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Abstract—Humans love rules of thumb: memory shortcuts en-
abling simple approximations to work in functionally equivalent
manners to more precise, but more complex, realities. In this
paper, we re-examine two classic rules of thumb in computer
systems. First, that the average seek distance of a random hard
drive access is 1/3rd of the maximum seek distance. Second, that
the total latencies to access data on a hard drive is the sum of
the seek, rotation, and transfer latencies. We first explain the
derivation and intuition behind these rules of thumb. We then
introduce rigorous mathematical models for seeks, rotations, and
total access times to precisely compute their values. We show
that the mean value of the seek time is ∼ 1/2 of its maximum
value. Furthermore, we include detailed studies of tail latencies
in addition to mean values as tail latencies are of increasing
importance in data centers.

We verify our mathematical models with actual experimental
measurement data and Monte Carlo simulations and study the
precise inaccuracies of the rules of thumb. Using our more
accurate models, we introduce new rules of thumb which are
more accurate than the previous ones. We add a discussion
of emerging multi-actuator drives (drives containing multiple
independent seek units per surface) to provide insight into their
latency metrics. Finally, we conclude with hypothetical real world
problems which can result from using these inaccurate rules of
thumb.

Index Terms—latency, HDD, performance

I. INTRODUCTION

Despite significant advances in persistent storage technolo-
gies – including Flash-based solid state drives (SSDs) [1]
and, more recently, various forms of persistent memories [2]–
hard disk drives (HDDs) remain the dominant form of storage
medium today. HDDs account for the overwhelming majority
of bytes stored in cloud data centers [3], [4], as well as
enterprise data centers and edge systems: “By the end of 2025,
over 80% of the enterprise bytes shipped into the core and edge
will continue to be HDD bytes when compared to SSDs and
other non-volatile memory technologies. [5]”

The reasons for this continued dominance are manifold, but
are largely driven by cost per byte; until other media can
compete in this metric, most data will continue to be stored
in HDDs. As such, designers of modern systems, whether
backend distributed data centers, or near-edge server caches,
must consider hard drives when planning future installations
and upgrades to existing systems.

To create and configure such systems, designers often
rely on a wide range of analytical techniques to determine

important factors such as the total number of storage compo-
nents to purchase, as well as the ratios between the different
components in the system such as CPU, DRAM, SSD, network
switches, and HDDs. Mistakes in these absolute values and
ratios can result in either costly failures to deliver the require-
ments (performance, reliability, etc) or costly overprovisioning
of the system.

The first of these analyses is often a rough “back of the
envelope” set of calculations. As Bentley writes: “Early in the
design of a system, rapid calculations can steer the designer
away from dangerous waters into safe passages. [6]” As Dean
more recently emphasized, an “Important skill [is the] ability
to estimate performance of a system design – without actually
having to build it! [7]”

To make such estimations, designers must employ a wide
range of “well known” base numbers and rules of thumb.
For example, Dean suggests numbers “everyone should know”
to include cache and main-memory reference times, branch
misprediction costs, time to send packets, and disk seek and
access times, among other important metrics [7].

A. Our contribution

In this paper, we first examine classic rules of thumb that
have pervaded the disk industry for decades, and show that, in
some cases, the rules are inaccurate. We use analytical meth-
ods to derive closed form expressions for HDD latencies for
drives. We validate the model with simulation techniques and
experimental measurements done on modern, latest generation
HDDs. We use our rigorous and accurate model to update these
classic rules to be more precise. Specifically, we first show that
the classic rule of thumb “Average disk seek distance is one-
third of full seek distance for random seeks” [8] is (slightly)
incorrect for modern drives. Furthermore, we develop a rig-
orous mathematical model to quantify another rule of thumb:
“A complete picture of I/O time: first a seek, then waiting for
the rotational delay, and finally the transfer [9].”

We then derive a broader set of drive rules of thumb, which
can be useful in different types of calculations beyond simple
average costs. For example, we show that the median seek
distance is roughly one-fourth the full one, and that the 95
percentile seek distance is roughly three-quarters the full one.
The latter numbers are especially critical in understanding
increasingly important “tail latency” costs in systems [4],



[10]–[13]. We also show that in an extremely physically
large disk, the average seek distance between random target
sectors approaches 4

15 of the maximum seek distance. More
importantly, we convert the seek distance to the seek time and
compute latencies associated with the radial seeks.

Finally, we show how to combine radial and rotational laten-
cies in a mathematically meaningful (i.e., correct) manner. For
example, when computing average positioning time, it suffices
to simply sum average seek and average rotational latencies.
However, when computing quantile positioning times (e.g.,
95 percentile), simple addition of the corresponding quantile
seek and quantile rotational latencies is inaccurate, often by a
noticeable amount (i.e., up to 13% for current HDDs). As we
develop the more accurate model to compute the statistics of
the latencies, we extend the rules of thumbs as follows:

1) The median value is ∼ 1/4 of the full seek distance,
2) The mean value is ∼ 1/3 of the full seek distance,
3) 75% quantile is ∼ 1/2 of the full seek distance,
4) 95% quantile is ∼ 3/4 of the full seek distance.
5) The mean value of the seek time is ∼ 1/2 of its maximum

value.
6) The mean value of total latency is ∼ 1/2 of the sum of

the maximum seek time and rotation period.
7) The computation of the tail latencies, i.e., quantiles

requires the complete model, see Eq. (16).
Item 6, in particular, is worth emphasizing, and it follows from
the nonlinear relation between the seek distance and the seek
time, which is not captured accurately with linearized models.

With our updated rules, designers can more accurately
analyze new system designs and configuration changes, thus
quickly understanding more accurate trade-offs in proposed
systems. We thus show how to properly utilize such numbers,
ensuring accurate calculations.

Note that the mathematical model we present is for con-
ventional magnetic recording (CMR), and it is not intended
to fully capture all characteristics of an HDD. For example,
although we briefly touch on the topic, the model does not
take larger queue depths into consideration and queue depth
has been shown to be an important performance metric [14].
Instead, this paper presents an accurate model for the base
primitive operations of a hard-drive: seek and rotation times.
We believe this allows valuable, and actionable, analysis as we
will show. We also believe this can (and should) serve as the
foundation for more detailed models and HDD simulations .

B. Outline

The rest of this paper is organized as follows. In Section III,
we provide a reminder for the textbook derivation of the 1/3rd
rule and explain the reason for its inaccuracy. We show how
it can be made more precise in Section IV where we derive
the full statistics of the seek time including their tail latencies.
In Section V, we discuss how to add the rotational latency to
calculate the distribution for the total latency. In Section VI,
we show that the results from the mathematical model match
very well with the simulation and test results. We then apply
this new calculation method to emerging HDDs with two heads

per surface in Section VII. We briefly discuss the effects of
command queuing in Section VIII. In Section IX, we discuss
the potential costly implications of using inaccurate rules of
thumb to design and provision data center storage systems.
Finally, we offer parting thoughts in Section X.

II. RELATED WORK

HDDs have been studied in detail for decades with actual
measurements, simulations, and theoretical models providing
designers with valuable insights in configuring HDD based
systems. Coffman et al. [8] establish the 1/3 rule based on
an approximated uniform track probability density as well
as approximated constant (linear) head speed. Ruemmler&
Wilkes [15] provide an excellent review of latency com-
ponents using simulations and empirical data. Lumb et al.
[16], [17] show that background operations can be intermixed
with user IO operations without incurring extra delays. These
studies further justify a careful modeling of the radial and rota-
tional components enabling opportunities to serve background
operations instead of staying idle as the next target sector
rotates under the head. Linearized models have been further
developed to study average access times [18]. Operating
at fixed rotational speeds, HDDs implement zoned constant
angular velocity (ZCAV) technique. The transfer times for
ZCAV drives have been studied by calculating the amount of
data at each zone (radii) and the corresponding time required
to read/write sequentially [19]. Wilhelm [20] provides a
model of a full system with several HDDs attached to a single
I/O channel. Worthington et al. [21] provides a higher level
study of different scheduling algorithms in various workload
scenarios. Ng [22] provides a thorough review of existing
models and systems. All three extrapolate from a low-level
HDD model to make higher-level studies and observations.

NOMENCLATURE

ri, ro Inner and outer radii of disk
r1, r2 Radii of two randomly selected tracks
κ The ratio of the outer radius to the inner radius
s Average radial separation between two random tracks
fR(r) Probability density of finding a sector at radius r
fS(s) Probability density of radial separation of two tracks
ω The angular frequency of disk rotation
T0 The time for one full disk rotation
TR The maximum (radial) seek time
ϕ The angle of a random sector on a track
fT (t) Probability density of the total latency

III. RULES OF THUMB FOR SEEK AND TOTAL ACCESS

An HDD internally has multiple spinning disks (often also
alternatively referred to as platters). Sectors on each disk are
read and written by read-write heads. The heads are positioned
by a mechanical actuator (also referred to as an arm) to seek
to concentric circles of sectors referred to as disk tracks. It
takes a finite amount of time to move the actuator from one
track to another, which is defined as the seek time [9]. Once
the head is correctly positioned over the target track, some



Fig. 1: A disk with innermost data track radius ri and
outermost data track radius ro and two sample tracks located
at radii r1 and r2. The actuator (and the arm), shown shaded
in gray color, moves the read-write head to access tracks at
different radii. Not shown: internally, HDD’s have multiple of
these disks stacked vertically, each disk has a top and a bottom
surface, every surface is accessed by its own arm, and all arms
are controlled by the single, shared actuator.

additional rotational latency may be incurred before the target
sector rotates under the head. Finally, the last component of
a disk access is the time to transfer the data on the target
sector(s). Therefore, the classic rule of thumb for the latency
of a disk access is the sum of the seek latency, the rotational
latency, and the transfer latency [9].

In this paper, we focus on the seek and rotational latencies
as the transfer latencies are fixed constants that are irrelevant
for the analysis in this work. Please refer to Figure 1 which
introduces some of the variables used throughout the remain-
der of this paper. Additionally, Table I shows typical values
of current enterprise HDDs [23] which we will use for all
calculations done throughout this paper.

Radius of innermost track (ri) 0.73”
Radius of outermost track (ro) 1.83”

A typical max seek time 15 ms
Rotational speed 7200 RPM

TABLE I: Typical values of key parameters for current
enterprise HDDs. The maximum seek time is based on the
test data, see Figure 9.

Given the task of locating many random sectors on a
surface, the average time to position the head onto target
tracks is the average seek time. This time is a function of
the radial separation between the current track and the target
track. The radial separation between two tracks at radii r1 and
r2 where ri ≤ r1,2 ≤ ro is |r2 − r1| ≡ s. Averaging over
every possible position of r1 and r2 yields the average radial
distance. Assuming that each r is equally likely to be a target
track, the density will be 1

ro−ri
, and the average radial distance

can be calculated as:

s =
1

(ro − ri)2

∫ r0

ri

∫ r0

ri

|r2 − r1|dr2dr1 =
ro − ri

3
. (1)

Fig. 2: The sector density when we uniformly sample radius
values in the range [ri = 0.73”, ro = 1.83”], and the angle
values in the range [0, 2π]. The steep gradient proves that
the uniform track probability density results in a nonuniform
sector density on the surface. This is in conflict with real sector
density on a disk surface which is fairly uniform.

Taking the ratio of the mean distance to the maximum distance,
ro − ri, yields the infamous result:

s

ro − ri
=

1

3
. (2)

IV. A MORE PRECISE MODEL OF SEEK TIME

In the previous section, it was assumed that “. . . each r
is equally likely to be a target track”, which implied that
the density function is 1

ro−ri
. However, a closer inspection

shows that this assumption is in conflict with real HDDs
in which sectors are uniformly distributed across each disk
surface [18]. To illustrate this conflict, we can do a simulation
that selects tracks with radii from 0.73” to 1.83” from a
uniform distribution and spreads the sectors uniformly around
the tracks. The resulting sector density across the disk surface
is shown in Figure 2, and it is clearly not uniform. Since it
leads to a nonuniform sector distribution, the assumption of
“. . . each r is equally likely to happen” used in the seek
time rule of thumb is incorrect. This reflects the perhaps
more intuitive observation that tracks at the outer diameter of
each surface are physically longer than inner diameter tracks.
Therefore, outer tracks typically contain more sectors, and as
a result, they are more likely to be the target track for any
random sector.

A. The correct probability density

The area of a small set of tracks from r to r + δr,
with δr ≪ r, is 2πr δr, and it grows ∝ r. Therefore, the
probability of a target sector being in this set will similarly
grow ∝ r. In fact, with proper normalization, it will be

fR(r) =
2r

r2o − r2i
, (3)



so that it yields 1 when integrated from ri to ro. The
same density function can be derived more rigorously by
starting from two uniformly distributed variables X and Y
in the domain r2i ≤ X2 + Y 2 ≤ r2o . One can define
polar coordinates in the standard way: R = (X2 + Y 2)1/2

and Φ = sign(Y ) arccos
(

X
(X2+Y 2)1/2

)
, and show that the

probability density for R is identical to the result above.
The track density as expressed in Eq. (3) should be intuitive

given the previous explanation of HDDs: uniformly distributed
data on the disk surface means that more data will be on
the outer radii of each surface. Hence, the average seek time
calculated using the proper density is:

s =

∫ r0

ri

∫ r0

ri

fR(r1)fR(r2)|r2 − r1|dr2dr1

=
4

15
(ro − ri)

(
1 +

κ

(1 + κ)2

)
, (4)

where κ ≡ ro
ri

is the ratio of the outermost radius to the
innermost one. The ratio of the mean distance to the maximum
distance becomes

s

ro − ri
=

4

15

(
1 +

κ

(1 + κ)2

)
. (5)

Figure 3 shows the average seek distance (as a fraction of the
maximum seek distance) as a function of κ (the ratio between
the diameters of the outermost and innermost tracks). Several
various interesting values are annotated:

1) When κ is 1 (as it would be on a hypothetical disk
with uniform track accesses), the average seek distance
matches the rule of thumb of 1

3 .
2) The marked κ value of 2.51 corresponds to industry

standard disk sizes of outer radius ro = 1.83” and inner
radius ri = 0.73”. Note that these values of ro and ri
yield a max seek distance of 1.1”, which is the value
we will use later throughout the paper. This results in
a more precise calculation of an average seek distance
being 0.321 of the maximum seek distance.

3) The asymptote of 4
15 would be the average seek distance

(normalized to the maximum distance) on an infinitely
large disk and/or very small inner radius.

For current typical disk geometries, the 1/3rd rule of thumb
is accurate up to a ∼ 4% error, so it remains a useful
approximation. However, if the HDD industry moves towards
larger disks, the inaccuracy will increase. And depending on
the precision required, the 1/3rd rule of thumb may not be
accurate enough for practical calculations. It is also important
to note that we assumed the data is uniformly distributed on
the disk, and this assumption might be invalid in certain cases.
For example, due to the skew angle of the read-write head, the
areal density on a disk may vary radially [24]. In such cases,
the density in Eq. (3) needs to be replaced with the measured
areal density on the disk.

B. The complete statistics of seek distance
In real life applications, in addition to the average value, it

is important to understand tail latencies of the seek times [25],

Fig. 3: This graph shows s̄
ro−ri

(the average seek distance
normalized to the max seek distance) as a function of κ (the
ratio between the diameters of the outermost and innermost
tracks).

Fig. 4: The domain of interest for integration in Eq. (6). In
the shaded area |r2 − r1| < s is satisfied.

[26]. Although it was studied in the literature [18], [21], the
explicit form of the seek time density function has not been
given. In order to derive the exact form, the radial separation
S ≡ |R1 −R2| can be defined as a random variable with the
following cumulative distribution:

FS(s) = P (|r1 − r2| < s) =

∫∫
|r2−r1|<s

fR(r1)fR(r2)dr1dr2. (6)

The domain of the integration is the shaded area in Fig. 4. The
cumulative probability function of the radial separation can be
written as

FS(s) =

∫∫
shaded

fR(r1)fR(r2)dr1dr2

= 4
2(r3o − r3i )s− 3

2 (r
2
o + r2i )s

2 + s4

4

3 (r2o − r2i )
2 , (7)



from which we can get the probability density by differenti-
ating with respect to s:

fS(s) =
∂FS(s)

∂s
= 4

2(r3o − r3i )− 3(r2o + r2i )s+ s3

3 (r2o − r2i )
2 . (8)

fS(s) completely defines the statistics of the radial distance
from the head position to the target sector. It can be verified
that the result in Eq. (5) can be reproduced by computing∫ ro−ri
0

sfS(s)ds. We can also use Eq. (8) to compute various
important statistical parameters as summarized in Table II.

Mean S. D. Med. Q75 Q95 Max
abs. 0.35 0.25 0.31 0.53 0.84 1.1

norm. 0.32 0.23 0.28 0.48 0.76 1.00

TABLE II: Various key statistics for the radial seek distance.
The first row is in the units of inches with the full seek distance
of 1.1”. The second row is normalized to this value.

Based on Table II, the rules of thumb for radial seek distance
can be extended as follows:

1) The median value is ∼ 1/4 of the full seek distance,
2) The mean value is ∼ 1/3 of the full seek distance,
3) 75% quantile is ∼ 1/2 of the full seek distance,
4) 95% quantile is ∼ 3/4 of the full seek distance.

C. The seek time as a function of distance

The relation between the seek distance and the seek time is
nontrivial due to the acceleration, cruising, deceleration, and
the settling times of the actuator [15]. The actuator will be
accelerating from its initial track until it reaches a maximum
speed. It will start decelerating around the mid distance to the
destination track. Furthermore there will be certain amount
of settling time as an overhead. In order to derive analytical
models, this relation is typically approximated as a linear
one [15], [18]. However, the nonlinear part of the relation is
associated with the short distance seeks, and as we have shown
in Figure 8, the majority of seeks traverse short distances.
Therefore, we model seek time including both the linear
and non-linear regions. We will parameterize the acceleration
duration as ta, and estimate the functional form of the relation
between the seek time and seek distance as

S(t) =


0, for t < β
1
2α(t− β)2, for β ≤ t ≤ ta

va(t− ta) + sa, for t > ta,

(9)

where α is the acceleration factor and β is the overhead time.
The free parameters in Eq. (9) are α, β, and ta. Although the
values of these parameters are dependent on the drive model,
we observed only small variations for drives from the same
model. The cruising speed, va, and the transition position, sa,
are fixed by imposing the continuity of the function and its
derivative at t = ta, which requires:

va = α(ta − β), and sa =
1

2
α(ta − β)2. (10)

In Section VI, we will show that the proposed relation between
seek distance and seek time fits well with the experimental

Fig. 5: The density functions for the seek (fseek(t)) and
rotational ( frot(t)) latencies.

data. We can now use the probability density of s is given in
Eq. (8) to compute the probability density of the seek time as

fseek(t)=
dS(t)
dt

fS (S(t))

=


0, for t < β

α(t− β)fS
(
1
2α(t− β)2

)
, for β ≤ t ≤ ta

vafS ((t− ta)va + sa) , for t > ta,

(11)

where fS , va and sa are defined in Eqs. (8) and (10),
respectively. For fit values of α = 0.014 inch

ms2 , β = 1.18ms,
ta = 8.8ms, see Section VI, we compute the statistics of the
seek time and tabulate the results in Table III.

Mean S. D. Q50 Q75 Q95 Max
abs 7.8 2.9 7.8 9.91 12.8 15.2

norm. 0.51 0.19 0.51 0.65 0.84 1.0

TABLE III: Various key statistics for the seek time. The first
row is in the units of ms with the max seek time of 15.2ms.
The second row is normalized to this value.

From Table III, we see that average seek time is close to 1/2
of the maximum seek time. This is worth to emphasize because
it is a common misconception to state that since the average
value of the seek distance is about 1/3 of the maximum, the
average value of the seek time is also 1/3 of the maximum
seek time. In reality, due to the nonlinear mapping between the
radial distance and the corresponding seek time, the average
seek time is closer to the half of the maximum value. We can
add this observation to the list of rules of thumb we started in
Section IV-B:

5) The mean value of the seek time is ∼ 1/2 of its maximum
value.

V. ADDING THE ROTATIONAL LATENCY

In addition to the seek time, HDDs also need to wait for the
target sector to rotate under the head and therefore both the
seek time and the rotational time will contribute to the total
time to access a target sector. As a reminder, all values used to
compute latencies were shown earlier in Table I. Specifically,
we consider 7200 RPM drives which results in T0 = 8.33ms.
A set of typical seek time (fseek(t)) and rotational (frot(t))
latency densities are illustrated in Figure 5.

The simple rule of thumb to compute a total access latency
is to combine the seek and rotation and transfer latencies.
Ignoring the transfer latency (as it is a fixed constant irrel-
evant to our analysis) allows us to simplify and say that the



total positioning latency is the sum of the seek and rotation
latencies. The key point we are making here is that this rule of
thumb does work correctly to compute the mean positioning
latency but does not work correctly to compute the quantiles.
This is illustrated in Table IV where various key statistical
parameters are tabulated.

Mean S. D. Q50 Q75 Q95 Max
seek 7.8 2.9 7.8 9.91 12.8 15.2
rot. 4.2 2.4 4.2 6.3 7.9 8.3

total. 12.0 3.8 11.9 16.2 20.7 23.6

TABLE IV: Key statistics for the total latency in milliseconds
with a 7200 rpm drive (T0 = 8.33ms). The values are
calculated using the distributions shown in Figure 5. The last
row of the table is the rule of thumb estimate as computed by
adding the first two rows. The values which are not correctly
estimated by the rule of thumb are formatted as X.

Another subtle detail we need to address is that the seek of
the head and the rotation of the disk happen at the same time,
i.e., they are happening concurrently rather than sequentially.
We also note that there are two typical ways to think about
the rotational latency: one, the total rotational latency required
at the start of the access and, two, the remaining rotational
latency after the seek has completed. Throughout this paper,
we always use the former. For some accesses, the seek time
is shorter than the (total) rotational latency. Therefore, the
head can be positioned to the target track sooner than the
target sector rotates under the head. In such a case, the total
latency will be equal to the rotational latency, and the seek
time will be irrelevant. In fact, modern HDDs recognize, and
optimize, this situation by reducing the seek speed such that
the head arrives “just-in-time” (i.e., the seek finishes right as
the target sector rotates into position) thereby reducing energy
costs without reducing performance [27]. However, there will
also be accesses in which the head cannot reach the target track
before the sector rotates past, and it will have to wait for the
next rotation. We will show that the average amount of time
lost for these accesses is precisely equal to the average seek
time.

In order to derive the full statistics of the total positioning
latency, we define the rotational speed of the disk as ω, the
radial separation from the head’s current track to the target
track as s, and the rotational separation of the initial head
position and the target sector position as ϕ. If the seek time
t(s), Eq. (9), is smaller than the rotational latency (ϕ/ω) then
the total positioning latency is simply the rotational latency.
On the other hand, if the head cannot be rotated to the target
sector in time (i.e., t(s) > ϕ

ω ), it needs to wait an additional
full rotation to access the target sector. In order to simplify
the notation, let us define the condition described above as a
piece-wise function:

q(s, ϕ) ≡

{
0, s < S(t)
1 otherwise

, (12)

Fig. 6: The domain of interest for integration in Eq. (14). In
the shaded areas ϕ

ω + q(s, ϕ) 2πω ≤ t is satisfied.

and write the total latency, ttotal, as follows:

ttotal(s, ϕ) =
ϕ

ω
+ q(s, ϕ)T0, (13)

where T0 = 2π
ω is the disk rotation period. We can treat ttotal

as a random variable and compute its cumulative distribution
function as

FT (t) =

∫∫
ϕ
ω+q(s,ϕ)T0≤t

fΦ(ϕ)fS(s)dϕds. (14)

The domain for which ϕ
ω + q(s, ϕ)T0 ≤ t is satisfied in the

shaded areas in Fig. 6. Therefore the integral in Eq. (14) can
be evaluated as

FT (t) =

{∫ ωt

0

∫ S(t)

0
fΦ(ϕ)fS(s)dϕds, t ≤ T0

c0 +
∫ ωt−2π

0

∫ ro−ri
S(t)

fΦ(ϕ)fS(s)dϕds, t > T0,
(15)

where c0 = FS (S(T0)) ensures the continuity of the distri-
bution. We can compute the density function by taking the
derivative of Eq. (15) and combine the resulting terms as
follows:

fT (t) =
dFT (t)

dt
=

1

T0

∫ S(t)

S(t−T0)

fS(s)ds

=
1

T0
[FS (S(t))− FS (S(t− T0))] , (16)

where FS and S are defined in Eqs. (7) and (9), respectively.
Equation (9) defines the probability density of the total latency,
and key statistical parameters are calculated in Table V.

Type Mean S. D. Q50 Q75 Q95 Max
seek 7.8 2.9 7.8 9.91 12.8 15.2
rot. 4.2 2.4 4.2 6.3 7.9 8.3

total. 12.0 3.8 11.9 14.6 18.3 23.6

TABLE V: Precisely calculated key statistics for the total
latency in milliseconds with a 7200 rpm drive (T0 = 8.33ms).



Fig. 7: The simulated probability density of points constructed
from uniformly selected x and y values. The disk is uniformly
covered. We use industry standard values of ro = 1.83” and
inner radius ri = 0.73” in the simulation.

Fig. 8: The distribution of the seek distance for the simulated
and measured data. The shaded bars show the simulated and
measured distributions and the lines are predicted in Eq. (8).

Comparing Table V with Table IV, we conclude that al-
though the mean values are estimated correctly, the quantiles
are over estimated in the naive, rule of thumb approach. We
can add these observations to the list of rules:

6) The mean value of total latency is ∼ 1/2 of the sum of
the maximum seek time and rotation period.

7) The computation of the tail latencies, i.e., quantiles
require the complete model, see Eq. (16).

This completes the mathematical modeling of the total seek
time and we move to the section where we verify the model
with simulations and actual test results.

VI. SIMULATION AND EXPERIMENTAL TEST RESULTS

In order to verify the predicted distributions, we first develop
Monte Carlo simulations in which we select 100, 000 random
numbers x and y in the range [−ro, ro] from a uniform

Fig. 9: Experimental data on seek time vs the radial distance
collected with a 3.5” form factor HDD. The curve shows a
three-parameter fit to the data, see Eq. (9) with parameters
α = 0.014 inch

ms2 , β = 1.18ms, and ta = 8.8ms.

Fig. 10: The seek time distributions with a 3.5” form factor
HDD for the simulated and measured data. The curves are
calculated using Eq. (11) and they show good agreement with
the simulation and experimental results shown in bars.

distribution, and reject all x, y pairs that are outside of the
disk surface. Figure 7 shows that this selection method results
in a uniform coverage of the disk. We then randomly select a
pair of points r⃗1 and r⃗2, and build the histogram of |r2 − r1|.

The experimental data collection is done with several 7200
rpm 3.5” form factor HDDs from Seagate Exos X22 series.
The data consist of about 1000 random seeks. Figure 8
shows the simulation and experimental data for the probability
density of the radial seek distance. The shaded areas show the
simulated and measured values whereas the curve is calculated
using Eq. (8). As we argued in Section IV-C, the seek time
as can be expressed a function of the seek distance as in Eq.
(9), and this relation is confirmed with the experimental data in
Figure 9. It is important to note that if we used a linear model,
the acceleration domain, t < 8.8ms, would not have been
captured properly, and furthermore, the line would have tilted
causing an larger discrepancy in the fit for the tail statistics.
Figures 10 and 11 show the radial seek time and total seek
time respectively. The top subplots are based on simulation
data and the bottom subplots are measurement data. All the
figures are overlayed with the black lines which represent
the predicted curves from the model. The model predictions,
simulation and test data are all in very good agreement.



Fig. 11: The distribution of the total latency (seek and ro-
tational latencies combined) for the simulated and measured
data. The blue shaded bars show the simulation and test data
densities and the curves are the density as predicted with
Eq. (16).

Fig. 12: Illustration of a drive with dual actuators positioned
on the opposite sides of the disk.

VII. MODELING LATENCIES FOR DUAL ACTUATOR HDDS

Adding to the complexity of estimating and precisely com-
puting HDD latencies is the recent emergence of a new type
of HDD called multi-actuator HDDs. Although capacities of
enterprise HDDs have been increasing over years, the I/O
performance has been limited by the mechanical motion of
the actuators. This creates challenges for modern datacenters
because the ratio of performance to capacity has been steadily
decreasing with each new generation of HDDs. This trend is
responsible for the emergence of RAID6 [28] in the 1990s, the
more recent emergence of wider erasure codes [29], the intro-
duction of burst buffers in high-performance computing [30],
and the identification of the importance of IOPS/GB in modern
cloud datacenters [4].

To address this issue, HDDs with two actuators (instead of
one) have been recently brought to the market [31]. These
multi-actuator HDDs two actuators but each surface is only
accessed by one of the two actuators. These HDDs have
double the IOPS/GB and BW/GB than their single-actuator

Fig. 13: The simulated distribution of the total positional
latency that combines seek and rotational latencies for dual
actuator HDDs in which two actuators access each surface.
We consider an 7200 rpm drive with a maximum seek time
of 14 ms.

counterparts but the latency calculations we have presented
thus far are not affected.

However, future multi-actuator HDDs are envisioned that
will have two actuators (and therefore two heads) accessing
each surface, as illustrated in Figure 12. In this section, we
study the latency effects of these potential future multi-actuator
HDDs.

It is important to note that we cannot simply create two
independent total latency metrics based on Eq. (15) and
calculate the distribution for the smaller of the two. This is
caused by a strong correlation between the rotational latencies
for the two actuators due to their respective locations on
opposite sides of the surface. More precisely, if the down-
track angle of a random sector with respect to the first head is
ϕ, then the angle with respect to the second read-write head is
ϕ+π moduli 2π. In the worst case scenario, the first head will
be in the innermost or outermost track, and will be unable to
access the target sector if it rotates past the head more quickly
than the maximum radial seek time, TR. In this case, however,
the target sector can be accessed more quickly by the other
actuator, and the resulting worst-case total positioning time
will be TR + T0/2.

We can derive an approximate form of density function for
the total positional latency by replacing T0 in Eq. (16) with
T0/2. Figure 13 shows that the our simulated results. We also
show various statistics of the total positional latency for these
dual actuator HDDs in Table VI.

mean sigma Q50 Q75 Q95 max
9.6 2.9 9.6 11.6 14.5 19.1

TABLE VI: Various key statistics for the total latency for dual
actuator drives in milliseconds.

Comparing Tables V and VI, we see that this dual actuator
HDD drive essentially halves the rotational latency and im-
proves the tail statistics roughly by T0/2 compared to HDDs
with only one actuator accessing each surface.



Fig. 14: The overlay of simulation data (black line) and the
measured data (bars) for queue depth=2. The experimental data
is collected with 7200 rpm 3.5” form factor Exos X22 series
drives from Seagate.

Fig. 15: The total latency quantiles calculated using the precise
solution in blue, and the rule of thumb estimates in orange.
The error, shown in dashed red line [right axis], made with
the rule of thumb addition is as large as 13.3%.

VIII. COMMAND QUEUING

So far we have quantified the statistic of the latency un-
der random workloads. In practical applications, an HDD is
queried with a set of sectors and it is allowed to reorder
outstanding commands to improve the latencies. The statistics
of the latencies will depend on the ordering algorithm and
it might be very complicated as the queue depth increases.
Furthermore, such algorithms are considered as intellectual
property and are not readily available publicly. In this section,
we consider a queue depth of 2, which is simple enough to
estimate what the HDD algorithm might be doing. We feed
the HDD with a set of random seek commands with depth
2 and measure the latencies. For simulations, we take our
latency model as in Eq. (16), and feed it with a set of random
seeks. The simulation algorithm takes in a pair of incoming
data sectors and selects the one with the shortest time from
the current position of the read-write head. The process is
repeated until all the commands are fulfilled. Figure 14 shows
the measured and simulated data which are in good alignment.

IX. REAL WORLD IMPLICATIONS

There are possible significant implications of using these
inaccurate rules of thumbs. Figure 15 shows the full extent of
possible error when using the rule of thumb to compute the
quantiles as compared to using the precise values. As shown,
the inaccuracy can be quite large. For example, when com-
puted with the more precise statistical model, the 95% quantile

of the positioning latency is about 18.3ms. Comparing to the
rule of thumb estimate of 20.7ms reveals an overestimation of
13.2% error. This inaccuracy can result in significant system
design errors with correspondingly large economic penalties.

For example, imagine a data center which has requirements
for multiple petabytes of storage and wants to achieve a 95%
tail latency no greater than 20 ms for random block IO. As
we saw in the previous section, there is approximately 13.2%
inaccuracy when using the basic rule of thumb to compute this
latency with a resulting incorrect value of 20.7 ms. If the data
center designer uses this inaccurate value to build a system
meeting these requirements, they will make a costly mistake.
For example, how might such a data center designer attempt
to achieve this latency goal? Since the rotational speeds of
nearline drives are fixed at 7200 rpm, the only mechanism to
improve the latency is to reduce the seek time by decreasing
the maximum seek distance.

There are at least two ways to do so. One would be to
add a cache to store some number of either the innermost or
the outermost tracks (typically one would cache the innermost
tracks since the outermost tracks have a higher bandwidth).
A second approach would be to simply not use those inner-
most tracks [32]. Both of these approaches would effectively
decrease the ratio between ri and ro thereby decreasing the
observed latencies.

In the specific example above, limiting the inner radius to
0.85”, would result, using the inaccurate rule of thumb, in a
newly computed 95% tail latency matching the target of 20
ms. However, the more accurate computation shows that the
system already meets the requirements and can use the full
radii from [0.73”, 1.83”]. Using the inaccurate rule of thumb
in this scenario results in either unnecessarily losing 7% of
the capacity or unnecessarily adding a cache for 7% of the
capacity.

X. CONCLUSIONS

Rules of thumb have long been useful approximations in
compute systems design. In this paper, we examined long-
standing rules of thumb for HDD latencies. First, we show that
the average seek latency might differ from 1/3rd of the max-
imum seek latency depending on the geometry of the disks.
Second, we provide a detailed model to combine seek time
with the rotational latency to compute the total positioning
latency. Our model accurately predicts the complete statistics
of the total latency as shown by the simulations and actual
drive test results.

Properly designing storage systems is a challenging en-
deavor in which any inaccurate inputs to the design can cause
either costly missed requirements or costly overprovisioning.
It is therefore crucial that critical performance characteris-
tics of HDDs can be correctly considered during system
design. We therefore offered mathematical models, verified
with Monte Carlo simulation and experimental data, warning
system providers that long-trusted rules of thumb can be
significantly inaccurate. Our model can not only be elegantly
expressed in a single closed form formula as in Eq. (16), but



also is accurate enough to be used to study the aspects of
various scheduling methods without simulations.

It is our hope that our newly introduced models, as well as
a few newly introduced rules of thumb, will aid future system
designers to build more precisely provisioned data centers.
To further aid future designers, we introduced, and verified,
models for calculating latencies of emerging multi-actuator
HDDs. Finally, we presented a hypothetical scenario in which
using the imprecise historical rules of thumb can result in an
unnecessary purchase of a cache equivalent to 7% of the total
storage system (or a loss of 7% of the capacity).

XI. FUTURE WORK

Another storage technology is the shingled magnetic record-
ing (SMR) [33] where tracks are heavily overlapped in bands.
SMR enables higher track density, hence, higher capacity
drives. However, any re-write of any sector will require the
re-write of the entire zone degrading the write performance.
A hybrid approach can be taken to optimize the capacity and
the performance trade off by allocating inner radii to SMR
and outer radii to conventional magnetic recording. Given the
analytical nature of our model in terms of the inner and outer
radii values, it can be leveraged to decide the critical value
of the radius to switch from SMR to CMR depending on the
expected read and rewrites of the user workload.
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