

Computational Storage A Standards Update

Scott Shadley SNIA Executive BoD SNIA CMSI GB NVM Express Member Solidigm Long-Term Strategy

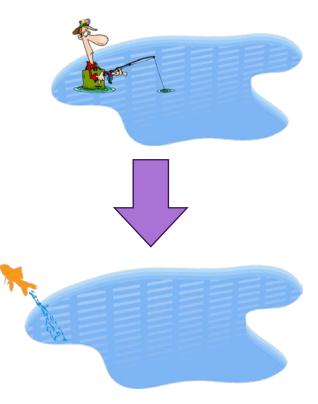
SNIA

Presented at MSST - SCU - 2023, on behalf of SNIA and NVM Express Working Groups

1

The Evolution of Compute

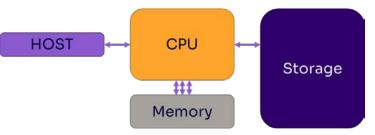
Why Now for Compute Beyond the CPU


A Quick Recap of Why We Are Here

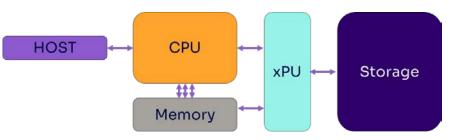
Why Now?

- Storage is no longer 'SLOW'
- Memory is no longer 'Gated'
- Data Gravity, Data Size, Data Locality
- Edge Data Explosion, Transport issue!
- SNIA, NVMe, CXL, OCP, Others are providing new guidance in new areas of implementation

Key Benefits? Faster, Fewer, Easier I/O transfers Reducing DRAM/Network tax with new transports, solutions, products


- Redeploy Primary CPU to High Value Work, offer up new services to help
- Improved performance due to parallelism for certain workloads
- Better scheduling of data management and device functionality

SNIA Architecture and API, NVM Express Command Infrastructure


John von Neumann – The Princeton Architecture

The Ecosystem today, we have our friend J. v N. - CPU/Memory/Storage

 The world is evolving and there is a need for compute in more available locations, enter the world of "Accelerators" – SmartNIC, xPU, DPU, GPU, IPU

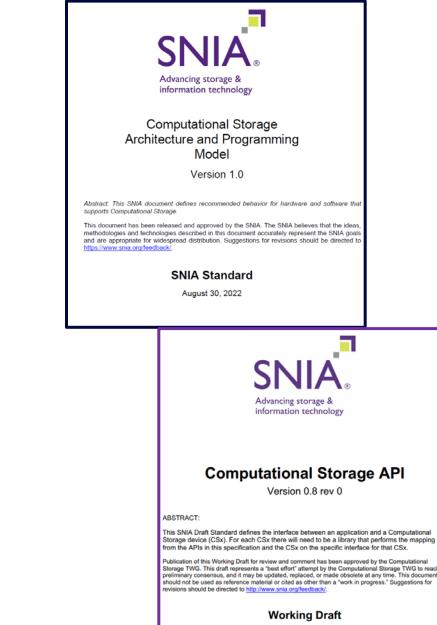
• These are great, but there is <u>room for more</u>! History tells Us this much...

Standardizing Computational Storage

On Behalf of the CS TWG Co-Chairs:

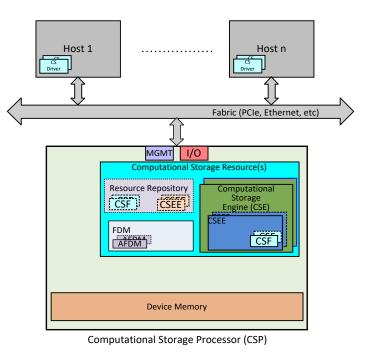
Bill Martin Jason Molgaard

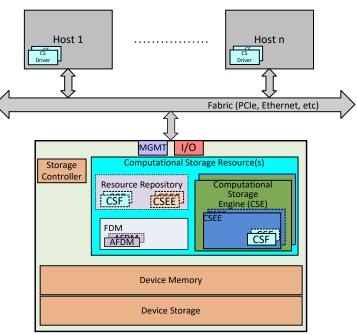
SNIA[®]


The Continued Growth of Experience

- CS TWG is continuing to see growth
 - **48** companies, **258** individual members
- Work within SNIA Efforts
 - **CS SIG** Webinars, Blogs, Events
 - SDXI Sub-Group Collaboration
 - Security TWG Addressing Security
- Collaborating with External Groups
 - **NVM Express** Computational Programs

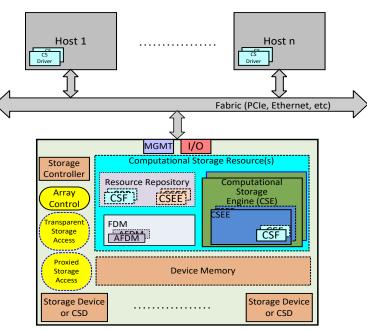
Current Progress of TWG Output


- Architectural Document v1.0 has been released
- v1.1 under development
 - Security enhancements for multiple tenants
 - Chaining of Commands
 - Expansion of use cases
- API v0.8 public review version also available
- <u>API v1.0 under development</u>
 - Abort/reset handling
 - Device Memory
 - NVMe Computational Programs support
 - Other Miscellaneous Updates


June 29, 2022

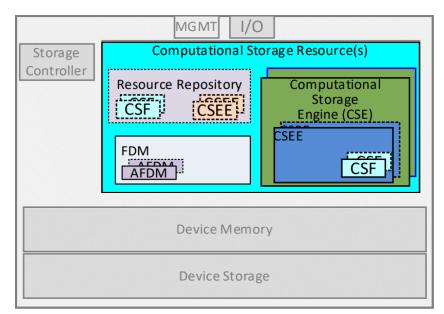
Computational Storage Architecture

Computational Storage Processor



Computational Storage Drive

Computational Storage Drive (CSD)


Computational Storage Array

Computational Storage Array (CSA)

CSx = Computational Storage Device – CSP or CSD or CSA

Deep Dive of the CSx Resources

Computational Storage Drive (CSD)

SNIA Dictionary - CS Terms

CSR - Computational Storage Resources are the resources available in a CSx necessary for that CSx to store and execute a CSF.

CSF - A Computational Storage Function is a set of specific operations that may be configured and executed by a CSE in a CSEE.

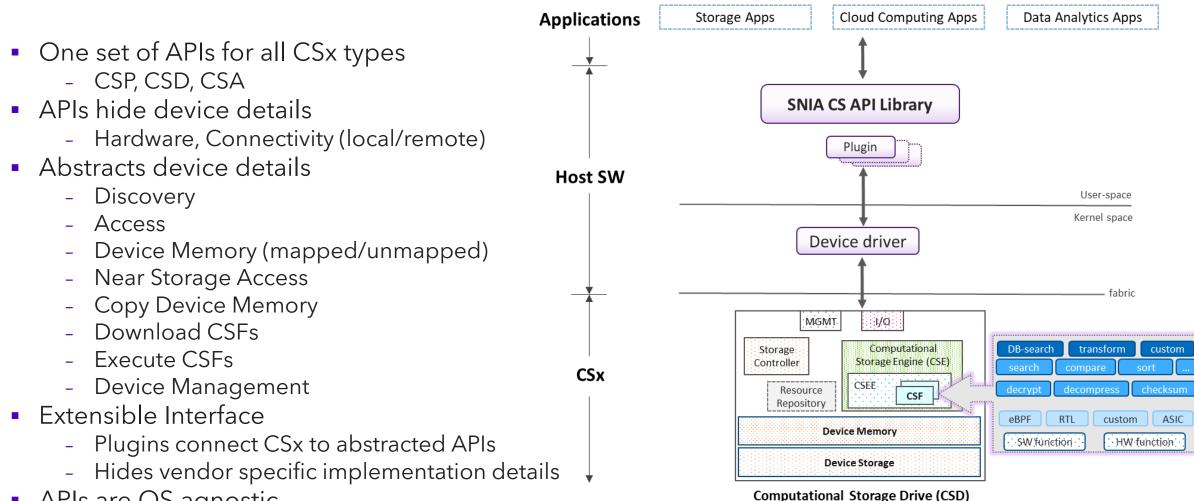
CSE - Computational Storage Engine is a CSR that is able to be programmed to provide one or more specific operation(s).

CSEE - A Computational Storage Engine Environment is an operating environment space for the CSE.

FDM - Function Data Memory is device memory that is available for CSFs to use for data that is used or generated as part of the operation of the CSF.

AFDM - Allocated Function Data Memory is a portion of FDM that is allocated for one or more specific instances of a CSF operation.

API Use In Computational Storage


On Behalf of the CS API Lead Editors:

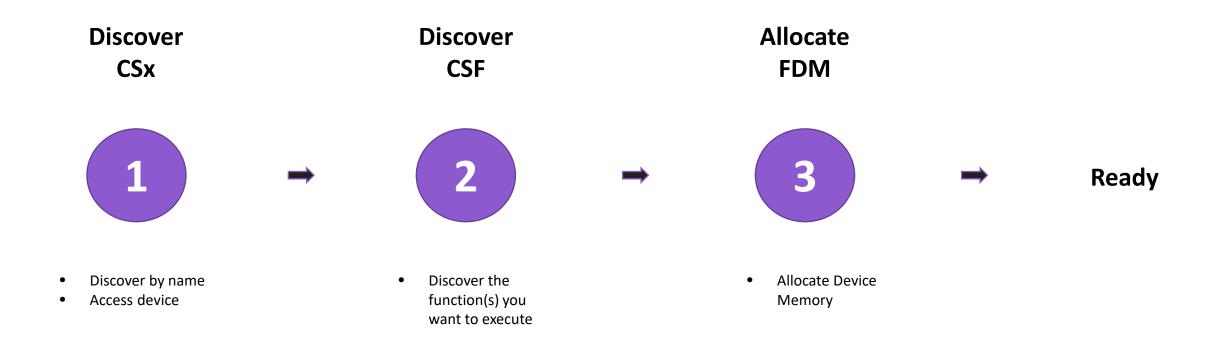
Oscar Pinto

Bill Martin

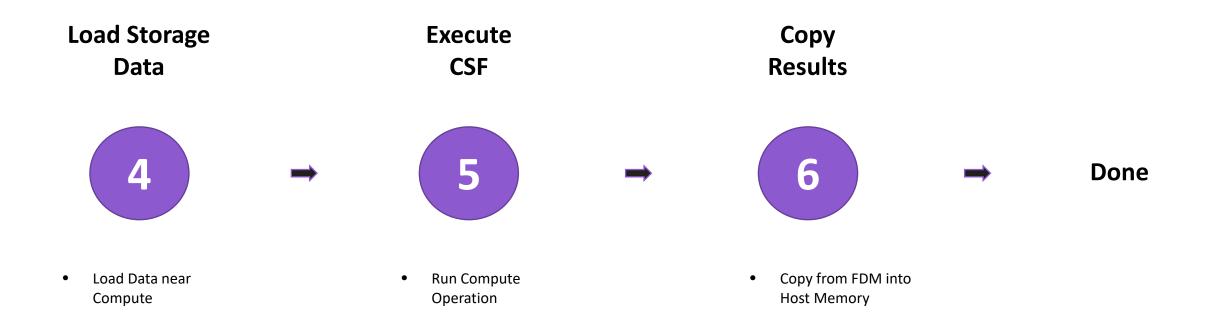
Presented at MSST - SCU - 2023, on behalf of SNIA and NVM Express Working Groups

SNIA Computational Storage APIs

• APIs are OS agnostic


Example Use Case - Abbreviated

- Execute Data Filter CSF
 - Allocate Device Memory (FDM)
 - Load Data from Storage
 - Run Data Filter CSF on loaded Data
 - Copy Results to Host Memory



Computational Storage Drive (CSD)

Prepare for Computational Storage (Setup)

Perform Computational Storage I/O (Run)

Usage Summary

csGetCSxFromPath("my_file_path", &length, &csxBuffer); csOpenCSx(csxBuffer, &MyDevContext, &devHandle);

3

csGetCSFId(devHandle, "filter", &infoLength, &count, &csfInfo);

csAllocMem(devHandle, CHUNK_SIZE, &f, &afdmHandle1, NULL);

csQueueStorageRequest(storReq, storReq, NULL, NULL, &compVal);

csQueueComputeRequest(compReq, compReq, NULL, NULL, &compVal);

csQueueCopyMemRequest(copyReq, copyReq, NULL, NULL, NULL, NULL);

Bridging the Gap Architecture to Implementation

Correlation of SNIA/NVMe terms

SNIA Terms

- Computational Storage Engine (CSE)
- Computational Storage Engine Environment (CSEE)
- Resource Repository
 - Downloaded CSF and CSEE
 - Pre-loaded CSF and CSF
- Activation
- Function Data Memory (FDM)
- Allocated FDM (AFDM)
- Device Storage

NVMe Terms

- Compute Namespace
- Virtual (Not currently defined)
- Programs
 - Downloaded programs
 - Device-defined programs
- Activation
- Subsystem Local Memory (SLM)
- Memory Range
- NVM Namespaces

Differences between SNIA and NVMe

SNIA

- Defines CSEE
- CSF can directly access
 AFDM or Storage
- Supports an indirect model

NVMe

- CSEE is logical no specific definition
- Program has access to Memory Range Set
- Specific Execute command only

A Look at the NVMe Implementation

On Behalf of the NVM Express Computational Storage Task Group:

Bill Martin Kim Malone

Presented at MSST - SCU - 2023, on behalf of SNIA and NVM Express Working Groups This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice.

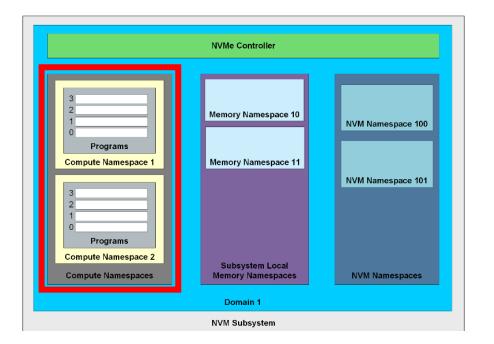
NVMe Major Architectural Components

The NVM Express[®] (NVMe[®]) computational storage architecture involves several types of namespaces:

- Compute namespaces (new)
- Memory namespaces (new)
- NVM namespaces
 - NVM, Zoned, and Key Value namespaces

Presented at MSST - SCU - 2023, on behalf of SNIA and NVM Express Working Groups This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice.

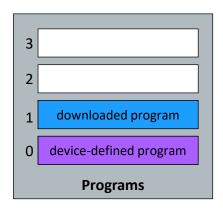
Compute Namespaces


A compute namespace:

- Is a namespace in an NVMe technology subsystem that is able to execute one or more programs
- Is a namespace that is associated with the Computational Programs I/O command set
- Contains compute resources

TP4091: Computational Programs

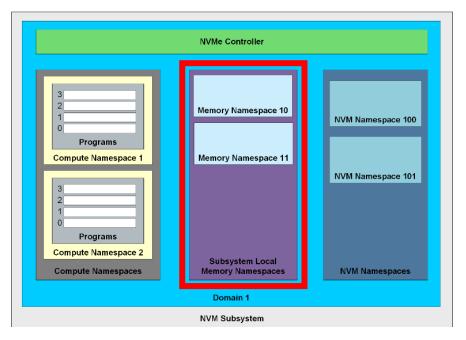
New Computational Programs I/O command set for compute namespaces


- New commands include:
 - Execute program
 - Load program
 - Activate program
 - Create/Delete Memory Range Set
- Provides log pages for program discovery

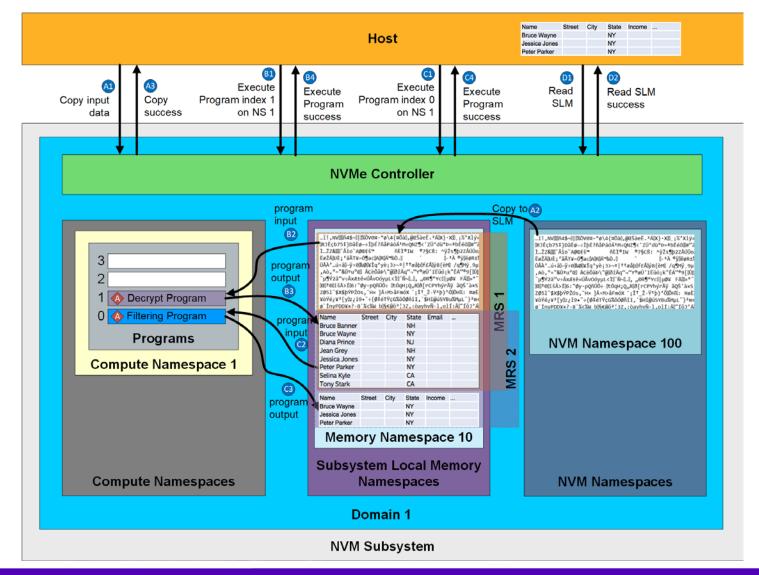
Computational Programs

- Conceptually similar to software functions
 - Called with parameters and run to completion
- Are addressed via a compute namespace program index
- May be identified by a globally unique program identifier
- Operate only on data in Subsystem Local Memory
- May be device-defined or downloadable
 - Device-defined programs
 - Programs provided at time of manufacture e.g., compression, encryption
 - Downloadable programs
 - Programs that are loaded to a Computational Programs namespace by the host
- A program may only be able to execute on a subset of the compute resources in an NVM subsystem
 - A program may be implemented in an ASIC
 - A program may be executed on a CPU core

Memory Namespaces


A memory namespace:

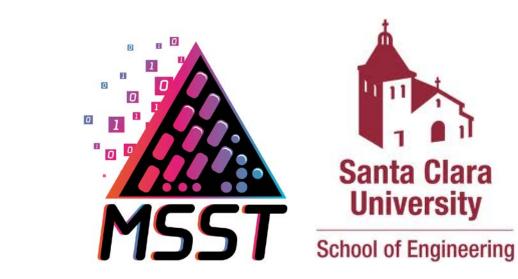
- Is a namespace in an NVMe technology subsystem that provides host command access to memory in the NVMe technology subsystem
- Is a namespace that is associated with the Subsystem Local Memory I/O command set
- Is used by the Computational Programs command set to provide access to SLM for program execution


TP4131: Subsystem Local Memory (SLM)

New Subsystem Local Memory I/O command set for memory namespaces

- New commands include:
 - Memory read and memory write
 - Commands for transferring data between host memory and a memory namespace
 - Memory copy
 - Command for copying data between NVM and memory namespaces

Flow: Execute Program - Filter Encrypted Data


Precondition:

 Memory Range Sets MRS1 and MRS2 have been created

Flow steps

- A Copy encrypted data into SLM
- B Execute Program 1 on compute NS 1 using MRS1
- C Execute Program 0 on compute NS 1 using MRS2
- Read filtered data from SLM to host

Presented at MSST - SCU - 2023, on behalf of SNIA and NVM Express Working Groups This presentation discusses NVMe[®] technology work in progress, which is subject to change without notice.

What's Next?

How Can You Help!

SNIA_®

Help Progressing Computational Storage

- Join the SNIA Technical Work Group
 - Go to SNIA Member Portal
 - Select <u>TWG: Computational Storage</u>
 - Click on the "Join Group"
- CS TWG meetings
 - Wed 10-11am Pacific time

- Join the task group
 - Go to the NVMe workgroup portal
 - Select the <u>CS Task Group</u>
 - Click on the "Join Group" link
- Task group meetings
 - Thursdays 9-10am Pacific time

Thank you Scott.Shadley@Solidigm.com

Presented at MSST - SCU - 2023, on behalf of SNIA and NVM Express Working Groups

27