
15/23/2023 15/23/2023Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Large Scale File/Storage
System Indexing with
GUFI
Jason Lee, Dominic Manno, Gary Grider

May 22, 2023

LA-UR-23-24629

25/23/2023

LANL Compute/Storage Environment (Secure) Circa early
2017

35/23/2023

Sampling of LANL Filesystems Circa 2020/2021
(Turquoise)
Filesystem Directory Count (Millions) File Count (Millions)

Home 3.8 36.6

Projects 10.7 114.2

Scratch 1 1.1 237.2

Scratch 2 5.1 857.7

Campaign 0.4 13.5

Archive 1 1.1 49.9

45/23/2023

Filesystem Usage

• Users searching for data in files
• Do not always know where files are
• Lots of filesystems with lots of files
• Files within a directory might be organized poorly
• Want fast results (or will terminate search)

• Admins need to manage filesystem
• Find users taking up the most space
• Find stale files that can be deleted
• Want reasonably fast results

55/23/2023

No Unified Set of Performant Tools

• Different admin tools for different filesystems
• Admins only

• Standard command line tools
• Slow

• Single threaded
• Unwieldy

• Must chain multiple commands together to get results
• Uses resources of mission critical jobs

• Parallel walking tool (MPI) would use more host resources

65/23/2023

Grand Unified File Index

• Highly parallel for fast index traversal
• Stores metadata in databases

• Complex queries with SQL
• Enforces permissions so users and admins

can use the same index
⁃ Support for extended attributes

• Single index for all filesystems
• Leverages well developed technologies

• POSIX filesystem hierarchy, permissions,
attributes

• SQLite 3, PCRE, jemalloc, CMake 3
• Flash Storage

75/23/2023

Indexing
• gufi_dir2index
⁃ Create index from filesystem

• gufi_dir2trace + gufi_trace2index
⁃ Create trace file(s) from filesystem
⁃ Create index from trace file(s)
⁃ Allows for indices to be moved off original system without copying

directories

• Indices are not up to date
⁃ Scans take time to complete
⁃ Live filesystems are always churning (unless indexing snapshots)
⁃ Scan filesystems every so often
 LANL runs full scans every 4 hours
 Incremental updates are possible but untested

Filesystem specific
optimizations
• HPSS
• GPFS
• Lustre

85/23/2023

Source Filesystem to Index

d f g

B H

A

e

B H

d,e,f,g f

e

A

95/23/2023

Combining Indices

B H K

d,e,f,g f

ce

A J

m,p,q

/search

Kc

J

m,p,q

B H

d,e,f,g f

e

A

105/23/2023

Why not a flat index?

• Very performant for simple queries
⁃ No tree traversal
⁃ One/few database(s) to open

• Multiple uids/gids in one database
⁃ Custom per row permission checking or admin only
 For each path segment

• Must scan all entries when querying
⁃ Constant time queries
 Queries do not scale based on caller

⁃ Scan multiple times when joining
⁃ Lots of I/O

115/23/2023

Database Table Schema

125/23/2023

Tables and Views

• Basic Queries
⁃ Use summary table and pentries view

• Should actually use (will talk about later):
⁃ vrsummary, vrpentries
⁃ When xattrs are present
 vrxsummary, vrxpentries

135/23/2023

gufi_query

• Runs raw SQL statements
⁃ Need to know database and table

schemas
⁃ Meant for admin/advanced users
 User facing tools wrapping gufi_query

• Highly parallel
⁃ Each directory is processed by a

single thread

gufi_query

Thread 0

<path>/db.db

Thread n-1

<path>/db.db

STDOUT

or

Per Thread Text
File (-o)

or

Per Thread DB
(-I + -O)

…-T, -S, -E
SELECT …
FROM …

145/23/2023

gufi_query

Aggregation

Thread 0

<path>/db.db intermediate
0

aggregate

Thread n-1

<path>/db.db intermediate
n-1

STDOUT

Or

Single
Text File

(-o)

-T, -S, -E
INSERT INTO
intermediate

SELECT …
FROM …

-J
INSERT INTO aggregate

SELECT …
FROM intermediate

-G
SELECT …

FROM aggregate

Single DB
(-O)

…

-I
CREATE TABLE
intermediate …

-K
CREATE TABLE
aggregate …

155/23/2023

Querying Linux Kernel 5.8.9 Source (74K dirs + files)
Se

co
nd

s

165/23/2023

Compound Queries
• Use the [directory] summary table to

determine whether to run query on entries
table
⁃ Quickly find out if the current directory

contains an entry with value X
⁃ Automatically created

• Use the tree summary table
⁃ Summary of entire subtree starting at current

directory
⁃ Determine whether a subtree should be

traversed
 Quickly find out if a subtree contains an entry with

value X
 Quickly get a value without walking the subtree

⁃ Not generated by default

Where X can be
• Subdir count
• File count
• Link count
• Min/max

• size
• uid
• gid
• …

• User defined values
• Minor schema/code changes

175/23/2023

Rollup
(Permission Based Sharding)
• Most subdirectories under a directory have

compatible uid, gid, and read permissions
⁃ Why traverse the subtree and open multiple

directories/databases if one will suffice?

• Copy data from subdirectories upwards if uid, gid,
and permissions allow for it
⁃ Skip traversing entire subtrees and still get the same data

• Copy data up one level at a time
⁃ Lots of duplicate data and used space
⁃ Allows for querying to start at any level and still take

advantage of rollup

• Don’t always roll up fully
⁃ Large directories can cause large tail latency

Index Original
Directory
Count

of
Rolled Up
Directories
to Traverse

% of
Rolled Up
Directories
to Traverse

anony 7.35M 2873 0.04%

yelluser 1.62M 6406 0.39%

scratch 3 2.20M 5049 0.23%

185/23/2023

15.36

5.80

2.78 2.76 2.80 2.84

4.59
5.25

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Not Rolled Up 10,000 100,000 250,000 500,000 1,000,000 10,000,000 No Limit

Se
co

nd
s

Roll Up Limit

Time to Run SELECT uid FROM pentries;
on Scratch 3 (2.2M Dirs + 65M Files) Rolled Up To Different Limits

224 Threads

195/23/2023

Rollup Rules

1. World read and exec (i.e. o+rx)

2. Matching perms (usr, grp, and other), with same usr and grp

3. Matching usr and grp perms, read and exec (ug+rx) with same usr and grp,
and not world read and exec (i.e. o-rx)

4. Matching usr perms, read and exec (u+rx) with the same usr, and not grp or
world read and exec (go-rx)

205/23/2023

Extended Attributes (xattrs)

• Small user data stored with metadata
⁃ Tag files

• Different permission handling than stat(2) data
⁃ Need read permission of files instead of the directory they are in
⁃ Compatible xattrs are stored in the main database
⁃ Incompatible xattrs are stored in per-uid and per-gid databases are attached during

querying
 Successful attach indicates that the user can read the xattr values

• Includes rolling up xattrs

215/23/2023

xattr Rules

1. File is 0+R (doesn’t matter what the parent dir perms or ownership is)

2. File is UG+R doesn’t matter on other, with file and parent same usr and grp
and parent has only UG+R with no other read

3. File is U+R doesn’t matter on grp and other, with file and parent same usr and
parent dir has only U+R, no grp and other read

4. Directory has write for every read: drw*rw_*rw* or drw*rw*___ or
drw*______ - if you can write the dir you can chmod the files to see the xattrs

225/23/2023

User Facing Tools
• Requires on /etc/GUFI/config
⁃ gufi_find
 find(1)

⁃ gufi_ls
 ls(1)

⁃ gufi_getfattr
 getfattr(1)

⁃ gufi_stats
 Queries that are probably useful

• gufi_stat
⁃ stat(1)

235/23/2023

More Information

• Source Code, Documentation, and Previous Presentations
• https://github.com/mar-file-system/GUFI
• Contributions are welcome!

• Anonymized Traces From LANL Systems
⁃ https://github.com/mar-file-system/GUFI-Filesystem-Traces

• Dominic Manno, Jason Lee, Prajwal Challa, Qing Zheng, David Bonnie, Gary
Grider, and Bradley Settlemyer. 2022. GUFI: fast, secure file system metadata
search for both privileged and unprivileged users. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC '22). IEEE Press, Article 57, 1-14.

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI-Filesystem-Traces

245/23/2023

Future Work

• Index Object Stores

• Index and Query Even Larger Datasets
⁃ University of Michigan Advanced Research Computing scans their archives
⁃ Recently helped Texas Advanced Computing Center index BeeGFS
 56.6M Directories with 16 Threads took ~35.75 Hours
 38.6M Directories with 16 Threads took ~15 Hours

⁃ 1 Billion Directories?

• Longitudinal Studies on LANL Filesystems

255/23/2023

Use Case: Full Text Search on Hierarchical Archival Data

• Received archival data stored in directory tree
⁃ Scraped data from archive and inserted into GUFI
 Image Metadata + OCR
 MS Office Files
 PDF Text
 etc.

• Full Text Search in GUFI with minor changes
⁃ Added new table and created view joining on inode == full text inode

• Full Text Search in SQLite
⁃ Built-in Extensions (FTS 3/4, 5)
⁃ Custom Extensions

265/23/2023

Tutorial/Demo

275/23/2023

Source and Traces

1. git clone https://github.com/mar-file-system/GUFI

2. git clone https://github.com/mar-file-system/GUFI-
Filesystem-Traces
⁃ ~11GB
⁃ Recommend using a local directory for this tutorial

3. cat GUFI-Traces.part* > GUFI-Traces.tar.bz2

4. tar -xjf GUFI-Traces.tar.bz2
⁃ ~134GB

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI-Filesystem-Traces
https://github.com/mar-file-system/GUFI-Filesystem-Traces

285/23/2023

GUFI Dependencies (Minimal)

• System Tools
⁃ attr
⁃ autotools
⁃ bash
⁃ C compiler
 C++ is optional

⁃ CMake 3.1+
⁃ coreutils
⁃ pkg-config
⁃ Python 2.7 or 3

• Libraries
⁃ xattr
⁃ pcre
 Version 1

⁃ zlib (optional)

• Comes with GUFI
⁃ jemalloc
⁃ Sqlite3 3.27
⁃ sqlite3-pcre
⁃ GoogleTest

295/23/2023

GUFI Dependencies Installer Scripts

• GUFI is tested on GitHub Actions with many different setups

• See scripts in contrib/CI
⁃ Ubuntu
⁃ CentOS 7 and 8
⁃ Rocky Linux 8
⁃ macOS

305/23/2023

Building GUFI

• mkdir build

• cd build

• cmake <GUFI source dir>
⁃ -DDEP_INSTALL_PREFIX="${SWHOME}"
⁃ -DDEP_BUILD_THREADS=2
⁃ -DENABLE_JEMALLOC=Off

• make -j

• sudo make install
⁃ (optional)

315/23/2023

Environment
• Live filesystem
⁃ SRC="${HOME}/GUFI/build/test"

• Trace file prefix
⁃ TRACE="${HOME}/traces/trace"

• Index
⁃ SEARCH="${HOME}/search"
 Make sure "${SEARCH}" is not a subdirectory

of "${SRC}"
⁃ INDEX="${SEARCH}/test"
 Interchangeable with "${SEARCH}" when querying

• Thread count to run with
⁃ THREADS="$(nproc --all)"

Add some xattrs
• setfattr -n user.type -v directory

"${SRC}"
• setfattr -n user.type -v file

"${SRC}/Makefile“
• setfattr -n user.tag -v tagdata

"${SRC}/Makefile"

325/23/2023

Create An Index From A Live Filesystem

• gufi_dir2index –x -n "${THREADS}" "${SRC}" "${SEARCH}"

• Use -e to compress work items

• Make sure "${SEARCH}" is either the parent of "${SRC}" (in-tree index) or a
completely different directory (out-of-tree index)
⁃ If "${SEARCH}" or "${INDEX}" is under "${SRC}", gufi_dir2index will index

the index being generated and never stop

335/23/2023

Create Trace Files From A Live Filesystem

• gufi_dir2trace –x -n "${THREADS}" "${SRC}" "${TRACE}"

• Use -e to compress work items

• Will create files called "${TRACE}.0"… "${TRACE}.$((THREADS - 1))"

• Expect weird filesystem metadata
⁃ Unexpected characters in paths
 Can change trace field delimiter to attempt to handle (-d)

⁃ Duplicate inodes

345/23/2023

Create An Index From A Trace
• gufi_trace2index -n "${THREADS}" "${TRACE}".* "${SEARCH}"
⁃ Might run out of file descriptors

or

• cat "${TRACE}".* > "${TRACE}"
• gufi_trace2index -n "${THREADS}" "${TRACE}" "${SEARCH}"

• Extended attributes are processed if found
• Use -d for non-default field delimiters

355/23/2023

Basic Querying
gufi_query -d " " -n "${THREADS}" <args> "${INDEX}"
• Use -e to compress work items

• Get all file/link basenames
⁃ -E "SELECT name FROM vrpentries;"

• Get all file names with full paths
⁃ -E "SELECT rpath(sname, sroll) || '/' || name FROM vrpentries;"

• Get all directory basenames
⁃ -S "SELECT name FROM vrsummary;"

• Get all directory names with full paths
⁃ -S "SELECT rpath(sname, sroll) FROM vrsummary;"

365/23/2023

Getting Full Paths from [vr]summary and [vr]pentries

• -S "SELECT rpath(sname, sroll) FROM vrsummary;" -E "SELECT
rpath(sname, sroll) || '/' || name FROM vrpentries;"

• GNU find

375/23/2023

Compound Queries

• gufi_query "${INDEX}" \
-S "SELECT rpath(sname,
sroll) FROM vrsummary WHERE
totfiles < 5;" \
-E "SELECT rpath(sname,
sroll) || '/' || name FROM
vrpentries;"

⁃ Directory names where the
number of files in the directories
is less than 5

AND
⁃ File names from directories that

returned results from -S

• gufi_query "${INDEX}" \
-S "SELECT rpath(sname,
sroll) FROM vrsummary WHERE
totfiles < 5;" \
-E "SELECT rpath(sname,
sroll) || '/' || name FROM
vrpentries;" \
-a

⁃ Directory names where the
number of files in the directories
is less than 5

OR
⁃ File names

-o was already used for outputting

385/23/2023

Total File Size with row data from the Entries Table

• gufi_query -d " " -n "${THREADS}" "${INDEX}" \
-I "CREATE TABLE intermediate(size INTEGER);" \

-E "INSERT INTO intermediate SELECT size FROM vrpentries WHERE type ==
\"f\";" \
-K "CREATE TABLE aggregate(size INTEGER);" \

-J "INSERT INTO aggregate SELECT size FROM intermediate;" \

-G "SELECT SUM(size) FROM aggregate;"

• Reading every row  Lots of I/O
• Storing lots of rows in memory  High Memory Utilization
⁃ Can reduce by computing SUM in –E and -J

395/23/2023

Total File Size with the Summary Table

• gufi_query -d " " -n "${THREADS}" "${INDEX}" \
-I "CREATE TABLE intermediate(totsize INTEGER);" \

-S "INSERT INTO intermediate SELECT totsize FROM vrsummary;" \
-K "CREATE TABLE aggregate(totsize INTEGER);" \

-J "INSERT INTO aggregate SELECT totsize FROM intermediate;" \

-G "SELECT SUM(totsize) FROM aggregate;"

• Only reading 1 row from each database file in each directory
• Storing moderate number of rows in memory
⁃ Can reduce by computing SUM in -J

405/23/2023

Total File Size with the Tree Summary Table

• gufi_treesummary -n "${THREADS}" "${INDEX}"

• gufi_query "${INDEX}" \
-T "SELECT totsize FROM treesummary;"

• Only reading 1 row from 1 table from 1 database in 1 directory
• First time running -T requires traversing through tree (via
gufi_treesummary)
⁃ Afterwards, queries are basically free

415/23/2023

Aggregation
File Extension Histogram

• gufi_query -d " " -n "${THREADS}" "${INDEX}" \
-I "CREATE TABLE intermediate(ext TEXT, count INTEGER);" \
-E "INSERT INTO intermediate SELECT REPLACE(name, RTRIM(name,
REPLACE(name, \".\", \"\")), \"\") AS ext, COUNT(inode) FROM
vrpentries GROUP BY ext;" \
-K "CREATE TABLE aggregate(ext TEXT, count INTEGER);" \
-J "INSERT INTO aggregate SELECT ext, SUM(count) FROM
intermediate GROUP BY ext;" \
-G "SELECT ext, SUM(count) FROM aggregate GROUP BY ext;"

425/23/2023

Aggregation
Top 10 Largest Files by UID

• gufi_query -d " " -n "${THREADS}" "${INDEX}" \
-I "CREATE TABLE intermediate (uid INTEGER, size INTEGER, name TEXT);" \
-E "INSERT INTO intermediate SELECT uid, size, fullpath FROM (SELECT uid,
size, rpath(sname, sroll) || '/' || name AS fullpath, row_number() OVER
(PARTITION BY uid ORDER BY size DESC) AS rownum FROM vrpentries) WHERE
rownum <= 10;" \
-K "CREATE TABLE aggregate (uid INTEGER, size INTEGER, name TEXT);" \
-J "INSERT INTO aggregate SELECT uid, size, name FROM (SELECT uid, size,
name, row_number() OVER (PARTITION BY uid ORDER BY size DESC) AS rownum
FROM intermediate) WHERE rownum <= 10;" \
-G "SELECT uid, size, name FROM (SELECT uid, size, name, row_number() OVER
(PARTITION BY uid ORDER BY size DESC) AS rownum FROM aggregate) WHERE
rownum <= 10;"

435/23/2023

Rollup

• gufi_rollup -n "${THREADS}" "${INDEX}"
⁃ In-place
⁃ -L <count> to limit entries table row count
⁃ -X to do dry run

• vrsummary, vrpentries
⁃ Views of summary and pentries with aliased columns
⁃ Can be used for both origin index and rolled up index
⁃ SELECT rpath(sname, sroll), … FROM vr* …
 Use rpath over path

• Can use gufi_unrollup executable to remove rollup data

445/23/2023

Extended Attributes
• Create Index with -x

⁃ gufi_dir2index –x …
⁃ gufi_dir2trace –x …

• New views are available when running gufi_query -x
⁃ xattrs
 inode, name, value

⁃ xentries, xpentries, vrxpentries
 entries and pentries with associated xattr name and value

⁃ xsummary, vrxsummary
 summary with associated xattr name and value

• gufi_query –d " " -x "${INDEX}" \
-S "SELECT rpath(sname, sroll), xattr_name, xattr_value FROM vrxsummary;" \
-E "SELECT rpath(sname, sroll) || '/' || name, xattr_name, xattr_value FROM
vrxpentries;"
⁃ If original entry had multiple xattrs, queries will return multiple rows for the same entry

455/23/2023

User Facing Tools
• Requires on /etc/GUFI/config
⁃ gufi_find
 find(1)

⁃ gufi_ls
 ls(1)

⁃ gufi_getfattr
 getfattr(1)

⁃ gufi_stats
 Queries that are probably useful

• gufi_stat
⁃ stat(1)

465/23/2023

Thank you!

475/23/2023

Sampling of LANL Filesystems Circa 2020/2021
(Yellow)
Filesystem Directory Count (Millions) File Count (Millions)

Home 3.3 23.4

Projects 18.5 178.9

Scratch 3 5.9 165.1

Scratch 4 16.5 225.0

Scratch 5 7.4 159.3

Archive 2 5.6 161.3

485/23/2023

Shell vs Aggregation

Goal Shell GUFI

Top 10 Largest Files find -printf "%p %s\n" | sort -n -r -k 2
| head -n 10

INSERT INTO aggregate SELECT name, size FROM
intermediate ORDER BY size DESC LIMIT 10;

SELECT name, size FROM aggregate ORDER BY
size DESC LIMIT 10;

Top 10 Largest Files
by UID

find -printf "%P %s %U\n" | ???

• awk/perl/shell associative arrays + limit?
• sort -n -r -k 3 -k 2?

• Cannot limit by count during sort
• After sort, output has been flattened

• Loop through /etc/passwd and run as user?
• Why run as user if you are root?

INSERT INTO aggregate SELECT name, size, uid
FROM (SELECT name, size, uid, row_number()
OVER (PARTITION BY uid ORDER BY size DESC) AS
rownum FROM intermediate) WHERE rownum <= 10;

SELECT name, size, uid FROM (SELECT name,
size, uid, row_number() OVER (PARTITION BY
uid ORDER BY size DESC) AS rownum FROM
aggregate) WHERE rownum <= 10;

	Large Scale File/Storage System Indexing with GUFI
	LANL Compute/Storage Environment (Secure) Circa early 2017
	Sampling of LANL Filesystems Circa 2020/2021 �(Turquoise)
	Filesystem Usage
	No Unified Set of Performant Tools
	Grand Unified File Index
	Indexing
	Source Filesystem to Index
	Combining Indices
	Why not a flat index?
	Database Table Schema
	Tables and Views
	gufi_query
	Aggregation
	Querying Linux Kernel 5.8.9 Source (74K dirs + files)
	Compound Queries
	Rollup �(Permission Based Sharding)
	Slide Number 18
	Rollup Rules
	Extended Attributes (xattrs)
	xattr Rules
	User Facing Tools
	More Information
	Future Work
	Use Case: Full Text Search on Hierarchical Archival Data
	Tutorial/Demo
	Source and Traces
	GUFI Dependencies (Minimal)
	GUFI Dependencies Installer Scripts
	Building GUFI
	Environment
	Create An Index From A Live Filesystem
	Create Trace Files From A Live Filesystem
	Create An Index From A Trace
	Basic Querying �gufi_query -d " " -n "${THREADS}" <args> "${INDEX}"
	Getting Full Paths from [vr]summary and [vr]pentries�
	Compound Queries
	Total File Size with row data from the Entries Table
	Total File Size with the Summary Table
	Total File Size with the Tree Summary Table
	Aggregation�File Extension Histogram
	Aggregation�Top 10 Largest Files by UID
	Rollup
	Extended Attributes
	User Facing Tools
	Slide Number 46
	Sampling of LANL Filesystems Circa 2020/2021�(Yellow)
	Shell vs Aggregation

