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Background : Non-Volatile Memory (NVM)

»NVM is expected to complement or replace DRAM as
main memory

CPU
v non-volatile t
v large capacity Cache hierarchy

v high performance
v’ low standby power

® limited write endurance
® asymmetric properties

Intel Optane DC Persistent Memory



Background : NVM-based hash structures

> Hashing structures are widely used in storage systems
v' main memory database

v" in-cache index é redis M

v in-memory key-value store

> Previous work is insufficient for real NVM device
® PFHT [INFLOW 2015] i
® Path hashing [MSST 2017]
® Level hashing [OSDI 2018]
® CCEH [FAST 2019]




Motivation : The design of hashing structure

» Static hashing structure vs Dynamic hashing structure

® Static hashing: Cost inefficiency for resizing hash table

® Dynamic hashing: need extra directory access and the read latency
of optane DCPMM is higher
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Motivation : High overhead for data consistency

» Data consistency guarantee

® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

[ Program reordering
volatile

St value;
Non-volatile{ ® ; ; D ]

St key;
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Motivation : High overhead for data consistency

» Data consistency guarantee
® The volatile/non-volatile boundary is between CPU cache and NVM
® Arbitrarily-evicted cache lines - memory writes reordering

v’ Flush: flush cache lines
v’ Fence: order CPU cache line flush
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Motivation : High overhead for data consistency

» Data consistency guarantee

® the evaluation with/without Fence and Flush in optane DCPMM
v/ CCEH[FAST 2019], LEVL[OSDI 2018], linear hashing, and cuckoo hashing
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v high-performance dynamic hashing with low data consistency overhead and fast recovery 1
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Our Scheme: HMEH

» HMEH: Extendible Hashing for Hybrid DRAM-NVM Memory

v Flat-structured Directory for fast access and radix-tree Directory for recovery
v Directory - segment - cacheline-sized bucket
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HMEH : Two directories

» Flat-structured Directory VS Radix-tree Directory
v Radix tree is friendly to NVM
v exploit RT-directory to rebuild FS-directory upon recovery
v every segment is pointed by 26 directory entries

Local depth: 1 011
2 0 1‘T/ 01
__________________ _’,’:\\____ S
3 (01 01 01
y \ | 4 \ 4 v"’ ¥ \ 4 |
Global depth:3| 000 | 001 | 010 | 011 | 10 10 110 | 111
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HMEH : Low data consistency overhead

> Cross-KV mechanism

v Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks

v" Avoid lots of Flush and Fence instructions

key value [ CPU J Program reordering

St value;

Fence();

Non-volatile St key;
Flush()
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HMEH : Low data consistency overhead

> Cross-KV mechanism

v’ Split kv item into several pieces and alternately store key and value as
several 8-byte atomic blocks
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HMEH : Improve load factor

> Resolve hash collisions

v" linear probing : allow probe 4 buckets (256bytes, the access granularity of
intel optane DCPMM)

v’ stash: non-addressable and used to store colliding items

00 0L 10: 1L, «-—--------1 11 01 | Hashkey
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\ stash ) \ stash ) \ stash )
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HMEH : Optimistic Concurrency

p
|:> Mutex and version number
for directories @ @< —v_ / _ \
. '
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Performance Evaluation

» Experimental setup

CPU 2-socket 36-core machine with 32MB LLC
Memory 1.5 TB DCPMM, 192GB DRAM
160 Million random number dataset
workload
YCSB
CCEH [FAST 2019]
Comparisons LEVL [OSDI 2018]
P-CUCK: persistent cuckoo hashing
P-LINP: persistent linear probing
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Experiment - Sensitivity Analysis
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v’ The reasonable segment size is in the v The optimal stash size is between 1
range of 4KB to 16KB. bucket and 8 buckets

v'  we set the segment size as 16KB with a stash whose size is 4 buckets for the rest of the experiments
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Experiment - Comparative Performance
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» Insertion latency of different researches

v' Compared with CCEH, P-CUCK, LEVL,
and P-LINP, HMEH speeds up the
insertions by over 1.49x, 2.37x, 2.47x%,
and 1.91x
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Experiment - Concurrent performance
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> Three YCSB workloads test

v" Concurrent HMEH also delivers
superior performance and high
scalability under YCSB workloads with
different search/insertion ratios
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(b) Scalability on YCSB: 50% insert-50% search
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Experiment — Other evaluations
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» Maximum Load Factor » Recovery Time of directories
v As linear probing distance and stash size grow, v directories of HMEH can achieve an
the max load factors of HMEH increase stably instantaneous recovery

and all exceed 74%
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Conclusion

> Problem

v’ the structures of previous work have shortcomings
v’ Existing data consistency mechanisms incur high overhead

» A write-optimal extendible hashing for hybrid memory
v’ Flat-structured Directory in DRAM for fast access
v’ Radix-tree-structured Directory in NVM for recovery
v’ Cross-KV mechanism
v linear probing+stash
v’ Optimistic Concurrency

» Results
v’ Outperforms the state-of-the-art work by up to 2.47x
v’ High scalability and fast recovery s
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