Program reordering
|
volatile

St value;

Fence();

Non-volatile St key;
Flush()

18

HMEH : Low data consistency overhead

> Cross-KV mechanism

v’ Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v' Avoid lots of Flush and Fence instructions

Program reordering

St value;
Fence();
St key;
Flush()

19

HMEH : Low data consistency overhead

> Cross-KV mechanism

v’ Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v' Avoid lots of Flush and Fence instructions

Program reordering

St value;

Fence(); St cross-KVs
St key;

Flush()

20

HMEH : Improve load factor

> Resolve hash collisions

v" linear probing : allow probe 4 buckets (256bytes, the access granularity of
intel optane DCPMM)

v’ stash: non-addressable and used to store colliding items

00 0L 10: 1L, «-—--------1 11 01 | Hashkey

= [

(Segment \ (Segment \ / Segment \

0000} &val4 | Bucket 00 1000| &val4 | Bucket 00 Bucket 00
0101{ &val2 | Bucket 01 1001] &val2 | Bucket 01 1101 &val2 | Bucket 01
0010) &val6 | Bucket 10 1010| &val | Bucket 10 Bucket 10
Bucket 11 Bucket 11 Bucket 11

\ stash) \ stash) \ stash)

21

HMEH : Improve load factor

> Resolve hash collisions

v" linear probing : allow probe 4 buckets (256bytes, the access granularity of
intel optane DCPMM)

v’ stash: non-addressable and used to store colliding items

00 0L 10: 1L, «--—-------1 11 01 | Hashkey

= e

(Segment \ (Segment \ / Segment \

0000} &val4 | Bucket 00 1000| &val4 | Bucket 00 Bucket 00
0101{ &val2 | Bucket 01 1001] &val2 | Bucket 01 1101 &val2 | Bucket 01
0010) &val6 | Bucket 10 1010| &val | Bucket 10 Bucket 10
Bucket 11 Bucket 11 Bucket 11

\ stash) \ stash) \ stash)

22

HMEH : Improve load factor

> Resolve hash collisions

v" linear probing : allow probe 4 buckets (256bytes, the access granularity of
intel optane DCPMM)

v’ stash: non-addressable and used to store colliding items

00 0L 10: 1L, «--—-------1 11 01 | Hashkey

= e

(Segment \ (Segment \ / Segment \

0000} &val4 | Bucket 00 1000| &val4 | Bucket 00 Bucket 00
0101{ &val2 | Bucket 01 1001] &val2 | Bucket 01 1101 &val2 | Bucket 01
0010) &val6 | Bucket 10 1010| &val | Bucket 10 Bucket 10
Bucket 11 Bucket 11 Bucket 11

\ stash) \ stash) \ stash)

23

HMEH : Improve load factor

> Resolve hash collisions

v" linear probing : allow probe 4 buckets (256bytes, the access granularity of
intel optane DCPMM)

v’ stash: non-addressable and used to store colliding items

00 0L 10: 1L, «--—-------1 11 01 | Hashkey

= e

(Segment \ (Segment \ / Segment \

0000| &val4 | Bucket 00 1000/ &val4 | Bucket 00 Bucket 00
0101{ &val2 | Bucket 01 1001] &val2 | Bucket 01 1101 &val2 | Bucket 01
0010) &val6 | Bucket 10 1010| &val | Bucket 10 Bucket 10
Bucket 11 Bucket 11 Bucket 11

\ stash) \ stash) \ stash | ¢)

24

HMEH : Optimistic Concurrency

p
|:> Mutex and version number
for directories @ @< —v_ / _ \
. '
| Directories |
— — — — J
[Fine-grained lock for
segment split
\ lock-free read 4 Segment) /" Segment)
0000 &val4 | Bucket 00 1100| &valO| Bucket 00
~ 0001{ &val2 | Bucket 01 1101 &val8| Bucket 01
- | 0010{&vals | Bucket10 1110| &valg| Bucket 10
Compare-and-swap N Bucket 11) X Bucket 11/
Instructions for Slots /

25

HMEH : Optimistic Concurrency

p
Mutex and version number
for directories @ @<= ——v_ / _ \
L '
| Directories |
— — — — J
[Fine-grained lock for
I:> segment split
\ lock-free read 4 Segment) /" Segment)
0000 &val4 | Bucket 00 1100| &valO| Bucket 00
~ 0001{ &val2 | Bucket 01 1101 &val8| Bucket 01
. | 0010&vale | Bucket 10 1110| &valg| Bucket 10
Compare-and-swap N Bucket 11) X Bucket 11/
Instructions for Slots /

26

HMEH : Optimistic Concurrency

p
Mutex and version number
for directories @ @< ——v_ / _ \
L '
| Directories |
— — — — J
[Fine-grained lock for
segment split
\ lock-free read 4 Segment) /" Segment)
0000 &val4 | Bucket 00 1100| &valO| Bucket 00
~ 0001{ &val2 | Bucket 01 1101 &val8| Bucket 01
- | 0010{&vals | Bucket10 1110| &valg| Bucket 10
Compare-and-swap N Bucket 11) X Bucket 11/
Instructions for Slots /

27

Performance Evaluation

» Experimental setup

CPU 2-socket 36-core machine with 32MB LLC
Memory 1.5 TB DCPMM, 192GB DRAM
160 Million random number dataset
workload
YCSB
CCEH [FAST 2019]
Comparisons LEVL [OSDI 2018]
P-CUCK: persistent cuckoo hashing
P-LINP: persistent linear probing

28

Experiment - Sensitivity Analysis

2.0 : : 500 O : : 100%
< U7 insert § ’8‘ /// insert % search load factor =
& split time 7 {a00 @ gy 1s0% o
2 s E = = g
a 7 7 b Q , ©
o 7‘ {300 = @) 160% @
T 10} % o = S
3 : v >3 E
o 1200 E o2t {a0%
& ; £ =
S o5} 7 £ = £
o {100 90 ° 120% %
& 2 - =

oo
0.0 4 4 : : AJo = g 0 : =
2568 1KB 4KB 16KB 64KB 256KB 12 16
Segment Size for HMEH Stash Size for HMEH (buckets)
» Segment size » Stash size

v’ The reasonable segment size is in the v The optimal stash size is between 1
range of 4KB to 16KB. bucket and 8 buckets

v' we set the segment size as 16KB with a stash whose size is 4 buckets for the rest of the experiments
29

Experiment - Comparative Performance

Avg. Exec. Time (usec)

2.0 .
I mmrectory
15k % segment
%
1.0} Z }
%
O 0 00
Y I 7/ B 7/ M 7/ W 7
Base““e DL p1+o2 A\
Design gain
v Baseline: EH with persist barriers
v' D1: the changes of structure
v' D2: Cross-KV
v' All: entire HMEH

g
o

]

rehash

' _ mwrite

=
N
T T

Q O
Avg. Exec. Time (usec)
o
: %

o
o

NN
MAN
S AN

WO

4S’

» Insertion latency of different researches

v' Compared with CCEH, P-CUCK, LEVL,
and P-LINP, HMEH speeds up the
insertions by over 1.49x, 2.37x, 2.47x%,
and 1.91x

30

Experiment - Concurrent performance

T T T

~—m—HMEH
A CCEH-M
—O— CCEH
—O—LEVL
#— P-LINP
—— libcuckoo

oo

Thoughput(Ops/usec)
.

=)
T

(B

Number of Threads
(a) Scalability on YCSB: 100% insert

> Three YCSB workloads test

v" Concurrent HMEH also delivers
superior performance and high
scalability under YCSB workloads with
different search/insertion ratios

Thoughput(Ops/usec)

Thoughput(Ops/usec)

—
N

—_
[§)

=]

=)}

5]

(=]

—#— HMEH
—#h— CCEH-M J
—>— CCEH
—O— LEVL
—— P-LINP
—— libcuckoo

Number of Threads

(b) Scalability on YCSB: 50% insert-50% search

W
(=]

(a2l
w
T

[
o
T

> P-LINP
—/~— libcuckoo

=
wu
T

=
(=]

w

Number of Threads
(c) Scalability on YCSB: 100% search

31

Experiment — Other evaluations

w
=
ES

o 87% _:I | 2'2_'_
i S— LN = & Number of 1.6 16 160
= = — — = Indexed Records | million | million | million
S = = = = RT-directory
€ ol = = — == Recovery 0.47 6.3 50.1
S = = — < .
£ = E — = & Time(ms)
X 0% i = = - :': -di
s |/ = = = & FS-directory 2.5 218 1722
wl A= = V= Ui = B Rebuild Time(ms)
&w‘b N@-“‘l“ c&\ﬂ \\vl\'**‘\ﬂ% c&\lﬁ\x@i“’(’i@ cd’ﬂ:;@w-“f"pb w®
» Maximum Load Factor » Recovery Time of directories
v As linear probing distance and stash size grow, v directories of HMEH can achieve an
the max load factors of HMEH increase stably instantaneous recovery

and all exceed 74%

32

Conclusion

> Problem

v’ the structures of previous work have shortcomings
v’ Existing data consistency mechanisms incur high overhead

» A write-optimal extendible hashing for hybrid memory
v’ Flat-structured Directory in DRAM for fast access
v’ Radix-tree-structured Directory in NVM for recovery
v’ Cross-KV mechanism
v linear probing+stash
v’ Optimistic Concurrency

» Results
v’ Outperforms the state-of-the-art work by up to 2.47x
v’ High scalability and fast recovery s

Thanks!
Q&A

	幻灯片编号 1
	Outline
	Background : Non-Volatile Memory (NVM)
	Background : NVM-based hash structures
	Motivation : The design of hashing structure
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Our Scheme: HMEH
	HMEH : Two directories
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Optimistic Concurrency
	HMEH : Optimistic Concurrency
	HMEH : Optimistic Concurrency
	Performance Evaluation
	Experiment - Sensitivity Analysis
	Experiment - Comparative Performance
	Experiment - Concurrent performance
	Experiment – Other evaluations
	Conclusion
	幻灯片编号 34

