Analysis and Design Considerations of Multi-level Erasure Coding in Hierarchical Data Centers

<u>Meng Wang</u>, Jiajun Mao, Rajdeep Rana, John Bent, Serkay Olmez, Garrett Wilson Ransom, Anjus George, Jun Li, and Haryadi S. Gunawi

We store data in disks. Unfortunately, disks fail!

Growing number of disks in data centers

More disk failures

2010 2013 2016 2019 Larger disk capacity

Max Available

Average Sold

Capacity / HDD (TB)

20

15

10

5

0

Longer rebuild time

14¹⁶

12.3

2022

Better data protection approach is needed!

Existing Solutions

Erasure Coding (EC)

- (K+P)
 - Data is split into K data chunks
 - <u>P parities</u> are computed
 - Stripe: every (K+P) chunks
- Example: <u>2+1</u>
 - Tolerate any single failure
 - 1.5x storage
- What if you want to tolerate more failures?
 - More parities!
 - 4+2
 - 6+3

EC at Scale

HE UNIVERSITY OF

- A large-scale data center is usually hierarchical
 - Racks
 - Enclosures
 - Disks
- □ How to deploy EC in a large-scale data center?

Single-level Erasure Coding

'HE UNIVERSITY OF

CAG

SLEC: Single-level Erasure Coding

Multi-level Erasure Coding

- MLEC: Multi-level Erasure Coding
 - Example: (2+1)/(2+1)
- Why MLEC?
 - Repair most failures locally
 - Can tolerate rack failures
 - Stackable and easy to deploy
 - Configurable

E1: Enclosure 1

R1: Rack 1

Multi-level Erasure Coding

MLEC has seen large deployments in practice

- LANL MarFS Stational Laboratory
- Scality ARTESCA

Many research questions remain unanswered!

SCALITY

What are the possible chunk placement schemes for MLEC at scale?

What are the types of failure modes an MLEC system can face?

What are their pros/cons in terms of performance and durability?

Can we optimize repair methods to improve the performance/durability?

MLEC at Scale

Our work: <u>Comprehensive design considerations and analysis of MLEC at scale</u>

Chunk placement schemes	C/C, C/D, D/C, D/D
Failure modes	Single disk failure, Catastrophic local failure
Repair methods	RALL, RFCO, RHYB, RMIN
Analysis	Performance, durability
Comparison	Vs. SLEC, LRC,

Introduction

E UNIVERSITY OF

- MLEC Overview
- MLEC Design and Analysis
 - Chunk Placement Schemes
 - Repair Methods
- MLEC vs. Other EC Schemes
 - vs. SLEC
 - vs. LRC

10

Chunk Placement Schemes

Example: SLEC 2+1

SLEC chunk placement schemes

<u>C</u>lustered Parity

- 3 disks participate in the repair
 - Repair speed bottlenecked by disk IO

Declustered Parity

- Faster repair!

Example: SLEC 2+1

SLEC chunk placement schemes

<u>C</u>lustered Parity

- Repair speed bottlenecked by disk IO
- If D3 and D6 fail...
 - Can survive

Declustered Parity

- Faster Repair
- If D3 and D6 fail...
 - Data loss!

MLEC @ MSST'23

Example: MLEC (2+1)/(2+1)

- MLEC chunk placement schemes
 - C/C

IE UNIVERSITY OF

- Clustered-Clustered

MLEC @ MSST'23

Example: MLEC (2+1)/(2+1)

- MLEC chunk placement schemes
 - C/C

<u>E UNIVERSITY OF</u>

- Clustered-Clustered
- C/D
 - Clustered-Declustered

MLEC @ MSST'23

- MLEC chunk placement schemes
 - C/C

E UNIVERSITY OF

- Clustered-Clustered
- C/D
 - Clustered-Declustered
- D/C
 - Declustered-Clustered

Rack 1

D/C

Rack 2

Example:

MLEC (2+1)/(2+1)

Rack 3

MLEC @ MSST'23

- MLEC chunk placement schemes
 - C/C
 - Clustered-Clustered
 - C/D
 - Clustered-Declustered
 - D/C
 - Declustered-Clustered
 - D/D
 - Declustered-Declustered

E1 a3 a4

E₂

a12

a34

E1

E₂

a1 **a**2

D/D

E1

E2 ap a13

a24

a24

Schemes: PDL under Failure Bursts

Probability of data loss (PDL) under correlated failure bursts

- 57,600 disks across 60 racks, MLEC (10+2)/(17+3)
- Failure burst: Failures that happen concurrently in a small time window
- C/C has the best failure burst tolerance, while D/D worst

Schemes: Repair Speed

E UNIVERSITY OF

In repairing a **single disk failure**, local declustered placement in C/Dand D/D makes rebuilding faster

Catastrophic Local Failure

MLEC @ MSST'23

Lost local stripe

Catastrophic local pool

IE UNIVERSITY OF

Schemes: Repair Speed

In repairing a catastrophic local failure, *DIC* is the fastest scheme. But the time is very long for all other schemes

<u>ie university of</u>

- Repair a catastrophic pool
 - Repair All (RALL)
 - Reconstruct entire pool
 - Easy to implement and it works
 - Used in practice
 - High network traffic

Example:

HE UNIVERSITY OF

- Repair a catastrophic pool
 - Repair All (RALL)
 - Repair Failed Chunks Only (RFCO)
 - Only reconstruct a1a2
 - Less network traffic
 - *Requires* proper API and metadata management

'HE UNIVERSITY OF

- Repair a catastrophic pool
 - Repair All (RALL)
 - Repair Failed Chunks Only (RFCO)
 - Repair Hybrid (Кнув)
 - Repair stripe a from network
 - Repair stripe b locally
 - Even less network traffic

E UNIVERSITY OF

- Repair a catastrophic pool
 - Repair All (RALL)
 - Repair Failed Chunks Only (RFCO)
 - Repair Hybrid (Кнув)
 - Repair Minimum (Rмі)
 - First repair chunk a1 from network
 - Then repair a2 locally
 - Minimum network traffic

Repair Methods: Repair Time

Our optimizations **greatly reduces** network repair time!

RMIN takes time to repair locally, but is fine as local IO is much cheaper than network traffic.

Repair Methods: Durability

Our optimizations **increase** the durability a lot.

After all the optimizations, *CID* and *DID* provide the **best** durability.

Introduction

IE UNIVERSITY OF

- MLEC Overview
- MLEC Design and Analysis
 - Chunk Placement Schemes
 - Repair Methods
- MLEC vs. Other EC Schemes
 - vs. SLEC
 - vs. LRC

SLEC Encoding Throughput

- □ Generally, EC with **larger** values of k and p has **lower** encoding throughput.
 - More parities → More computations
 - Wider stripe \rightarrow Harder to fit into CPU cache

MLEC @ MSST'23

MLEC vs. SLEC

Finding #1: For both MLEC and SLEC, higher durability leads to lower encoding throughput.

Finding #2: MLEC can provide high durability while maintaining higher encoding throughput.

MLEC vs. LRC

GO

THE UNIVERSITY OF

MLEC	LRC
a13 is computed from a1 and a3	aP is computed from a1, a2, a3, a4
A local stripe can have multiple parities	A local group has exactly one parity
One local stripe per rack	One chunk per rack

MLEC @ MSST'23

MLEC vs. LRC

Both MLEC and LRC have their own benefits

In some scenarios, MLEC can provide a better tradeoff. - e.g. when the network bandwidth is very limited

Conclusion

<u>ie university of</u>

Comprehensive design considerations and analysis of MLEC at scale

Chunk placement schemes	C/C, C/D, D/C, D/D
Failure modes	Single disk failure, Catastrophic local failure
Repair methods	Rall, RFCO, RHYB, RMIN
Analysis	Performance, durability
Comparison	Vs. SLEC, LRC,

THE UNIVERSITY OF

