
Towards Application-level I/O Proportionality with
a Weight-aware Page Cache Management

Jonggyu Park*, Kwonje Oh, and Young Ik Eom
Sungkyunkwan University, South Korea

Server Consolidation is Pervasive
• Multiple virtualized instances run on a single host

• Compete for system resources
• Efficient resource scheduling is necessary

Container 4

</>

Container 3Container 2Container 1

Hardware

HDD
SSD

Operating System
I/O Requests

I/O Requests

Proportional I/O Sharing by Cgroups
• Cgroups proportionally share I/O resources using I/O weight

• The I/O bandwidth ratio follows the ratio of I/O weight

Group 3

Root

: I/O Weight#

Group
#

: Cgroup Node

: Applications

: I/O Proportion

500

Group 2

400

Group 1

100

0.1 0.4 0.5

1.0

Cgroups and the Block Layer
• The blkio subsystem controls I/O resources collaboratively with the block layer

• I/O scheduler in the block layer utilizes the I/O weights in scheduling
• I/O service time (CFQ) or the number of sectors to serve (BFQ)

Container 4

</>

Container 3Container 2Container 1

Hardware

HDD
SSD

Operating System

Block Layer Cgroups

Single-queue
NOOP

CFQ
deadline …

Multi-queue

…

Multi-queue

Group 3

500

Group 2

400

Group 1

100

Root

: I/O Weight#

Group

#
: Cgroup Node

: Applications

: I/O Proportion

0.1 0.4 0.5

1.0

The Page Cache
• The page cache is often utilized to enhance I/O performance.

• It directly serves I/O requests without delivering them to the block layer, if possible
• Cgroups cannot control I/O requests that are serviced by the page cache

Container 4

</>

Container 3Container 2Container 1

Hardware

Operating System

Block Layer Cgroups

Page Cache

I/O Requests Return

Buffered I/O vs. Direct I/O

Weight (Set by Cgroups)

0

2

4

6

8

0

100

200

300

400

100 200 400 800

Direct I/O Buffered I/O
Direct I/O Norm. Buffered I/O Norm.

I/O
 B

an
dw

id
th

 (M
B/

s)

N
orm

alized I/O
 Bandw

idth

Weight (Set by Cgroups)

I/O
 B

an
dw

id
th

 (M
B/

s)

N
orm

alized I/O
 Bandw

idth

0

2

4

6

8

10

0

100

200

300

400

500

100 200 400 800

Direct I/O Buffered I/O
Direct I/O Norm. Buffered I/O Norm.

Fileserver workload

Re-read workload

• Direct I/O
• Proportional I/O sharing according to I/O weight
• Lower performance due to bypassing the page cache

• Buffered I/O
• Poor proportionality
• Better performance due to the page cache

The Life of the Page Cache
• Page allocation

• Allocates a new page for the new page cache entry
• Qspinlock serializes page allocation
• Critical to the write performance

• Page reclamation
• Deallocates pages that are not used to secure new pages
• Reclaims the pages at the tail of the inactive list
• Decides which pages will reside in the page cache
• Affects the read performance

Qspinlock of Page Allocation
• Qspinlock prevents race condition

• Consists of a qspinlock and per-cpu qnodes
• Allows one CPU holding qspinlock while the head node

(CPU2) busy-waits
• After qspinlock is released, the head node acquires the

qspinlock

• FIFO-based holder selection
• The conventional qspinlock for page allocation selects

the next holder in a FIFO manner
• No consideration of I/O weight

APP 1 APP 2 APP 3 APP 4

qspinlock
locked

tail
busy-waiting

CPU1 CPU2 CPU4

800

CPU3CPU1

busy-waiting

CPU2 CPU4 CPU3

busy-waiting

lock waiting queueqspinlock

CPU2 CPU4

CPU3CPU2 CPU4

qnode

next

An overview of qspinlock

Weight
100

Weight
200

Weight
400

Weight
800

Page Reclamation
• Page cache

• maintains 2Q LRU
• Keeps data frequently accessed in the active list, otherwise in the inactive list
• Reclaims pages at the tail of the inactive list

• Page reclamation
• Ignores the I/O weight during reclamation
• Pages used by higher weighted apps can be evicted

earlier
• No scheme to reflect I/O weight

An overview of page reclamation

inactive list in Page Cache

APP#

APP 1
100

APP 2
200

APP 3
400

APP 4
800

page
31 2 4 2

APP #
I/O weight

2 1 2 4 2

Cgroups
node

page reclamation

Justitia

Problem #2: Page allocation/reclamation do not reflect I/O weight
Problem #1: Cgroups focus on block-level I/O proportionality

Justitia: new page cache management for application-level I/O proportionality
A. Weight-aware Qspinlock for Page Cache Allocation
B. Weight-aware Page Reclamation

Weight-awareness!!!

Weight-aware Qspinlock for Page Cache Allocation

• Weight-aware Qspinlock
• Stores weight in the qnode
• Reflects I/O weight by the following procedure
1. qspinlock is released
2. Iterates lock waiting queue to find the qnode

(maxNode) with the highest I/O weight
3. Moves the maxNode next to the head node
4. Next time, when the head node acquires the qspinlock,

the maxNode becomes a head node

In short, Justitia reorders the lock waiting queue based
on I/O weight

An overview of weight-aware qspinlock

APP 1 APP 2 APP 3 APP 4

qspinlock qnode
weight

next
locked

tail
busy-waiting

800 200

CPU1 CPU4 CPU2

800 200

CPU4 CPU2

400

CPU3CPU1

busy-waiting

800 400

CPU4 CPU3

200

CPU2

400

CPU4 CPU3

200

CPU2

busy-waiting

lock waiting queueqspinlock

• How about the starvation problem?
• When there are many high-weighted apps, the low-weighted apps can starve

• We adopt aging technique to prevent the starvation problem
• Whenever reordering occurs, Justitia increases I/O weight of qnodes

in the lock waiting queue
• Justitia considers not only I/O weight but also the waiting time

800 400

CPU4 CPU3

200

CPU2

400

CPU4 CPU3

200

CPU2

busy-waiting

lock waiting queueqspinlock

300

Preventing the Race Condition

Weight-aware Page Reclamation
Justitia imposes weight-awareness by the following procedures
• Calculating the I/O proportion of each application
• Recording page ownership information on the page structure
• Page reclamation considering the I/O proportion

Weight-aware Page Reclamation
• Calculating the I/O proportion of each application

• New variables in Cgroups are added
• Proportion: Proportion of I/O weight (weight / total weight)
• nrp_pages: The number of pages in the page cache that this cgroup is currently using

APP 1
100

APP 2
200

APP 3
400

APP 4
800

0.07 0.13 0.27 0.53
APP #I/O weight

proportion nrp_pages

Cgroups
node

100
100+200+400+800

Weight-aware Page Reclamation
• Recording page ownership information on the page structure

• New variable in the page structure
• I/O weight
• Pointer to the corresponding cgroups node

weight

pointer to the
corresponding
Cgroups node

page

100

APP 1
100

1

0.07 0à1

page allocation

Weight-aware Page Reclamation
• Page reclamation considering the I/O proportion

• Justitia reclaims pages whose cgroups hold more pages than its threshold
*Threshold = proportion * the total # of pages in the page cache

inactive list in Page Cache

weight

pointer to the
corresponding
Cgroups node

100

APP 1
100

APP 2
200

APP 3
400

APP 4
800

page

400
31

200
2

800
4

200
2

0.07 0.13 0.27 0.531 6à5 1 2

APP #I/O weight

proportion nrp_pages

200
2

200
2

200
2

800
4

200
2

Cgroups
node

page reclamation

An overview of weight-aware page reclamation

Experimental Setup
• CPU: Intel I7-6700
• Memory: 16GB DRAM
• Storage: SATA SSD 256GB
• Benchmarks: FIO (re-read) and Filebench (fileserver)

* All applications were containerized by Docker
• A metric to quantitively measure I/O proportionality, introduced in [1]

Read à Dummy write à Read

Ref [1] J.Kim et al. “I/O scheduling schemes for better I/O proportionality on flash-based SSDs”

(Proportionality Variation)

Evaluation (Fileserver)

• Compared with the conventional, Justitia achieves better I/O proportionality
• Conventional: 1 : 1.51 : 2.02 : 2.40 : 2.63 : 2.71 : 3.07 : 3.31
• Justitia: 1 : 1.73 : 2.24 : 2.65 : 3.04 : 3.75 : 4.37 : 6.26

0

2

4

6

8

10

100 200 300 400 500 600 700 800

Ideal Conventional CPMJustitia

Weight (Set by Cgroups)

N
or

m
al

iz
ed

 I/
O

 B
an

dw
id

th

Evaluation (Aging Technique)

Extreme case where C1’s weight: 100, C2-C8’s weight: 1000
• Justitia without aging: 1 : 12.57 : 13.31 : 11.72 : 12.443 : 13.31 : 12.77 : 13.35 (PV: 2.31)
• Justitia: 1 : 8.94 : 9.36 : 9.08 : 8.83 : 9.49 : 9.77 : 9.43 (PV: 0.64)

N
or

m
al

iz
ed

 I/
O

 B
an

dw
id

th

0

4

8

12

16

C1 C2 C3 C4 C5 C6 C7 C8

Ideal Justitia w/o Aging Justitia

Weight (Set by Cgroups)

Evaluation (Re-read)

• Justitia achieves better I/O proportionality than the other cases
• PV of Conventional: 1.4
• PV of Justitia: 0.33
• PV of Direct I/O: 0.61

0

2

4

6

8

10

100 200 400 800

Ideal Conv CPM DirectJustitia

Weight (Set by Cgroups)

N
or

m
al

iz
ed

 I/
O

 B
an

dw
id

th

Conclusion
• Cgroups support only block-level I/O proportionality, rather than application-level

I/O proportionality

• The conventional page cache management do not consider I/O weight either in
page allocation and reclamation

• Justitia: a new page cache management for application-level I/O proportionality
• Weight-aware qspinlock for page allocation
• Weight-aware page reclamation

• Justitia is available at github.com/kzeoh/Justitia.git

Thank you! Any questions?

Feel free to contact jonggyu@skku.edu

