
HMEH: write-optimal extendible hashing for hybrid
DRAM-NVM memory

Xiaomin Zou 1, Fang Wang1*, Dan Feng1, Janxi Chen1, Chaojie Liu1, Fan Li1, Nan Su2

Huazhong University of Science and Technology1, China
Shandong Massive Information Technology Research Institute2, China

• Background and motivation
• Our Work: HMEH
• Performance Evaluation
• Conclusion

Outline

NVM is expected to complement or replace DRAM as
main memory

Cache hierarchy

Background : Non-Volatile Memory (NVM)

CPU

Intel Optane DC Persistent Memory

 non-volatile
 large capacity
 high performance
 low standby power

 limited write endurance
 asymmetric properties

3

 Hashing structures are widely used in storage systems
 main memory database
 in-cache index
 in-memory key-value store

Background : NVM-based hash structures

 Previous work is insufficient for real NVM device
 PFHT [INFLOW 2015]
 Path hashing [MSST 2017]
 Level hashing [OSDI 2018]
 CCEH [FAST 2019]

4

 Static hashing structure vs Dynamic hashing structure
 Static hashing: Cost inefficiency for resizing hash table
 Dynamic hashing: need extra directory access and the read latency

of optane DCPMM is higher

Motivation : The design of hashing structure

rehash all items

Directory 002 012 102 112

Buckets

hash(key)&val3000

Static hashing structure dynamic hashing structure
5

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

valuekey

①②

Program reordering

volatile

Non-volatile

St value;
St key;

6

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
St key;

reorderedvalue

7

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
St key;

reorderedvalue

Crash
Inconsistency

8

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
Fence();
St key;
Flush()

value

 Flush: flush cache lines
 Fence: order CPU cache line flush

9

 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM
 Arbitrarily-evicted cache lines → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
Fence();
St key;
Flush()

value

 Flush: flush cache lines
 Fence: order CPU cache line flush Expensive !

1
0

 Data consistency guarantee
 the evaluation with/without Fence and Flush in optane DCPMM
 CCEH[FAST 2019], LEVL[OSDI 2018], linear hashing, and cuckoo hashing

Motivation : High overhead for data consistency

without Fence and Flush
instructions, the throughputs
of these hashing schemes are
improved by 20.3% to 29.1%

 Our goals

 high-performance dynamic hashing with low data consistency overhead and fast recovery 1
1

Our Scheme: HMEH

0000 &val4
0001 &val2
0010 &val6

Segment

radix-tree Directory

NVM

Flat-structured Directory

Hash key

Bucket indexSegment index

DRAM

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

00 10

 HMEH: Extendible Hashing for Hybrid DRAM-NVM Memory
 Flat-structured Directory for fast access and radix-tree Directory for recovery
 Directory → segment → cacheline-sized bucket

12

 Flat-structured Directory VS Radix-tree Directory
 Radix tree is friendly to NVM
 exploit RT-directory to rebuild FS-directory upon recovery
 every segment is pointed by 2G-L directory entries

HMEH : Two directories

0 1

0 1 0 1

0 1 0 1 0 1

Local depth：1

2

3

000 001 010 011 100 101 110 111Global depth：3
13

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

valuekey

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

14

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cachevaluekey

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

15

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

K1 K2 V1 V2

16

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()

K1 K2V1 V2

17

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()K1

K2

V1

V2

18

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile
K1

K2

V1

V2

Crash

√

Program reordering

St value;
Fence();
St key;
Flush()

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

19

HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile
K1

K2

V1

V2

Crash

√

Program reordering

St value;
Fence();
St key;
Flush()

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

St cross-KVs

20

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
21

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
22

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
23

HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
24

HMEH : Optimistic Concurrency

Compare-and-swap
Instructions for Slots

Fine-grained lock for
segment split
lock-free read

Mutex and version number
for directories

0000 &val4
0001 &val2
0010 &val6

Segment

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

25

Compare-and-swap
Instructions for Slots

Fine-grained lock for
segment split
lock-free read

Mutex and version number
for directories

0000 &val4
0001 &val2
0010 &val6

Segment

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

HMEH : Optimistic Concurrency

26

Compare-and-swap
Instructions for Slots

Fine-grained lock for
segment split
lock-free read

Mutex and version number
for directories

0000 &val4
0001 &val2
0010 &val6

Segment

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

HMEH : Optimistic Concurrency

27

Performance Evaluation

CPU 2-socket 36-core machine with 32MB LLC

Memory 1.5 TB DCPMM, 192GB DRAM

workload 160 Million random number dataset
YCSB

Comparisons
CCEH [FAST 2019]
LEVL [OSDI 2018]

P-CUCK: persistent cuckoo hashing
P-LINP: persistent linear probing

Experimental setup

28

Experiment - Sensitivity Analysis

 Segment size  Stash size
 The reasonable segment size is in the

range of 4KB to 16KB.
 The optimal stash size is between 1

bucket and 8 buckets

 we set the segment size as 16KB with a stash whose size is 4 buckets for the rest of the experiments
29

Experiment - Comparative Performance

 Design gain  Insertion latency of different researches
 Baseline: EH with persist barriers
 D1: the changes of structure
 D2: Cross-KV
 All: entire HMEH

 Compared with CCEH, P-CUCK, LEVL,
and P-LINP, HMEH speeds up the
insertions by over 1.49×, 2.37×, 2.47×,
and 1.91×

30

Experiment - Concurrent performance

 Three YCSB workloads test
 Concurrent HMEH also delivers

superior performance and high
scalability under YCSB workloads with
different search/insertion ratios

31

Experiment – Other evaluations

 Maximum Load Factor
 As linear probing distance and stash size grow,

the max load factors of HMEH increase stably
and all exceed 74%

Number of
Indexed Records

1.6
million

16
million

160
million

RT-directory
Recovery
Time(ms)

0.47 6.3 50.1

FS-directory
Rebuild Time(ms) 2.5 21.8 172.2

 Recovery Time of directories
 directories of HMEH can achieve an

instantaneous recovery

32

 Problem
 the structures of previous work have shortcomings
 Existing data consistency mechanisms incur high overhead

Conclusion

 Results
 Outperforms the state-of-the-art work by up to 2.47×
 High scalability and fast recovery

A write-optimal extendible hashing for hybrid memory
 Flat-structured Directory in DRAM for fast access
 Radix-tree-structured Directory in NVM for recovery
 Cross-KV mechanism
 linear probing+stash
 Optimistic Concurrency

33

Thanks!
Q&A

34

	幻灯片编号 1
	Outline
	Background : Non-Volatile Memory (NVM)
	Background : NVM-based hash structures
	Motivation : The design of hashing structure
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Motivation : High overhead for data consistency
	Our Scheme: HMEH
	HMEH : Two directories
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Low data consistency overhead
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Improve load factor
	HMEH : Optimistic Concurrency
	HMEH : Optimistic Concurrency
	HMEH : Optimistic Concurrency
	Performance Evaluation
	Experiment - Sensitivity Analysis
	Experiment - Comparative Performance
	Experiment - Concurrent performance
	Experiment – Other evaluations
	Conclusion
	幻灯片编号 34

