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NVM is expected to complement or replace DRAM as 
main memory

Cache hierarchy

Background : Non-Volatile Memory (NVM)

CPU

Intel Optane DC Persistent Memory

 non-volatile
 large capacity
 high performance
 low standby power

 limited write endurance 
 asymmetric properties
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 Hashing structures are widely used in storage systems
 main memory database
 in-cache index
 in-memory key-value store

Background : NVM-based hash structures

 Previous work is insufficient for real NVM device
 PFHT [INFLOW 2015]
 Path hashing [MSST 2017]
 Level hashing [OSDI 2018]
 CCEH [FAST 2019]
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 Static hashing structure vs Dynamic hashing structure
 Static hashing: Cost inefficiency for resizing hash table
 Dynamic hashing: need extra directory access and the read latency 

of optane DCPMM is higher

Motivation : The design of hashing structure

rehash all items

Directory 002 012 102 112

Buckets

hash(key)&val3000

Static hashing structure dynamic hashing structure
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 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM 
 Arbitrarily-evicted cache lines  → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

valuekey

①②

Program reordering

volatile

Non-volatile

St value;
St key;
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 Data consistency guarantee
 The volatile/non-volatile boundary is between CPU cache and NVM 
 Arbitrarily-evicted cache lines  → memory writes reordering

Motivation : High overhead for data consistency

CPU

CPU
cache

11key

Program reordering

volatile

Non-volatile

St value;
Fence();
St key;
Flush()

value

 Flush: flush cache lines
 Fence: order CPU cache line flush
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cache

11key

Program reordering

volatile

Non-volatile

St value;
Fence();
St key;
Flush()
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 Flush: flush cache lines
 Fence: order CPU cache line flush Expensive !
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 Data consistency guarantee
 the evaluation with/without Fence and Flush in optane DCPMM
 CCEH[FAST 2019], LEVL[OSDI 2018], linear hashing, and cuckoo hashing

Motivation : High overhead for data consistency

without Fence and Flush 
instructions, the throughputs 
of these hashing schemes are 
improved by 20.3% to 29.1%

 Our goals

 high-performance dynamic hashing with low data consistency overhead and fast recovery 1
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Our Scheme: HMEH

0000 &val4
0001 &val2
0010 &val6

Segment 

radix-tree Directory

NVM

Flat-structured Directory

Hash key

Bucket indexSegment index

DRAM

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11

00 10

 HMEH: Extendible Hashing for Hybrid DRAM-NVM Memory
 Flat-structured Directory for fast access and radix-tree Directory for recovery
 Directory → segment → cacheline-sized bucket  

12



 Flat-structured Directory VS Radix-tree Directory 
 Radix tree is friendly to NVM
 exploit RT-directory to rebuild FS-directory  upon recovery
 every segment is pointed by 2G-L directory entries

HMEH : Two directories

0 1

0 1 0 1

0 1 0 1 0 1

Local depth：1

2

3

000 001 010 011 100 101 110 111Global depth：3
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 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as 

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

HMEH : Low data consistency overhead

CPU

CPU
cache

valuekey

volatile

Non-volatile

Program reordering

St value;
Fence();
St key;
Flush()
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HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile
K1

K2

V1

V2

Crash 

√

Program reordering

St value;
Fence();
St key;
Flush()

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as 

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions
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HMEH : Low data consistency overhead

CPU

CPU
cache

volatile

Non-volatile
K1

K2

V1

V2

Crash 

√

Program reordering

St value;
Fence();
St key;
Flush()

 Cross-KV mechanism
 Split kv item into several pieces and alternately store key and value as 

several 8-byte atomic blocks
 Avoid lots of Flush and Fence instructions

St cross-KVs
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HMEH : Improve load factor

 Resolve hash collisions
 linear probing：allow probe 4 buckets (256bytes, the access granularity of 

intel optane DCPMM)
 stash: non-addressable and used to store colliding items

0000 &val4
0101 &val2
0010 &val6

Segment 
Bucket 00
Bucket 01
Bucket 10
Bucket 11

002 012 102 112

1000 &val4
1001 &val2
1010 &val6

Segment 
Bucket 00
Bucket 01
Bucket 10
Bucket 11

1101 &val2

Segment 
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Hash key11 01

stashstashstash
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HMEH : Optimistic Concurrency

Compare-and-swap 
Instructions for Slots

Fine-grained lock for 
segment split
lock-free read

Mutex and version number 
for directories

0000 &val4
0001 &val2
0010 &val6

Segment 

Directories

1100 &val0
1101 &val8
1110 &val9

Segment
Bucket 00
Bucket 01
Bucket 10
Bucket 11

Bucket 00
Bucket 01
Bucket 10
Bucket 11
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Performance Evaluation

CPU 2-socket 36-core machine with 32MB LLC

Memory 1.5 TB DCPMM, 192GB DRAM

workload 160 Million random number dataset
YCSB

Comparisons
CCEH [FAST 2019]
LEVL [OSDI 2018]

P-CUCK: persistent cuckoo hashing
P-LINP: persistent linear probing

Experimental setup
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Experiment - Sensitivity Analysis

 Segment size  Stash size
 The reasonable segment size is in the 

range of 4KB to 16KB.
 The optimal stash size is between 1 

bucket and 8 buckets

 we set the segment size as 16KB with a stash whose size is 4 buckets for the rest of the experiments
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Experiment - Comparative Performance

 Design gain  Insertion latency of different researches
 Baseline: EH with persist barriers
 D1: the changes of structure
 D2: Cross-KV
 All: entire HMEH 

 Compared with CCEH, P-CUCK, LEVL, 
and P-LINP, HMEH speeds up the 
insertions by over 1.49×, 2.37×, 2.47×, 
and 1.91×

30



Experiment - Concurrent performance

 Three YCSB workloads test
 Concurrent HMEH also delivers 

superior performance and high 
scalability under YCSB workloads with 
different search/insertion ratios 
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Experiment – Other evaluations 

 Maximum Load Factor
 As linear probing distance and stash size grow, 

the max load factors of HMEH increase stably 
and all exceed 74%

Number of 
Indexed Records

1.6 
million

16 
million

160 
million

RT-directory 
Recovery 
Time(ms)

0.47 6.3 50.1

FS-directory 
Rebuild Time(ms) 2.5 21.8 172.2

 Recovery Time of directories
 directories of HMEH can achieve an 

instantaneous recovery
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 Problem
 the structures of previous work have shortcomings
 Existing data consistency mechanisms incur high overhead

Conclusion

 Results
 Outperforms the state-of-the-art work by up to 2.47×
 High scalability and fast recovery

A write-optimal extendible hashing for hybrid memory 
 Flat-structured Directory in DRAM for fast access 
 Radix-tree-structured Directory in NVM for recovery
 Cross-KV mechanism
 linear probing+stash
 Optimistic Concurrency
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Thanks!
Q&A 
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