

Space-Oblivious Compression and Wear Leveling for Non-Volatile Main Memories

Haikun Liu, Yuanyuan Ye, Xiaofei Liao, Hai Jin, Yu Zhang, Wenbin Jiang, Bingsheng He*

Outline

- Background and Motivations
- Our Solution: Space-Oblivious Compression and Wear Leveling
- Evaluation
- Related Works
- Conclusion

The disadvantages of NVMMs

- Non-Volatile Main Memory (NVMM) has limited write endurance
 - Pros: high density, near-zero static power, non-volatility
 - Cons: limited write endurance, higher write latency and write power

	DRAM	NVM (PCM)	NAND Flash
Read latency	~10 ns	10-100 ns	5-50 μs
Write latency	~10 ns	100-1000 ns	2-3 ms
Write endurance	10 ¹⁵	10 ⁸ 10 ¹⁰	10 ⁵
Non-volatility	No	Yes	Yes
Write power	~0.1 nJ/b	~1 nJ/b	0.1-1 nJ/b

- NVMM lifetime extension techniques
 - Memory compression techniques can reduce bit writes on NVMMs.
 - Wear leveling techniques can balance bit-writes among all NVMM cells.

Memory Compression for Space Saving

- Memory compression techniques (Pros)
 - Save memory space
 - Reduce memory bandwidth consumption
- Memory compression techniques (Cons)
 - An additional memory access for address translation
 - increased memory access latency
 - Complicated Hardware extension

Memory Compression for Wear Leveling

- Memory compression for Wear Leveling
 - Reduce bit writes in NVMMs
 - Reduce memory bandwidth consumption
 - No address translations
 - Space saved by memory compression can be exploited for intra-block wear leveling
 - Trivial hardware extension

Significant Redundancy in Memory

■ Application memory usually contain a large fraction of zero blocks

Significant Redundancy in Memory

How to determine the optimal block size for compression?

- Small sub-blocks potentially improve the compression ratio, but increase the size of compression metadata.
- We find that the size of compressed data including compression metadata is minimized when the block size is set as 2B.

Significant Redundancy in Memory

Application memory usually contain many frequent values

0x0000001

0x0000001

0x0000002

0x0000001

...

The fraction of zero blocks and the top 8 frequent values in application's memory when the block size is 2B.

- The top 8 frequent values are 0, 1, 2, 4, 3, -1, 5, and 8.
- The zero values account for a majority of frequent values.

Non-uniform encoding scheme for frequent value compression

Outline

- Background and Motivations
- Our Solution: Space-Oblivious Compression and Wear Leveling
- Evaluation
- Related Works
- Conclusion

NVMM Compression Architecture

■ ZD-FVC Compression

- Integrate Zero Deduplication (ZD) and Frequent Value Compression (FVC) together
- A wear leveling policy is achieved by exploiting the memory space saved by memory compression.
- Use reserved bits of errorcorrecting code (ECC) to store 2-bit compression tags (comp tag) and 2-bit wear leveling tags (addr tag)

Zero Deduplication

- We divide a cache line into 32 sub-blocks, and use 32 bits (called zero_prefix) to identify the zero-valued sub-blocks
- The number of zero bits in the zero_prefix should be larger than 2 because the zero prefix spends 4 bytes

Integrating ZD with FVC

- We extend the comp_tag to 2 bits to identify different compression schemes.
- Storage overhead of compression codes
 - 1 bit for each zero sub-block;
 - 4 bits for each non-zero subblock (ZD and FVC use 1 bit and 3 bits in the zero prefix and fvc prefix);
 - ZD-FVC is better than FVC if the proportion of zero subblocks exceed 34%

An Example of ZD-FVC

Decompression of ZD-FVC

Wear Leveling

- divide the 64-byte memory block into four sections evenly
- use 2-bit addr tag to locate the starting address of compressed data

The current data address (addr tag) is determined by the value of *comp_tag*, the previous *addr_tag*, and the size of compressed data.

Outline

- Background and Motivations
- Our Solution: Space-Oblivious Compression and Wear Leveling
- Evaluation
- Related Works
- Conclusion

Experimental setting

• Simulators: Gem5 + NVMain

CPU	out-of-order, 2 GHz, 8 cores		
L1 cache	32 KB separated icache and dcache, 2 cycles		
L2 cache	1 MB, 20 cycles		
L3 cache	16 MB, 50 cycles		
	Capacity: 4 GB		
	Controller: FRFCFS scheduler		
PCM	Bus Frequency: 400 MHz		
	Timing (tCAS-tRCD-tRP-tRAS): 5-22-60-17 (cycles)		
	Energy: 81.2 PJ/bit for read, 1684.8 PJ/bit for write		

- Benchmarks: SPEC CPU 2006 benchmark, Problem Based Benchmark Suite (PBBS)
- Comparisons: Data Comparison Write (DCW), Flip-N-Write (FNW), Frequent Value Compression (FVC), Frequent Pattern Compression (FPC), and Base-Delta-Immediate Compression (BDI)

Memory Compression Ratio

The average compression ratio of ZD-FVC is about 4.

Bit-write Reduction

ZD-FVC can reduce the bit-writes by 15% on average compared with DCW (a typical differential write scheme).

NVMM Access Latency

Schemes	Write (cycles)	Read-1 ^a (cycles)	Read-2 ^b (cycles)
DCW	2	0	0
FNW	4	1	2
FVC	4	1	5
FPC	8	1	5
BDI	8	1	2
ZD	4	1	5
ZD-FVC	8	1	7

^aData is not compressed. ^bData is compressed.

ZD-FVC can reduce the accumulated NVMM access latency by 42% compared with DCW.

NVMM Lifetime Improvement

$$lifetime = \frac{C \times R}{N}$$

C: the capacity of NVMM

R: memory compression ratio

N: the number of bit-writes

ZD-FVC can significantly improve the lifetime of NVMM by 3.3X compared with DCW. Because Memory compression can increase the available NVMM capacity to some extent.

Conclusion

- Problem: Limited write endurance is a major drawback of Non-Volatile Main Memory (NVMM) technologies.
- Observation: Memory blocks of many applications usually contain a large amount of zero bytes and frequent values.
- **Key ideas:** 1) We propose a non-uniform compression encoding scheme that integrates Zero Deduplication with Frequent Value Compression (called ZD-FVC) to reduce bit-writes on NVMM. 2) We leverage the memory space saved by compression to achieve intra-block wear leveling.
- Results: The new NVMM architecture can integrates memory compression and wear leveling together seamlessly, and can improve the lifetime of NVMM by 3.3X.

Thank you! Questions?