
HMEH: write-optimal extendible hashing for hybrid
DRAM-NVM memory

Xiaomin Zou 1, Fang Wang1*, Dan Feng1, Janxi Chen1, Chaojie Liu1, Fan Li1, Nan Su2

Huazhong University of Science and Technology1, China
Shandong Massive Information Technology Research Institute2, China

• Background and motivation
• Our Work: HMEH
• Performance Evaluation
• Conclusion

Outline

NVM is expected to complement or replace DRAM as
main memory

Cache hierarchy

Background : Non-Volatile Memory (NVM)

CPU

Intel Optane DC Persistent Memory

 non-volatile
 large capacity
 high performance
 low standby power

 limited write endurance
 asymmetric properties

3

 Hashing structures are widely used in storage systems
 main memory database
 in-cache index
 in-memory key-value store

Background : NVM-based hash structures

 Previous work is insufficient for real NVM device
 PFHT [INFLOW 2015]
 Path hashing [MSST 2017]
 Level hashing [OSDI 2018]
 CCEH [FAST 2019]

4

 Static hashing structure vs Dynamic hashing structure
 Static hashing: Cost inefficiency for resizing hash table
 Dynamic hashing: need extra directory access and the read latency

of optane DCPMM is higher

Motivation : The design of hashing structure

rehash all items

Directory 002 012 102 112

Buckets

hash(key)&val3000

Static hashing structure dynamic hashing structure
5

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

valuekey

①②

Program reordering

volatile

Non-volatile

St value;
St key;

6

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
St key;

reorderedvalue

7

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
St key;

reorderedvalue

Crash
Inconsistency

8

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
Fence();
St key;
Flush()

value

 Flush: flush cache lines
 Fence: order CPU cache line flush

9

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
Fence();
St key;
Flush()

value

 Flush: flush cache lines
 Fence: order CPU cache line flush Expensive !

1
0

 Data consistency guarantee
 the evaluation with/without Fence and Flush in optane DCPMM
 CCEH[FAST 2019], LEVL[OSDI 2018], linear hashing, and cuckoo hashing

Motivation : High overhead for data consistency

without Fence and Flush
instructions, the throughputs
of these hashing schemes are
improved by 20.3% to 29.1%

 Our goals

 high-performance dynamic hashing with low data consistency overhead and fast recovery 1
1

Our Scheme: HMEH

0000 &val4
0001 &val2
0010 &val6

Segment

radix-tree Directory

NVM

Flat-structured Directory

Hash key

Bucket indexSegment index

DRAM

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

00 10

 HMEH: Extendible Hashing for Hybrid DRAM-NVM Memory
 Flat-structured Directory for fast access and radix-tree Directory for recovery
 Directory → segment → cacheline-sized bucket

12

 Flat-structured Directory VS Radix-tree Directory
 Radix tree is friendly to NVM
 exploit RT-directory to rebuild FS-directory upon recovery
 every segment is pointed by 2G-L directory entries

HMEH : Two directories

0 1

0 1 0 1

0 1 0 1 0 1

Local depth：1

2

3

000 001 010 011 100 101 110 111Global depth：3
13

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

valuekey

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

14

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cachevaluekey

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

15

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

K1 K2 V1 V2

16

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

K1 K2V1 V2

17

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()K1

K2

V1

V2

18

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile
K1

K2

V1

V2

Crash

√

Program reordering

St value;
Fence();
St key;
Flush()

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

19

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile
K1

K2

V1

V2

Crash

√

Program reordering

St value;
Fence();
St key;
Flush()

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

St cross-KVs

20

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
21

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
22

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
23

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
24

HMEH : Optimistic Concurrency

Compare-and-swap
Instructions for Slots

Fine-grained lock for
segment split
lock-free read

Mutex and version number
for directories

0000 &val4
0001 &val2
0010 &val6

Segment

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

25

Compare-and-swap
Instructions for Slots

Fine-grained lock for
segment split
lock-free read

Mutex and version number
for directories

0000 &val4
0001 &val2
0010 &val6

Segment

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

HMEH : Optimistic Concurrency

26

Compare-and-swap
Instructions for Slots

Fine-grained lock for
segment split
lock-free read

Mutex and version number
for directories

0000 &val4
0001 &val2
0010 &val6

Segment

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

HMEH : Optimistic Concurrency

27

Performance Evaluation

CPU 2-socket 36-core machine with 32MB LLC

Memory 1.5 TB DCPMM, 192GB DRAM

workload 160 Million random number dataset
YCSB

Comparisons
CCEH [FAST 2019]
LEVL [OSDI 2018]

P-CUCK: persistent cuckoo hashing
P-LINP: persistent linear probing

Experimental setup

28

Experiment - Sensitivity Analysis

 Segment size Stash size
 The reasonable segment size is in the

range of 4KB to 16KB.
 The optimal stash size is between 1

bucket and 8 buckets

 we set the segment size as 16KB with a stash whose size is 4 buckets for the rest of the experiments
29

Experiment - Comparative Performance

 Design gain Insertion latency of different researches
 Baseline: EH with persist barriers
 D1: the changes of structure
 D2: Cross-KV
 All: entire HMEH

 Compared with CCEH, P-CUCK, LEVL,
and P-LINP, HMEH speeds up the
insertions by over 1.49×, 2.37×, 2.47×,
and 1.91×

30

Experiment - Concurrent performance

 Three YCSB workloads test
 Concurrent HMEH also delivers

superior performance and high
scalability under YCSB workloads with
different search/insertion ratios

31

Experiment – Other evaluations

 Maximum Load Factor
 As linear probing distance and stash size grow,

the max load factors of HMEH increase stably
and all exceed 74%

Number of
Indexed Records

1.6
million

16
million

160
million

RT-directory
Recovery
Time(ms)

0.47 6.3 50.1

FS-directory
Rebuild Time(ms) 2.5 21.8 172.2

 Recovery Time of directories
 directories of HMEH can achieve an

instantaneous recovery

32

 Problem
 the structures of previous work have shortcomings
 Existing data consistency mechanisms incur high overhead

Conclusion

 Results
 Outperforms the state-of-the-art work by up to 2.47×
 High scalability and fast recovery

A write-optimal extendible hashing for hybrid memory
 Flat-structured Directory in DRAM for fast access
 Radix-tree-structured Directory in NVM for recovery
 Cross-KV mechanism
 linear probing+stash
 Optimistic Concurrency

33

Thanks!
Q&A

34

	幻灯片编号 1
	Outline
	Background : Non-Volatile Memory (NVM)
	Background : NVM-based hash structures
	Motivation : The design of hashing structure
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Our Scheme: HMEH
	HMEH : Two directories
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Optimistic Concurrency
	HMEH : Optimistic Concurrency
	HMEH : Optimistic Concurrency
	Performance Evaluation
	Experiment - Sensitivity Analysis
	Experiment - Comparative Performance
	Experiment - Concurrent performance
	Experiment – Other evaluations
	Conclusion
	幻灯片编号 34

