
NUMA-Aware Thread Migration for High
Performance NVMM File Systems

Ying Wang, Dejun Jiang, Jin Xiong
Institute of Computing Technology, CAS

University of Chinese Academy of Sciences

���	 ����
����������
��



Outline

• Background & Motivation
• NThread design

– Reduce remote access
– Reduce resource contention
– Increase CPU cache sharing

• Evaluation
• Summary

2



Background
• Non-Volatile Main Memories(NVMMs) provide low latency,
high bandwidth, byte-addressable and persistent storage
– PCM, MRAM, RRAM, 3D Xpoint[1]

• Intel releases Optane DC Persistent Memory (Optane PMM)

3
[1] What is Intel Optane DC Persistent Memory. Intel.
[2] The data from our evaluation and the paper of “Basic Performance Measurements of the Intel Optane DC Persistent 
Memory Module”

[2] R lat. W lat. R BW. W BW.
DRAM 60ns 69ns 20 GB/s ~15 GB/s
Optane PMM 305ns 81ns ~6GB/s ~2GB/s
NVMe SSD 120us 30us 2GB/s 500MB/s
HDD 10ms 10ms 0.1GB/s 0.1GB/s



Background
• Non-Volatile Main Memories(NVMMs) provide low latency,
high bandwidth, byte-addressable and persistent storage
– PCM, MRAM, RRAM, 3D Xpoint[1]

• Intel releases Optane DC Persistent Memory (Optane PMM)

• File system can be directly built on memory
– Improve file system I/O performance

3

NVMMCPU

Memory bus

File system

[1] What is Intel Optane DC Persistent Memory. Intel.
[2] The data from our evaluation and the paper of “Basic Performance Measurements of the Intel Optane DC Persistent 
Memory Module”

[2] R lat. W lat. R BW. W BW.
DRAM 60ns 69ns 20 GB/s ~15 GB/s
Optane PMM 305ns 81ns ~6GB/s ~2GB/s
NVMe SSD 120us 30us 2GB/s 500MB/s
HDD 10ms 10ms 0.1GB/s 0.1GB/s

I/O



Background

• Non-Uniform Memory Access architecture(NUMA) is
widely used in data center [1,2,3,4,5,6,7]

4
[1] Lepers, ATC’2015 [2] Dashti, ASPLOS’2013 [3] Blagodurov, ATC’2011 [4] Tam, EuroSys’2007
[5] Yu, CS’2017 [6] Calciu, ASPLOS’2017 [7] Blagodurov, ACM Trans’2010

NVMMCPU0

Memory bus

Node 0

NVMM CPU1

Memory bus

Node 1

QPI link



Background

• Non-Uniform Memory Access architecture(NUMA) is
widely used in data center [1,2,3,4,5,6,7]
– Multiple NUMA (memory) nodes

4
[1] Lepers, ATC’2015 [2] Dashti, ASPLOS’2013 [3] Blagodurov, ATC’2011 [4] Tam, EuroSys’2007
[5] Yu, CS’2017 [6] Calciu, ASPLOS’2017 [7] Blagodurov, ACM Trans’2010

NVMMCPU0

Memory bus

Node 0

NVMM CPU1

Memory bus

Node 1

QPI link



Background

• Non-Uniform Memory Access architecture(NUMA) is
widely used in data center [1,2,3,4,5,6,7]
– Multiple NUMA (memory) nodes

• Each memory node contains independent CPU and memory

4
[1] Lepers, ATC’2015 [2] Dashti, ASPLOS’2013 [3] Blagodurov, ATC’2011 [4] Tam, EuroSys’2007
[5] Yu, CS’2017 [6] Calciu, ASPLOS’2017 [7] Blagodurov, ACM Trans’2010

NVMMCPU0

Memory bus

Node 0

NVMM CPU1

Memory bus

Node 1

QPI link



Background

• Non-Uniform Memory Access architecture(NUMA) is
widely used in data center [1,2,3,4,5,6,7]
– Multiple NUMA (memory) nodes

• Each memory node contains independent CPU and memory
• Each node can run in parallel without interference

4
[1] Lepers, ATC’2015 [2] Dashti, ASPLOS’2013 [3] Blagodurov, ATC’2011 [4] Tam, EuroSys’2007
[5] Yu, CS’2017 [6] Calciu, ASPLOS’2017 [7] Blagodurov, ACM Trans’2010

NVMMCPU0

Memory bus

Node 0

NVMM CPU1

Memory bus

Node 1

QPI link



CPU0 NVMM

Background

• ���� �
��	�����
�

5Node 0

NVMM

Node 1

QPI link CPU1



CPU0 NVMM

Background

• ���� ���
��	����	
• �	
��	 ���	� �� ���	��	� �� 
��	 ��
	 �
�� ����� ��	�

5Node 0

NVMM

Node 1

Remote memory access

Local memory access

QPI link CPU1



CPU0CPU0 NVMM

Background

• ���� ��	����	����
• ������ ,�
�� �� �		����
 �, ���� ���� ���, ��	�� �,��
• �,����,	�
 ������	� ���
� ���,
 ,�
�� 	����� ������	�
	�,��,���,� ��
�	�,
 ������ ��������,	�
• Memory (DRAM, NVMM), CPU

5

NVMM

Node 0

NVMM

Node 1

Remote memory access

Local memory access

NVMM access
contention

QPI link CPU1



CPU0CPU0 NVMM

Background

• ���� ��	����	����
• ������ ,�
�� �� �		����
 �, ���� ���� ���, ��	�� �,��
• �,����,	�
 ������	� ���
� ���,
 ,�
�� 	����� ������	�
	�,��,���,� ��
�	�,
 ������ ��������,	�
• Memory (DRAM, NVMM), CPU

• The I/O performance of NVMM file system is affected by the
these factors

5

NVMM

Node 0

NVMM

Node 1

Remote memory access

Local memory access

NVMM access
contention

QPI link CPU1

NVMM file system



Motivation

• Existing NVMM file systems are not aware of NUMA
– Remote memory access

6

NVMMCPU0

Node 0

NVMM CPU1

Node 1

Remote memory access

NVMM file system

QPI link



Motivation

• Existing NVMM file systems are not aware of NUMA
– Remote memory access

• File location is transparent to thread

6

NVMMCPU0

Node 0

NVMM CPU1

Node 1

Remote memory access

NVMM file system

QPI link



Motivation

• Existing NVMM file systems are not aware of NUMA
– Remote memory access

• File location is transparent to thread
• Thread is randomly scheduled by OS

6

NVMMCPU0

Node 0

NVMM CPU1

Node 1

Remote memory access

NVMM file system

QPI link



Motivation

• Existing NVMM file systems are not aware of NUMA
– Remote memory access

• File location is transparent to thread
• Thread is randomly scheduled by OS
• Remote NVMM accesses increase the read latency of NVMM file
system by 65.6%

6

NVMMCPU0

Node 0

NVMM CPU1

Node 1

Remote memory access

NVMM file system

QPI link



Motivation

• Existing NVMM file system is not aware of NUMA
– Resource contention

7

NVMMCPU0

Node 0

NVMM CPU1

Node 1

NVMM file system

NVMM access
contention

QPI link



Motivation

• Existing NVMM file system is not aware of NUMA
– Resource contention

• Random placement of data leads to unbalanced data access among
NUMA nodes

7

NVMMCPU0

Node 0

NVMM CPU1

Node 1

NVMM file system

NVMM access
contention

QPI link



Motivation

• Existing NVMM file system is not aware of NUMA
– Resource contention

• Random placement of data leads to unbalanced data access among
NUMA nodes

• NVMM access contention can increases file access latency by
120.5%

7

NVMMCPU0

Node 0

NVMM CPU1

Node 1

NVMM file system

NVMM access
contention

QPI link



Existing works

• For memory applications

8
[1]Matthias, SBAC-PAD’14 [2] Lachaize, ATC’12 [3] Wu, Cluster’19
[4] Xu, ASPLOS’19



Existing works

• For memory applications
– Allocating memory on the memory node where the thread runs

• Cannot solve the problem of NVMM contention

8
[1]Matthias, SBAC-PAD’14 [2] Lachaize, ATC’12 [3] Wu, Cluster’19
[4] Xu, ASPLOS’19



Existing works

• For memory applications
– Allocating memory on the memory node where the thread runs

• Cannot solve the problem of NVMM contention
– Migrating thread and thread data (such as stack, heap) [1,2,34]

• Reduce remote access
• Reduce resource contention by unbalanced use of resources
• A lot of data migration overhead

8
[1]Matthias, SBAC-PAD’14 [2] Lachaize, ATC’12 [3] Wu, Cluster’19
[4] Xu, ASPLOS’19



High data migration overhead on NVMM FS

9



High data migration overhead on NVMM FS

• NVMM has long latency and low bandwidth than DRAM
– The migrating latency of 16 KB data in NVMM is 2.8X of DRAM

9



High data migration overhead on NVMM FS

• NVMM has long latency and low bandwidth than DRAM
– The migrating latency of 16 KB data in NVMM is 2.8X of DRAM

• File system needs consistency
– Additional overhead, such as log or journal

9



High data migration overhead on NVMM FS

• NVMM has long latency and low bandwidth than DRAM
– The migrating latency of 16 KB data in NVMM is 2.8X of DRAM

• File system needs consistency
– Additional overhead, such as log or journal

• File data is shared between threads
– Difficult to decide the node to migrate data

9



High data migration overhead on NVMM FS

• NVMM has long latency and low bandwidth than DRAM
– The migrating latency of 16 KB data in NVMM is 2.8X of DRAM

• File system needs consistency
– Additional overhead, such as log or journal

• File data is shared between threads
– Difficult to decide the node to migrate data

• NVMM has low write endurance
– Reduce the lifetime of NVMM

9



Contribution

• A NUMA-Aware thread migration for NVMM FS

10
NVMMCPU0

Node 0

NVMM CPU1

Node 1

QPI link

NVMM file system
Application



Contribution

• A NUMA-Aware thread migration for NVMM FS
– Reduce remote access

10
NVMMCPU0

Node 0

NVMM CPU1

Node 1

QPI link

NVMM file system
Application



Contribution

• A NUMA-Aware thread migration for NVMM FS
– Reduce remote access
– Reduce resource contention

• CPU
• NVMM

10
NVMMCPU0

Node 0

NVMM CPU1

Node 1

QPI link

NVMM file system
Application



Contribution

• A NUMA-Aware thread migration for NVMM FS
– Reduce remote access
– Reduce resource contention

• CPU
• NVMM

– Increase CPU cache sharing between threads

10
NVMMCPU0

Node 0

NVMM CPU1

Node 1

QPI link

NVMM file system
Application



Contribution

• A NUMA-Aware thread migration for NVMM FS
– Reduce remote access
– Reduce resource contention

• CPU
• NVMM

– Increase CPU cache sharing between threads
– Transparent to application

10
NVMMCPU0

Node 0

NVMM CPU1

Node 1

QPI link

NVMM file system
NThread

Application



Outline

• Background & Motivation
• NThread design

– Reduce remote access
– Reduce resource contention
– Increase CPU cache sharing

• Evaluation
• Summary

11



Reduce remote access

• How to reduce remote access

• How to avoid ping-pong migration

12



Reduce remote access

• How to reduce remote access
– Write

• allocate new space to perform write operations
• Write data on the node where the thread running

• How to avoid ping-pong migration

12



Reduce remote access

• How to reduce remote access
– Write

• allocate new space to perform write operations
• Write data on the node where the thread running

– Read
• Count the read amount of each node for each thread
• Migrate threads to the node with the most data read

• How to avoid ping-pong migration

12



Reduce remote access

• How to reduce remote access
– Write

• allocate new space to perform write operations
• Write data on the node where the thread running

– Read
• Count the read amount of each node for each thread
• Migrate threads to the node with the most data read

• How to avoid ping-pong migration
• When the read size of a thread on one node is higher than all other
nodes by a value per period (such as 200 MB per second)

12

T1
100MB 300MB

T1
100MB 300MB

Node 1Node 0 Node 1Node 0



Outline

• Background & Motivation
• NThread design

– Reduce remote access
– Reduce resource contention
– Increase CPU cache sharing

• Evaluation
• Summary

13



Reduce resource contention

• Problems
– How to find contention
– How to reduce contention
– How to avoid new contention

14

NVMMCPU0

Node 0

NVMM CPU1

Node 1

NVMM file system

NVMM access
contention

QPI link



Reduce NVMM contention

• How to find contention

15



Reduce NVMM contention

• How to find contention
– The access amount of NVMM in one node exceeds a threshold
that the use of other nodes is less than ½ of the node

15



Reduce NVMM contention

• How to find contention
– The access amount of NVMM in one node exceeds a threshold
that the use of other nodes is less than ½ of the node

– How to define access amount

15



Reduce NVMM contention

• How to find contention
– The access amount of NVMM in one node exceeds a threshold
that the use of other nodes is less than ½ of the node

– How to define access amount
• Bandwidth !!!!

– Considering the theoretical bandwidth with running bandwidth of NVMM
– Bandwidth = read bandwidth + write bandwidth

15



Reduce NVMM contention

• How to find contention
– The access amount of NVMM in one node exceeds a threshold
that the use of other nodes is less than ½ of the node

– How to define access amount
• Bandwidth !!!!

– Considering the theoretical bandwidth with running bandwidth of NVMM
– Bandwidth = read bandwidth + write bandwidth

• However
– The write bandwidth of NVMM is about 1/3 of the read bandwidth

15



Reduce NVMM contention

• How to find contention
– Bandwidth

16



Reduce NVMM contention

• How to find contention
– Bandwidth

• It is inaccurate to calculate NVMM access by using the sum of read
and write bandwidth

16



Reduce NVMM contention

• How to find contention
– Bandwidth

• It is inaccurate to calculate NVMM access by using the sum of read
and write bandwidth
– Read 1 GB/s + Write 1 GB/s = 2GB/sà low contention

16R 1GB/s

W 1GB/s
2GB/s

Low Contention



Reduce NVMM contention

• How to find contention
– Bandwidth

• It is inaccurate to calculate NVMM access by using the sum of read
and write bandwidth
– Read 1 GB/s + Write 1 GB/s = 2GB/sà low contention
– Read 0 GB/s + write 2 GB/s = 2GB/sà high contention

16R 1GB/s

W 1GB/s

R 0 GB/s

W 2GB/s
2GB/s

Low Contention High Contention



Reduce NVMM contention

• How to find contention
– Bandwidth

• It is inaccurate to calculate NVMM access by using the sum of read
and write bandwidth

– Read 1 GB/s + Write 1 GB/s = 2GB/s à low contention

– Read 0 GB/s + write 2 GB/s = 2GB/s à high contention

• Solution

– Change the read and write weight of bandwidth

» BWN = NWrN * 1/3 + BWwN (Refer to paper)

16R 1GB/s

W 1GB/s

R 0 GB/s

W 2GB/s
2GB/s

Low Contention High Contention



Reduce NVMM contention

• How to reduce contention

17



Reduce NVMM contention

• How to reduce contention
– The access contention come from read and write

17



Reduce NVMM contention

• How to reduce contention
– The access contention come from read and write

• Read
– data location is fixed

17



Reduce NVMM contention

• How to reduce contention
– The access contention come from read and write

• Read
– data location is fixed

• Write
– Specify the node where data is written

17



Reduce NVMM contention

• How to reduce contention
– The access contention come from read and write

• Read
– data location is fixed

• Write
– Specify the node where data is written
– Long remote write latency: reduce performance by 65.5%

17

T1

Node 1Node 0

Remote
write



Reduce NVMM contention

• How to reduce contention

18



Reduce NVMM contention

• How to reduce contention
– Migrating threads with high write rate to the nodes with low
access pressure
• Reduce remote write
• Reduce NVMM contention

18



Reduce NVMM contention

• How to reduce contention
– Migrating threads with high write rate to the nodes with low
access pressure
• Reduce remote write
• Reduce NVMM contention

18

T1
W:90%

T2
W:70%

Node 0

T3
W:20%

T4
W:10%

Node 1
Access: 4 Access: 0



Reduce NVMM contention

• How to reduce contention
– Migrating threads with high write rate to the nodes with low
access pressure
• Reduce remote write
• Reduce NVMM contention

18

T1
W:90%

T2
W:70%

Node 0

T3
W:20%

T4
W:10%

Node 1
T1

W:90%

T2
W:70%

Node 0
T3

W:20%

T4
W:10%

Node 1

Access: 4 Access: 0 Access: 2.4 Access: 1.6

Remote read

0.4



Reduce NVMM contention

• How to avoid new contention

19



Reduce NVMM contention

• How to avoid new contention
– Migrate too much threads to low contention nodes

19



Reduce NVMM contention

• How to avoid new contention
– Migrate too much threads to low contention nodes
– Determine the number of threads to migrate according to the
current bandwidth of each node

19



Reduce NVMM contention

• How to avoid new contention
– Migrate too much threads to low contention nodes
– Determine the number of threads to migrate according to the
current bandwidth of each node

19

T1
W:90%

T2
W:70%

Node 0

T3
W:20%

T4
W:10%

Access: 4



Reduce NVMM contention

• How to avoid new contention
– Migrate too much threads to low contention nodes
– Determine the number of threads to migrate according to the
current bandwidth of each node

19

T1
W:90%

T2
W:70%

Node 0

T3
W:20%

T4
W:10%

Node 1

Access: 4

T5
W:90%

T6
W:70%

T7
W:70%

Access: 3



Reduce NVMM contention

• How to avoid new contention
– Migrate too much threads to low contention nodes
– Determine the number of threads to migrate according to the
current bandwidth of each node

19

T1
W:90%

T2
W:70%

Node 0

T3
W:20%

T4
W:10%

Node 1

Access: 4

T5
W:90%

T6
W:70%

T7
W:70%

Access: 3

Average access: 3.5



Reduce NVMM contention

• How to avoid new contention
– Migrate too much threads to low contention nodes
– Determine the number of threads to migrate according to the
current bandwidth of each node

19

T1
W:90%

T2
W:70%

Node 0

T3
W:20%

T4
W:10%

Node 1

Access: 4

T5
W:90%

T6
W:70%

T7
W:70%

Access: 3

Average access: 3.5



Reduce CPU contention

• How to find contention

20



Reduce CPU contention

• How to find contention
– When the CPU utilization of a node exceeds 90% and is 2x of
other nodes

20



Reduce CPU contention

• How to find contention
– When the CPU utilization of a node exceeds 90% and is 2x of
other nodes

• How to reduce contention
– Migrating threads from NUMA node with high CPU utilization to
other low CPU utilization node

20



Reduce CPU contention

• How to find contention
– When the CPU utilization of a node exceeds 90% and is 2x of
other nodes

• How to reduce contention
– Migrating threads from NUMA node with high CPU utilization to
other low CPU utilization node

• How to avoid new contention
– If the CPU utilization of migrate thread and target NUMA node
does not exceed 90%, migrating thread

20



Outline

• Background & Motivation
• NThread design

– Reduce remote access
– Reduce resource contention
– Increase CPU cache sharing

• Evaluation
• Summary

21



Increase CPU cache sharing

22



Increase CPU cache sharing

• How to find threads that share data

22



Increase CPU cache sharing

• How to find threads that share data
– Once a file accessed by multiple threads, all threads accessing

the file share data

22



Increase CPU cache sharing

• How to find threads that share data
– Once a file accessed by multiple threads, all threads accessing

the file share data
• How to increase CPU cache sharing

22



Increase CPU cache sharing

• How to find threads that share data
– Once a file accessed by multiple threads, all threads accessing

the file share data
• How to increase CPU cache sharing

– Reducing remote memory access

22



Composing Optimizations together

• Remote access, resource contention and CPU cache
sharing

23



Composing Optimizations together

• Remote access, resource contention and CPU cache
sharing
– Reduce remote access can increase CPU cache sharing

• Threads accessing the same data run in the same node, sharing
CPU cache

23



Composing Optimizations together

• Remote access, resource contention and CPU cache
sharing
– Reduce remote access can increase CPU cache sharing

• Threads accessing the same data run in the same node, sharing
CPU cache

– Reduce resource contention may increase remote memory
access and destroy CPU cache sharing

23



Composing Optimizations together

• Remote access, resource contention and CPU cache
sharing
– Reduce remote access can increase CPU cache sharing

• Threads accessing the same data run in the same node, sharing
CPU cache

– Reduce resource contention may increase remote memory
access and destroy CPU cache sharing

– Reduce NVMM contention may increase CPU contention

NVMMCPU0

Node 0

NVMM CPU1

Node 1

NVMM file system

QPI link

23



Composing Optimizations together

• What-if analysis

24



Composing Optimizations together

• What-if analysis
– Get information each second

• Data access size, NVMM
bandwidth, CPU utilization and
data sharing

24

Get information1



Composing Optimizations together

• What-if analysis
– Get information each second

• Data access size, NVMM
bandwidth, CPU utilization and
data sharing

– Decide initial target node
• Reduce remote memory access

24

Reduce remote access

Get information

Decide initial target
node

2

1



Composing Optimizations together

• What-if analysis
– Get information each second

• Data access size, NVMM
bandwidth, CPU utilization and
data sharing

– Decide initial target node
• Reduce remote memory access

– Decide final target node
• Reduce NVMM and CPU
contention

24

Reduce remote access

Get information

Decide initial target
node

Decide final target node

2

3

1



Composing Optimizations together

• What-if analysis
– Get information each second

• Data access size, NVMM
bandwidth, CPU utilization and
data sharing

– Decide initial target node
• Reduce remote memory access

– Decide final target node
• Reduce NVMM and CPU
contention
– Avoid migrate shared thread

24

Reduce remote access

Get information

Decide initial target
node

Decide final target node
Avoid migrate shared thread

2

3

1



Composing Optimizations together

• What-if analysis
– Get information each second

• Data access size, NVMM
bandwidth, CPU utilization and
data sharing

– Decide initial target node
• Reduce remote memory access

– Decide final target node
• Reduce NVMM and CPU
contention
– Avoid migrate shared thread
– NVMM > CPU (Refer to paper)

24

Reduce remote access

NVMM
contention?

CPUReduce NVMM
con.

Reduce
CPU con.

Get information

Decide initial target
node

Decide final target node
Avoid migrate shared thread

2

3

Y N

Y
N

1



Composing Optimizations together

• What-if analysis
– Get information each second

• Data access size, NVMM
bandwidth, CPU utilization and
data sharing

– Decide initial target node
• Reduce remote memory access

– Decide final target node
• Reduce NVMM and CPU
contention
– Avoid migrate shared thread
– NVMM > CPU (Refer to paper)

– Migrate threads
24

Reduce remote access

NVMM
contention?

CPUReduce NVMM
con.

Reduce
CPU con.

Get information

Decide initial target
node

Decide final target node
Avoid migrate shared thread

Migrate threads

2

3

Y N

Y
N

1

4



Outline

• Background & Motivation
• NThread design

– Reduce remote access
– Reduce resource contention
– Increase CPU cache sharing

• Evaluation
• Summary

25



Evaluation

• Platform
– Two NUMA nodes

• Intel Xeon 5214 CPU�10 CPU core
• 64G DRAM, 128G Optane PMM

– Four NUMA nodes
• Intel Xeon 5214 CPU�10 CPU core
• 4GB DRAM, 12GB Emulated PMM

• Compared system
– Existing FS: Ext4-dax, PMFS, NOVA, NOVA_n
– Modified FS: NOVA_n (A NOVA-based multi-node support FS)

26



Micro-benchmark: fio

27
0.0

0.5

1.0

1.5

2.0

20% 40% 60% 80%

ba
nd

w
id
th

GB
/s

Read ratio

ext4-dax PMFS NOVA NOVA_N NThread_rl NThread



Micro-benchmark: fio
• NThread_rl: reduce remote access

– The bandwidth is increased by 26.9% when the read ratio is 40%

27
0.0

0.5

1.0

1.5

2.0

20% 40% 60% 80%

ba
nd

w
id
th

GB
/s

Read ratio

ext4-dax PMFS NOVA NOVA_N NThread_rl NThread



Micro-benchmark: fio
• NThread_rl: reduce remote access

– The bandwidth is increased by 26.9% when the read ratio is 40%
• NThread: reduce remote access, avoid contention and
increase CPU sharing
– Bandwidth increased by an average of 43.8%

27
0.0

0.5

1.0

1.5

2.0

20% 40% 60% 80%

ba
nd

w
id
th

GB
/s

Read ratio

ext4-dax PMFS NOVA NOVA_N NThread_rl NThread



Application: RocksDB

• NThread increases the throughput by 88.6% on average
when RocksDB runs in the NVMM file system

28

0

100

200

300

400

500

600

700

PUT GET MIX

T
h
ro
u
g
h
p
u
t
(K

o
p
s/
s)

ext4-dax PMFS NOVA NOVA_n NThread

0

500

1000

1500

2000

2500

3000

PUT GET MIX
T
h
ro
u
g
h
p
u
t
(K

o
p
s/
s)

ext4-dax PMFS NOVA NOVA_n NThread

Four NUMA nodesTwo NUMA nodes



Outline

• Background & Motivation
• NThread design

– Reduce remote access
– Reduce resource contention
– Increase CPU cache sharing

• Evaluation
• Summary

29



Summary

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

• NThread is a NUMA-aware thread migration

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

• NThread is a NUMA-aware thread migration
– Migrate threads according to data amount to reduce remote access

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

• NThread is a NUMA-aware thread migration
– Migrate threads according to data amount to reduce remote access
– Reduce resource contention and avoid introducing new contention

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

• NThread is a NUMA-aware thread migration
– Migrate threads according to data amount to reduce remote access
– Reduce resource contention and avoid introducing new contention
– Avoid migrating data-sharing threads to increase CPU cache
sharing

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

• NThread is a NUMA-aware thread migration
– Migrate threads according to data amount to reduce remote access
– Reduce resource contention and avoid introducing new contention
– Avoid migrating data-sharing threads to increase CPU cache
sharing

– Apply what-if analysis to decide the execution orders of these
optimizations

30



Summary

• The features of NVMM enables FS to be built on the
memory bus, improving the performance of FS

• NUMA brings remote access and resource contention to
NVMM FS

• NThread is a NUMA-aware thread migration
– Migrate threads according to data amount to reduce remote access
– Reduce resource contention and avoid introducing new contention
– Avoid migrating data-sharing threads to increase CPU cache
sharing

– Apply what-if analysis to decide the execution orders of these
optimizations

– Increase application throughput by 88.6% on average 30



Thanks�

31

Author email: wangying01@ict.ac.cn


