Towards Application-level [/O Proportionality with
a Weight-aware Page Cache Management

Jonggyvu Park*, Kwonje Oh, and Young |k Eom
Sungkyunkwan University, South Korea

Server Consolidation is Pervasive

« Multiple virtualized instances run on a single host
« Compete for system resources
 Efficient resource scheduling is necessary

Container 1 Container 2 Container3 Container 4

[&

/O Requests
Operating System

/O Requests

e
Hardware

I SSD /

6 Distributed Computing Laboratory

Proportional I/O Sharing by Cgroups

« Cgroups proportionally share 1/O resources using 1I/O weight
« The I/O bandwidth ratio follows the ratio of I/O weight

Group| . cgroup Node
[Root] # 10O
5 # ;

0.1 : 1/0O Weight
p
Group 1 : 1/O Proportion
100 - Applications
\

53 Distributed Computing Laboratory

Cgroups and the Block Layer

* The blkio subsystem controls I/O resources collaboratively with the block layer
« |/O scheduler in the block layer utilizes the |/O weights in scheduling
« /O service time (CFQ) or the number of sectors to serve (BFQ)

Container 1 Container 2 Container3 Container 4

&l ==

Operating System

Single-queue Multi-queue

=3

lCFQI

:

Y : Cgroup Node

: /O Weight

Block Layer Cgroups

: I/O Proportion

: Applications

Hardware
— e

{S Distributed Computing Laboratory

The Page Cache

« The page cache is often utilized to enhance I/O performance.
|t directly serves I/O requests without delivering them to the block layer, if possible
« Cgroups cannot control I/O requests that are serviced by the page cache

Container 1 Container 2 Container3 Container 4

Operating System
/O Requests Return

Page Cache

Hardware

‘€S Distributed Computing Laboratory

Buffered I/O vs. Direct |/O

+ Direct I/0 2 [o e | 5
« Proportional I/O sharing according to I/O weight %30" 3 3 ¢ ;;
« Lower performance due to bypassing the page cache %200 § 4 §
gloo %——- 2 ;i
« Buffered I/O 0 d o=
« Poor proportionality Wefgft (Set by‘éog(ioups) 500
« Better performance due to the page cache Fileserver workload
R =TT a1 c=3Buffered /O 102
D 490 | DireetlONom. _D-Buffored [ONom, | g é
S S N
) NN
2o | = T
o L= d [l [| B

100 200 400 800
Weight (Set by Cgroups)

63 Distributed Computing Laboratory Re-read workload

The Lite of the Page Cache

» Page allocation
« Allocates a new page for the new page cache entry
« Qspinlock serializes page allocation
« Critical to the write performance

« Page reclamation
« Dedllocates pages that are not used to secure new pages
« Reclaims the pages at the tail of the inactive list
« Decides which pages will reside in the page cache
« Affects the read performance

CS Distributed Computing Laboratory

Qspinlock of Page Allocation

* Qspinlock prevents race condition
« Consists of a gspinlock and per-cpu gnodes
« Allows one CPU holding gspinlock while the head node

(CPU2) busy-waits

« After gspinlock is released, the head node acquires the

gspinlock

» FIFO-based holder selection
« The conventional gspinlock for page allocation selects

the next holder in a FIFO manner
« No consideration of I/O weight

(:3 Distributed Computing Laboratory

Weight Weight Weight Weight
100 200 400 800

e e e 3 qspmlock qnode

Toll
busy womng

@ = e
\

CPUI \ CPU2 7 cPu4

A
= e

CPU1 \ CPU2 CPU4 ,ﬂ CPU3

\ CPU2 CPU4 / CPU3

busy- Wcu’rlng

A
w—
\

Y CPU2 \ CPU4 1 cPuU3

N J \C J

gspinlock lock waiting queue

An overview of gspinlock

Page Reclamation

« Page cache
« maintains 2Q LRU
« Keeps data frequently accessed in the active list, otherwise in the inactive list

. . . Cgroups
 Reclaims pages at the tail of the inactive list node

o que reclamation inactive list in Page Cache
« Ignores the |/O weight during reclamation
« Pages used by higher weighted apps can be evicted page
m-)

earlier
/age reclamation

« No scheme to reflect I/O weight
An overview of page reclamation

6 Distributed Computing Laboratory

Justitia

Problem #1:. Cgroups focus on block-level I/O proportionality
Problem #2: Page allocation/reclamation do not reflect I/O weight

Weight-awareness!!!

Justitia: new page cache management for application-level I/O proportionality
A. Weight-aware Qspinlock for Page Cache Allocation
B. Weight-aware Page Reclamation

CS Distributed Computing Laboratory

Weight-aware Qspinlock for Page Cache Allocation

« Weight-aware Qspinlock © 2 2 qsp.mock qrode
« Stores weight in the gnode . focked, (WET
busy- womng TG” w

« Reflects I/O weight by the following procedure

1. gspinlock is released ‘ - a

CPUI \ CPU4 / CPU2

2. lterates lock waiting queue to find the gnode , CPU4

busy waiting

(maxNode) with the highest I/O weight C“
= e

3. Moves the maxNode next to the head node
CPU] \\ CPU4 cpu2 " CPU3

4. Next fime, when the head node acquires the gspinlock} ~ -

the maxNode becomes a head node ‘ [o0 a a

\ CPU4 CPU3 /ﬂ CPU2
. . busy- womng
In short, Justitia reorders the lock waiting queue based a e
on I/O weight ! \ ,
CPU4 \ CPU3 7 CPU2

N J & J
gspinlock lock waiting queue

63 Distributed Computing Laboratory An overview of weight-aware gspinlock

Preventing the Race Condifion

« How about the starvation problem?
« When there are many high-weighted apps, the low-weighted apps can starve

« We adopt aging technigue to prevent the starvation problem

« Whenever reordering occurs, Justitia increases 1/O weight of gnodes
in the lock waiting queue

 Justitia considers not only I/O weight but also the waiting time

\ cPus CPU3 /ﬁ CPU2

busy- wmhng

CPU4 \\ CPU3 CPU2

N J & J
gspinlock lock waiting queue

CS - Distributed Computing Laboratory

Weight-aware Page Reclamation

Justitia imposes weight-awareness by the following procedures
« Calculating the I/O proportion of each application
« Recording page ownership information on the page structure

« Page reclamation considering the 1/O proportion

CS Distributed Computing Laboratory

Weight-aware Page Reclamation

« Calculating the I/O proportion of each application

« New variables in Cgroups are added
« Proportion: Proportion of I/O weight (weight / total weight)
« nrp_pages: The number of pages in the page cache that this cgroup is currently using

100 Cgroups

T00+200+400+800 APP 1 APP 2 APP 3 APP 4 node
100 200 4OO 8OO PP #
| Céwel ht
0.07 0.13 O 53

proportion nrp_pages

63 Distributed Computing Laboratory

Weight-aware Page Reclamation

« Recording page ownership information on the page structure

« New variable in the page structure
« /O weight
« Pointer to the corresponding cgroups node

page

pointer to the
corresponding
Cgroups node

CS Distributed Computing Laboratory

Weight-aware Page Reclamation

« Page reclamation considering the 1/O proportion
 Justitia reclaims pages whose cgroups hold more pages than its threshold
*Threshold = proportion * the total # of pages in the page cache

Cgroups
node
APP 1 APP 2 APP 3 APP 4 QPR
] 200 4oo 800 l/Q weighi
. 1 2 2
0.07 0.13/6>5R0.27 O 53 : ;

proporﬁon nrpo_pages

inactive list in Page Cache)

4go 280 200
. S U poge

I 200 W 200 zoo 8OO 200 (weight)
W
(.

pointer to The
page reclamation ‘é‘gﬁgi,%?%o@g

63 Distributed Computing Laboratory An overview of weight-aware page reclamation

Experimental Setup

CPU: Intel 17-6700

Memory: 16GB DRAM

Storage: SATA SSD 256GB

Benchmarks: FIO (re-read) and Filebench (fileserver)

—> Read - Dummy write > Read

* All applications were containerized by Docker
« A metric to quantitively measure I/O proportionality, infroduced in [1]

PV = % -) |Ideal — Actual| (Proportionality Variation)

Yecont

6 Distributed Computing Laboratory Ref [1] J.Kim et al. “I/O scheduling schemes for better I/O proportionality on flash-based SSDs”

Evaluation (Fileserver)

10
O Ideal B Conventional M Justitia
8 L
6 S B A

Normalized I/O Bandwidth

100 200 300 400 500 600 700
Weight (Set by Cgroups)

« Compared with the conventional, Justitia achieves better I/O proportionality
« Conventional: 1:1.51:2.02:2.40:2.63:2.71:3.07 : 3.31
o Justitia: 1:1.73:2.24:2.65:3.04:3.75:4.37:6.26

6 Distributed Computing Laboratory

Evaluation (Aging Technigque)

1 — , —
g 0 O Ideal M Justitia w/o Aging W Justitia
R e R SR
=
<
an
© 8 T s | e | e e | | R
; _
[— N0 TRY -
‘E H
g o L [ClmN H H
= Cl C2 C3 C4 C5 C6 C7 C8

Weight (Set by Cgroups)

Extreme case where C1's weight: 100, C2-C8's weight: 1000
« Justitia without aging: 1:12.57 :13.31 :11.72:12.443 : 13.31 : 12.77 : 13.35 (PV: 2.31)
o Justitia: 1:8.94:9.36:9.08:8.83:9.49:9.77 :9.43 (PV:0.64)

€S Distributed Computing Laboratory

Evaluation (Re-read)

-

OIdeal ®mConv mJustitia m Direct

o0
|

@)}

B~

Norglalized I/0 Bandwidth —

)

100 200 400 800
Weight (Set by Cgroups)
« Justitia achieves better |/O proportionality than the other cases
« PV of Conventional: 1.4
« PV of Justitia: 0.33
« PV of Direct 1/O: 0.61

(:3 Distributed Computing Laboratory

Conclusion

Cgroups support only block-level I/O proportionality, rather than application-level
/O proportionality

The conventional page cache management do not consider I/O weight either in
page allocation and reclamation

Justitia: a new page cache management for application-level I/O proportionality
« Weight-aware gspinlock for page allocation
« Weight-aware page reclamation

Justitia is available at github.com/kzeoh/Justitia.git

CS Distributed Computing Laboratory

Thank you! Any questionse

Feel free to contact jonggyu@skku.edu

