
A Generic and Efficient Framework for Estimating
Lossy Compressibility of Scientific Data

Md Hasanur Rahman
University of Iowa

IA, USA
mdhasanur-rahman@uiowa.edu

Sheng Di
Argonne National Laboratory

IL, USA
sdi1@anl.gov

Guanpeng Li
University of Iowa

IA, USA
guanpeng-li@uiowa.edu

Franck Cappello
Argonne National Laboratory

IL, USA
cappello@mcs.anl.gov

Abstract—Modern HPC applications produce extremely large
amounts of scientific data, which cannot be stored and trans-
ferred efficiently. Error-bounded lossy compression has been
effective in significantly reducing the volume of data. However,
lossy compressors are mainly driven by user-specified error-
bound, so the compression ratios would be unknown until
compression is completed. In practice, however, many users need
to forecast the compression ratio beforehand, such that related
data storage, transfer and management could be orchestrated
more efficiently and proactively. In this paper, we propose
XTIMATE, a compressor-agnostic lossy compression framework
capable of accurately and efficiently estimating compression ratio
of scientific data. Our key observation is that the characteristics
of data textures play an important role in understanding lossy
compressibility. The key contributions are three-fold. (1) We
provide an in-depth analysis on effective data features, especially
analyzing the characteristics of varying data textures. (2) We
carefully explore the best-fit kernel filter and develop a series of
optimization strategies, in light of both estimation capability and
performance. (3) We comprehensively evaluate XTIMATE based
on three state-of-the-art lossy compressors using 10 real-world
scientific datasets from 5 HPC applications and compare with
state-of-the-art related works. Experiments show that average
estimation error of XTIMATE is only 6.77%. Furthermore,
XTIMATE exhibits a 30× speedup on average compared to the
related works.

Index Terms—HPC Application, Scientific Data, Lossy Com-
pressibility Estimation, Data Textures

I. INTRODUCTION

Contemporary high-performance computing (HPC) applica-
tions generate vast volumes of scientific data across various
domains such as astronomy, environment, and physics. For
example, as stated by Gleckler et al. [1], the Coupled Model
Intercomparison Project with Community Earth System Model
(CESM) may produce about 2.5PB of data plus an addi-
tional 170TB of data during post-processing [2]. Moreover,
Cosmological simulations using the Nyx [3] code can also
generate around 2.8PB of data considering 5 simulation runs
each with 200 snapshots. These vast amounts of simulation
data present substantial challenges in terms of data storage,
data transmission, and posthoc analysis for scientific research.
Even modern supercomputers such as Summit [4] generally
offer only a limited storage space to users (50TB storage space
assigned to each Summit user [5]). Therefore, significantly
reducing large volume of data to fit within limited memory

capacity, storage space, and network I/O bandwidth is critical
to users in practice.

While deduplication [6] and various lossless compres-
sions [7]–[9] have been studied, they either cannot be used for
scientific data or can offer only ∼2× compression ratio [10].
To this end, error-bounded lossy compression [11]–[14] is ar-
guably the most promising solution to reach high compression
ratios (e.g., 10x or even higher [15]–[17]) with strict control
on the data distortion to ensure high data fidelity for post-hoc
analysis [2], [18].

The existing error-bounded lossy compressors, however,
are mainly designed based on the error-bound constraint, so
the compression ratio is unknown until the compression is
finished, which may cause serious issues in practice. Here, we
give three practical use cases (yet not limited) that require
knowing the compression ratio in advance before running
the compressor. Note that the discussion of these use cases
pertains to the compressed data, rather than the original data,
as XTIMATE primarily concentrates on estimating the size
of compressed data. (1) Control storage space on demand.
A supercomputer user is always allocated a limited storage
space (e.g., 50TB per user on Summit). As such, when the
user needs to run a large-scale simulation producing a sheer
amount of data (such as molecular dynamics simulations [19],
[20] and cosmological simulations [21], [22]), using an error-
bounded lossy compressor is an effective method to reduce the
storage space. However, the compressed data size still needs
to be estimated beforehand to avoid a simulation crash caused
by exceeding the user’s allocated storage space limit. (2)
Control memory footprint to improve scalability. In real-
world applications such as quantum circuit simulation [23] and
deep learning, strict memory constraints often limit execution
scalability. While quite a few studies [17], [24], [25] leverage
error-bounded lossy compression techniques to address this,
the unknown memory requirements (only be known after the
execution of lossy compression) lead to inefficient allocation,
wasting resources and potentially hindering other tasks. To
overcome this, forecasting compression ratios becomes crucial
for optimizing memory allocation. (3) Control data transfer
time: Scientific data is frequently shared through remote data
storage [26], [27]. To expedite posthoc analysis, recipients
must transfer this extensive data to local system. Using highly
compressed data can significantly reduce transfer time and al-
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leviate I/O bottlenecks. Accurately predicting compressed data
size aids users in assessing required data transfer bandwidth
without the need for actual compression. More details about
these use cases are discussed in Section X. Considering these
use cases, quite a few studies have been proposed to estimate
lossy compressibility [28]–[30]. However, these studies lack
either compressor-agnostic solutions or are not capable of
providing accurate estimation under different compression
configurations/models.

In this paper, we propose a compressor-agnostic lossy
compressibility estimation framework, XTIMATE1, to ac-
curately and efficiently estimate compression ratio. The sig-
nificant benefit of this framework would be that (1) the HPC
applications are able to foresee the compressed data size
such that the data can be orchestrated more efficiently at
runtime, e.g., pre-allocating appropriate memory, preserving
proper storage space, (2) the estimation would be accurate
under any compression configurations/models. To achieve such
highly accurate and efficient compressibility estimation, our
key observations are: (1) Scientific datasets frequently display
varied data textures, analogous to textures in images, with
characteristics that significantly differ across different fields.
Here, the term field refers to a specific metric/modeling in
an application: e.g., density, pressure, speed, etc, and (2)
This substantial variation in data textures across these fields
have significantly influence on data smoothness. As state-of-
the-art lossy compressors is largely designed based on the
exploitation of the data smoothness, thereby the variation of
smoothness markedly affect the compressibility of the data.
These observations are very crucial in understanding diverse
data compressibilities offered by scientific datasets. However,
accurately and efficiently estimating the compression ratio of
a dataset based on a particular error-bound presents significant
challenges. (1) Even for the dataset fields from the same appli-
cation, their data characteristics could be very diverse, which
are dominating factors of data compressibility. Identifying
effective data features to project compressibility among diverse
dataset fields is very challenging. (2) Various compressors
have their own design principles, which could project largely
different compression quality even with the same dataset under
same error bound. (3) Even with the same lossy compressor,
the compression ratio could also be largely varying according
to user-specified error bounds [11], [12]. (4) It is non-trivial
to explore the characteristics of various data textures to the
projection of data compressibility, which is the first study of
its kind. Specifically, there exist many different types of kernel
filters to characterize data textures, where each kernel filter
exhibits distinct effect. Hence, identifying the best-qualified
kernel filter demands a rigorous analysis of the correlation of
those filter data to the compresibility result. (5) Furthermore,
the kernel filter-based texture characterization are often quite
expensive compared to the actual compression time, so how
to substantially lower the characterization time for the online
analysis is a significant challenge.

1Available at https://github.com/hasanur-rahman/XTIMATE.

Our key contributions are fourfold:
• We propose new observations to understand the data

compressibility, especially the substantial impact of di-
verse characteristics of the data textures on the accurate
and efficient estimation of lossy compressibility of the
scientific datasets. To the best of our knowledge, we are
the first to leverage data textures to the projection of data
compressibility in a compressor-agnostic manner across
different application dataset fields.

• We conduct rigorous analysis to determine the best-fit
kernel filter (in the context of our study) to characterize
the various inherent properties of data textures offered by
scientific datasets.

• We propose two optimization strategies to make XTI-
MATE significantly faster than the actual compression
time. We comprehensively analyze and rank the con-
tribution of each convolution space to the estimation
ability, which is followed by pruning the convolution
space. Moreover, we significantly reduce the data space
to further boost the XTIMATE performance without
hurting accuracy.

• We comprehensively evaluate our framework, XTI-
MATE, with three state-of-the-art lossy compressors
based on 10 testing scientific dataset fields from 5 real-
world HPC applications and compare it with the state-
of-the-art lossy compressibility estimators. Experiments
show that the average estimation error by XTIMATE is at
most 7.40% when compared with the measured compres-
sion ratios obtained from those three lossy compressors.
Moreover, our XTIMATE outperforms the related works
by 30x, on average.

The rest of the paper is organized as follows. Section II
provides the background and introduces the scientific datasets.
We discuss the related works in Section III. Moreover, we
introduce the problem formulation and presents the motivation
in Section IV. Section IV is followed by Section VI and VII,
where we present the design details of our framework XTI-
MATE. Then, we present our experiment setup and results
in Section VIII and IX, which is followed by the discussion
of real-world use cases in Section X and the conclusion in
Section XI.

II. SCIENTIFIC DATA & RESEARCH BACKGROUND

In this section, we provide the details of scientific datasets
and present the research background.

A. Scientific Datasets:

For this study, we choose 43 real-world scientific datasets on
various fields from 5 different HPC simulations/applications
of diverse domains. We pull the datasets from SDRBench
benchmark [26], which is widely used in lossy compression
studies [11], [31]–[35]. We present the dataset details as
follows: (1) Exaalt: Exaalt [19] application dataset fields are
generated by molecular dynamics simulation. We use 1D
(2869440) Exaalt dataset fields. Exaalt has six fields: X, Y, Z,
Vx, Vy, Vz. (2) CESM [36] is produced by climate simulation.
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We use 2D (1800x3600) CESM fields. We run our experiments
on dataset fields CLDHGH, CLDLOW, CLDMED, CLDTOT,
FLDS, FLNT, FLNS, FREQSH, FREQZM, FSDS, PHIS from
CESM. (3) Hurricane: Hurricane dataset (3D: 100x500x500)
was produced by a Climate simulation [37]. We evaluate all
the 13 fields such as QCLOUD, QGRAUP, QICE, QRAIN,
QSNOW, QVAPOR, CLOUD, PRECIP, P, TC, U, V, W.
(4) Miranda: Miranda [38] datasets can be obtained from
large turbulence simulations;. We use all the 7 3D (256x384
x384) Miranda fields for our experiment: Density, Diffusivity,
Pressure, Velocity-x, Velocity-y, Velocity-z, and Viscocity. (5)
Nyx [39] is a cosmology simulation data. We use all the 6
3D (512x512x512) Nyx dataset fields for our experiments:
Baryon density, Dark matter density, Temperature, Velocity-x,
Velocity-y and Velocity-z.

B. Background

1) Kernel Filters:: Different types of kernel filters are
frequently used in the area of image processing to catch
diverse characteristics of images such as textures. In particular,
sobel [40] and canny [41] are two most commonly used
filters to detect image textures [42]–[45]. In general, a d-
dimensional filter is applied on a d-dimensional image. Note
that as discussed later in Section VII-A2c, sobel filter is the
best fit in our framework XTIMATE. Therefore, we here
discuss about sobel filter-based convolution. In the following,
as an example, we demonstrate the steps of applying 2D sobel
filter-based convolution, which can be easily extended to the
other dimensional cases (such as 1D and 3D).

First, the 2D sobel filters along the two different directions
(x and y) are outlined as follows, respectively:

Fx =

1 0 −1
2 0 −2
1 0 −1

 Fy =

 1 2 1
0 0 0
−1 −2 −1


We apply these filters on each 3×3 region of a given

2D dataset D to derive the convolution results Cx and Cy

for x and y directions respectively. Finally, we measure the
magnitude C of the convolution by aggregating the results
with the Formula: C =

√
Cx

2 + Cy
2. Note that the 2D filter

has 9 convolution points along each direction, whereas the
3D filter has 27 convolution points along each direction (x, y
or z). Noticeably, the convolution space/complexity increases
rapidly as the number of dimensions increases.

2) Peak Signal-to-Noise Ratio (PSNR): We use PSNR
as a metric to compare the visualization quality of a sci-
entific dataset (compared) with respect to another dataset
(baseline). PSNR is widely used in the lossy compression
community [26], [46]. Suppose, D and D’ are the baseline
and compared datasets. Formula (1) determines the PSNR,
where max(Di), min(Di), and rmse(D,D’) denote maximum
data value in D, minimum data value in D, and root mean
squared error between D and D’ respectively. By observing
Formula (1), we see that a lower value of rmse(D,D’) reveals
smaller error, which in turn leads to a higher value of PSNR.

PSNR = 20 · log10
max (Di)−min(Di)

rmse(D,D′)
(1)

III. RELATED WORKS

In this section, we discuss the related works in two facets:
existing error-bounded compressors, and existing compression
ratio estimation frameworks.

Existing state-of-the-art lossless compressors can only pro-
vide ∼2× compression ratio [10], which is far from desired
in practice, especially in the realm of very large amount of
scientific simulation data to be fitted in the available HPC
storage systems. To tackle the issue, there have been multiple
error-bounded lossy compressors developed to significantly
reduce the sheer amounts of scientific data while preserving
the reconstructed data quality on demand. According to the
prior studies [12], [35], [47]–[49], SZ, ZFP and MGARD(+)
exhibit the best performance in both compression ratio and
speed from among all the existing modern lossy compressors.
SZ [12], [15] is a typical error-bounded lossy compressor de-
veloped based on a prediction-based compression model. ZFP
[13] is another state-of-the-art error-bounded lossy compres-
sor developed based on the orthogonal transform. MGARD
[50], [51] (short for MultiGrid Adaptive Reduction of Data)
is an error-controlled lossy compressor designed based on
multilevel/multigrid methods. MGARD+ [14] is an accelerated
version with the same compression quality. We use value
range-based relative error bound mode offered by the above
compressors for this study. Compared with the above three
error-bounded lossy compressors, other compressors either
suffer from much lower compression ratios or much lower
compression speed. For instance, Bit-grooming [52] and Dig-
itrounding [53] are designed based on the calculation of the
significant number of bits required to satisfy the user-specified
error bound. These compressors suffer from much lower
compression ratios [47] than the aforementioned compressors
which take advantage of the correlation of nearby data in
space.

In general, the error-bounded lossy compressors are driven
by error constraint, so the users cannot foresee the compressed
data size or compression ratio until the full compression
operation is completed. To mitigate the problem, there have
been quite a few compression ratio estimation methods pro-
posed. Wang et al. [30] proposed an extrapolation method
to estimate compression ratios for SZ, and also proposed a
ratio estimation method for ZFP by analyzing the weighted
average of BitsPerBitplane for each block. However, their
solution still suffers from large estimation errors as shown in
their evaluation results. Jin et al. [28] developed an analytical
model to efficiently estimate compression ratio based on the
SZ3 [12] in particular. Lu et al. [29] leveraged sampling
and trial-based approach to estimate compression ratio for
SZ1.4 [11] and ZFP [13] (namely ZFPv0.5.0) respectively.
While achieving moderate efficiency and accuracy, these solu-
tions come with significant drawbacks, which will be discussed
in Section IV-B.
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IV. RESEARCH FORMULATION & MOTIVATION

In this section, we formulate the research problem and
discuss the motivation behind this study.

A. Problem Formulation

We formulate the research problem to describe our research
objective. Given a N-dimensional dataset D = {d1, d2, ..., dn}
(n is the number of data points), a lossy compressor Comp,
and a user-specified error bound e, our research objective
is to efficiently and accurately estimate lossy compression
ratio ECR by analysing and extracting the effective data
characteristics from D while applying a set of our proposed op-
timization strategies Opt. More specifically, our objective with
XTIMATE is twofold: 1) Accuracy: the ECR should be very
close to the measured compression ratio (MCR) obtained by
running the compressor Comp under e. To determine accuracy
under e, we use the estimation error denoted as |MCR−ECR|
/ MCR. 2) Efficiency: the execution time of XTIMATE is
supposed to be much faster than the compressor’s actual
compression time, as required by many online use-cases.

B. Motivation

Research Challenges: Exploring effective data features
poses a considerable challenge, particularly in the light of two
expected capabilities in XTIMATE: (1) being compressor-
agnostic, and (2) accurately estimating compressibility even
based on an unseen dataset field in an application. It is note-
worthy that datasets in an application are from two different
types: (1) Datasets may correspond to different fields. Recall
that the term field refers to the name of a specific simulation
metric in an application: e.g., density, pressure, speed, etc.,
and (2) Datasets may originate from the same field but are
generated at different time steps. Generally, datasets across
different time steps within the same field often manifest highly
similar data characteristics. This assertion is exemplified by
drawing datasets from time-steps 40, 45, and 48 within the
field W of the Hurricane application, as depicted in Figure
1 (a), (b), and (c) respectively. As illustrated, these time-step
datasets share strikingly similar data patterns and properties,
resulting in compression ratios that are close to each other
under the same error bound and same compressor, measuring
121.71, 124.44, and 128.19 respectively.

Compression ratio: 121.71 Compression ratio: 128.19Compression ratio: 124.44
(a) W timestep 40 (b) W timestep 45 (c) W timestep 48

Fig. 1: Illustrating Similar Data Properties across Different
Time-step Datasets of Same Field.

On the other hand, datasets from different fields within an
application often exhibit notably distinct data characteristics,
as illustrated in Figure 2 (a), (b), (c) and (d). Here, these
fields V, QVAPOR, W and QICE of the Hurricane application
demonstrate sharp differences in terms of visualization, data
patterns, and properties, which have significant impact on
the data compressibilities of those fields. Consequently, com-
pression ratios obtained based these dataset fields under the
same error bound and same compressor are distinct, measuring
39.64, 60.96, 128.19 and 321.26 respectively.

CR: 39.64 CR: 321.26CR: 60.96
(a) V Field (c) W Field (d) QICE Field

CR: 128.19
(b) QVAPOR Field

Fig. 2: Illustrating Distinct Data Properties across Different
Field Datasets. Here, CR Denotes The Compression Ratios.

Thus, it is significantly challenging to estimate lossy com-
pressibility across different fields without meticulous attention
to nuanced details on data properties/patterns that render the
compressibility of these dataset fields notably distinct. The
above comparison demonstrates that exploiting effective data
features to project compressibility across different fields is
rather challenging. Owing to the above reasons, the focus of
this paper is on the accurate estimation of data compressibility
across different fields rather than across different time-steps,
as the compressibility estimation across time-steps is relatively
straightforward.

Key Advantages over Related Works: Compared with
existing related works such as [28], [29], XTIMATE has two
major advantages as follows: (1) XTIMATE provides better
compression ratio estimation accuracy while also maintaining
efficiency because XTIMATE is able to provide accurate com-
pression ratio estimation even for compression configurations
other than the default one (e.g., if we use a different prediction
model/parameter in the SZ compressor). (2) While existing
related works such as Jin et al. [28] provides compressor-
specific modeling based on SZ3 (it is designed based on SZ3’s
design principle), our framework XTIMATE is compressor-
agnostic, because of our generic data feature-driven anal-
ysis. Therefore, XTIMATE can be applied to any error-
bounded lossy compressor for estimating the compression
ratios efficiently. (3) The feature analysis in existing related
works [28]–[30] is primarily based on intrinsic properties of
either prediction-based or transformation-based compression
models. In contrast, our framework, XTIMATE, examines
data features – particularly those based on data texture – that
are independent of the design principles of prediction-based
and transformation-based compression models.
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V. OUR OBSERVATIONS

In this study, we observe that (1) scientific datasets across
different fields obtained from HPC applications often exhibit
various manifestations of data textures. Although existing
related works [28]–[30] have studied various data features in
understanding lossy compressibility, they do not particularly
focus on this pivotal property of scientific data. We elucidate
and analyze this observation with Figure 2. For illustrative
purposes, we provide visualizations of four different dataset
fields (V, QVAPOR, W, and QICE) from the Hurricane
application. As depicted in the Figure, each dataset field
manifests distinct forms of data textures. For instance, QICE
field showcases data textures with less pronounced features,
indicating relatively smoother transitions across regions. In
contrast, V field demonstrates a more pronounced data texture
with relatively abrupt transitions across regions.

Furthermore, (2) these distinct attributes of data textures
also exert notable influence on data compressibility. The rea-
son is twofold. (i) On one hand, as previously elucidated, vari-
ous manifestations of data textures exert a significant influence
on data smoothness. As such, in Figure 2, QICE exhibits data
textures characterized by subdued features, thereby yielding a
dataset field with comparatively smoother transitions, whereas
the V field portrays data textures accentuated by prominent
features, resulting in relatively abrupt transitions within the
regions. (ii) On the other hand, existing state-of-the-art error
bounded lossy compressors are mainly designed by exploiting
the spatial correlation inherent within the scientific dataset.
For example, the compression ratio provided by SZ [11],
[12] compressor primarily hinges on the predictive accuracy
derived from nearby data values, whereas ZFP [13] com-
pressor transforms the original data domain to a new data
space to decorrelate the data values for better compressibility.
Therefore, as distinct characteristics of data textures influence
data smoothness, they also affect the compressibility of data
provided by lossy compression algorithms. For instance, as
illustrated in the Figure, since QICE exhibits data textures
leading to relatively smoother transitions compared to QVA-
POR, the compression ratio based on the QICE field surpasses
that based on the V field under the same error bound and same
underlying compressor, measuring 321.26 and 39.64 respec-
tively. Therefore, it is crucial to incorporate this special data
characteristics as a feature in XTIMATE to comprehensively
understand and accurately estimate data compressibility across
different fields.

VI. DESIGN OVERVIEW

In this section, we provide a design overview of our
efficient and compressor-agnostic lossy compressibility esti-
mation framework XTIMATE. Code is publicly available at
https://github.com/hasanur-rahman/XTIMATE.

We present the design of XTIMATE in Figure 3. As shown
in the Figure, XTIMATE takes user-specified error bound as
the input along with the scientific dataset in interest. As for the
design structure, XTIMATE contains three primary modules:
(1) Feature Extraction Module, (2) Optimization Module, and

Feature Extraction Module

Data variation

Data Dispersiveness

Data Texture

Optimization Module

Convolution 
Sampling

Data 
Sampling

User-specified error bound(s)

Given datasets

Train/inference

Lossy 
Compression 

Interface

Machine 
learning 
module

Inference
No

Estimated compression ratio

Meatured compression ratio(s)

Yes

Input

Output

Main module

Submodule/subtask

External module

Fig. 3: XTIMATE Workflow

(3) Machine learning (ML) Module. Each primary module
is divided into various submodules/subtasks. With the user-
specified error bound and the given dataset, XTIMATE per-
forms in-depth analysis to exploit diverse data characteristics,
especially the various characteristics of data textures in the
dataset. Analyzing and extracting these data characteristics
help XTIMATE project data compressibility in a compressor-
agnostic manner. Therefore, XTIMATE does not require to
consider the specific design principles of the lossy compressor
of interest at all. This Feature Extraction Module also depends
on Optimization Module to further improve estimation accu-
racy and boost XTIMATE performance. The Optimization
Module meticulously seeks for the improvement opportunities
and optimizes various aspects of XTIMATE such as analyzing
and reducing the broader convolution space. Finally, the ML
Module becomes operational. More precisely, in the inference
phase, utilizing both the extracted data features and the user-
provided error bound, XTIMATE adeptly estimates the lossy
compression ratio at runtime, eliminating the need for execut-
ing the associated lossy compressor.

VII. DESIGN DETAILS

A. Feature Extraction Module

In this subsection, we discuss our first primary module
and its submodules/subtasks. First, in Section VII-A1, we
first focus on how our proposed data features can contribute
to exploiting different aspects of data characteristics in a
compressor-agnostic manner. Finally, in Section VII-A2, we
describe how we can derive/quantify our data features.

1) Evaluating Diverse Facets of Data Traits: In this
subsection, we perform a comprehensive investigation on
how the data features we consider contribute to the data
compressibility (both individually and collectively). For the
purpose of in-depth understanding, we show the analysis
results based on a set of Hurricane dataset fields among all our
evaluated HPC applications. We use the compression results
(error bound vs compression ratio) obtained from running
SZ3 [12] compressor. Compression results with other dataset
applications obtained from other compressors produce similar
results. Note that the lossy compressors will be discussed in
Section VIII-C respectively.

5



a) Impact of Data Dispersiveness: Data Dispersiveness
expresses how much the data values are spread in a dataset
over the value range of the dataset. On one hand, if most of
the data values are clustered within a certain relatively small
value interval, implying that the data values tend to be closer
to each other, then they would be relatively easy to compress.
On the other hand, if data values are scattered largely over the
whole value range, then the dataset usually would be harder
to compress.
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Fig. 4: Illustrating Data Dispersiveness with Data Distribution
Based on Hurricane V and W fields.

Figure 4 validates the above point with the probability
distribution function (PDF) of two dataset fields, V and W,
from Hurricane application. Other dataset fields or other
application datasets exhibit similar characteristics. As different
dataset fields have different value ranges, we normalize the
data values for each dataset to fit within [0,1] to have a fair
comparison across different fields. Note that V and W have
equal number of data points. In Figure 4, it is observed that V
has a more dispersed data distribution than W has. Considering
this observation, we expect W to be more compressible than
V. To verify this point, we obtain the measured compression
ratios (MCRs) for both datasets by running the SZ3 compressor
under same error bound. The MCR for V and W are 39.64 and
128.19 respectively, which matches our above observation.

Fig. 5: Demonstrating The Impact of Data Dispersiveness on
Compression Ratio among Hurricane Fields

Furthermore, we draw a pool of dataset fields from Hur-
ricane application to demonstrate the following relationship:
the more data are dispersed, the less the compression ratio will
be, as shown in Figure 5. Note that we will discuss how we
quantify the Data Dispersiveness feature in Section VII-A2.

In Figure 5, each colored circle is a pair of values – Data
Dispersiveness value (along x-axis) vs. MCR (along y-axis)
under the same error bound – for each dataset field. Moreover,
the red dotted curve shows the trendline of the relationship. As
can be easily seen, dataset fields such as QGRAUP that have
lower Data Dispersiveness generally are more compressible.
In contrast, dataset fields such as V are less compressible
because of the relatively higher value of Data Dispersiveness.

b) Impact of Data Variation: As scientific data are usu-
ally structured, spatial data locality would play an important
factor to reveal the data compressibility. Specifically, when
the data values correlate more to their nearby data values, the
dataset turns out to be more compressible, and vice versa.
The reason stems from the fact that lossy compressors often
leverage various forms of compression models [11], [12], [14]
as an intermediate phase in the compression pipeline. The
effectiveness of those compression models is highly dependent
on the smoothness/variation of the data.

We use Figure 6 to emphasize and quantify the above con-
cept. The labels in the figure are similar to the ones in Figure 5
except that the x-axis now denotes the Data Variation feature
values of each dataset field. It is worth noting that we quantify
the variation by considering the difference between data values
and mean of their neighboring data values. A lower value of
the Data Variation indicates higher data smoothness, hence
the higher data compressibility. The trendline is consistent
with the analysis we discussed above. For example, a lower
Data Variation value of the field QGRAUP exhibits a higher
compression ratio.

Variation

Fig. 6: Demonstrating The Impact of Data Variation on
Compression Ratio among Hurricane Fields

c) Impact of Data Texture: Note that Data Variation
feature may be limited to disclosing only the local charac-
teristics as opposed to providing a broader view of the dataset
because it only considers the data changes offered by nearby
data points. Therefore, it is also crucial to understand data
compressibility in a broader perspective. In Section V, we
observe that data textures play an important role in under-
standing lossy compressibility. The reason is that data textures
usually spread across the whole dataset (see our observations
in Section V). Consequently, analyzing the data textures may
reveal relatively broader aspects of data characteristics of a
dataset. Therefore, in this study, we also characterize the
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different properties of data textures across dataset fields to
comprehensively understand lossy compressibility.

Compression ratio: 39.64
Data variation: 0.08

Textures Sharpness: 5.23
(a) V (b) W

Compression ratio: 128.19
Data variation: 0.14

Textures Sharpness: 4.74

Fig. 7: Illustrating The Importance of Analyzing Textures

We use Figure 7 to verify the above point, which provides
visualization of two dataset fields: V and W from Hurricane
application. Recall that the lower the Data Variation value is,
the higher the compression ratio tends to be. However, our
measurement shows that W has higher data variation yet it
is more compressible, which seems counter-intuitive at first
glance. More specifically, the data variation values of V and W
are 0.08 and 0.14 respectively while their compression ratios
are 39.64 and 128.19 respectively under the same error bound.
In fact, this seemingly counter-intuitiveness can be explained
by the characteristics of data texture of a dataset. Here, we
will give a brief intuitive explanation of different properties of
data texture, especially the texture sharpness, with Figure 7.
More details about how we quantify the characteristics of
Data Texture can be found in Section VII-A2. Based on the
visualization in the Figure, we can see that although V turns
out to be more smooth (relatively less value of Data Variation)
in the local regions than W does, it has more pronounced data
texture. The above point can be validated by comparing the
relationship among MCRs with the SZ3 compressor (under the
same error bound), the value of Data Variation feature, and
the value of sharpness of Data Texture feature based on dataset
field V and W in Figure 7.

Therefore, to complement the inadequate capability of
capturing broader data characteristics by the Data Variation
feature, we include the characteristics of data texture, such
as texture sharpness, in a dataset as they have ability to
provide the broader view of the dataset. That is, when the
data texture is more pronounced (texture sharpness is higher),
signifying more abrupt changes in the broader data context,
it leads to lower data compressibility. The reason is that
more pronounced data textures foster more towards abrupt
data changes in a relatively broader region. To verify this, we
extract the sharpness of Data Texture feature values for both
V and W, which are 5.23 and 4.74 respectively. Comparing
regions marked with a blue dotted circle in each sub-figure of
Figure 7, we observe that dataset V has more pronounced data
textures than W does. Accordingly, V exhibits a lower MCR
than W does. Therefore, we conclude that Data Texture feature

acts as an effective addition to comprehensively understand
data compressibility in such cases.

Similar to Figure 5 and 6, we also draw the trendline to
find the relationship between the sharpness of Data Texture
and compression ratio (under the same error bound) for each
dataset field in Figure 8. According to the trendline, as
the sharpness of data textures increases, the compressibility
decreases, which is consistent with our above analysis.

Fig. 8: Demonstrating The Impact of Data Texture Sharpness
on Compression Ratio among Hurricane Fields

2) Quantifying Our Data Features: After providing a fine-
grained analysis of the impacts of our proposed data features,
we now present how to quantify those data features.

a) Data Dispersiveness: We use data distribution to
quantify the data dispersiveness. Specifically, we first build
a histogram based on the data distribution. The his-
togram/distribution of the data is constructed based on sam-
pled data points for the purpose of high performance. We
describe our sampling-based optimization strategy later in
Section VII-B2. To build the histogram, we calculate the
appropriate bin index of the histogram using Formula (2).

bin index =
Di −min

bin size
(2)

where Di and min are referred to as the ith value and minimal
value of all sampled data points, respectively. We set the bin
size according to the user-defined error bound because a larger
error bound leads to a more spiky distribution of histogram
bins, which is consistent with the fact that a larger error bound
tends to produce a higher compression ratio.

After building the histogram, we can now measure the
entropy based on the frequency of different histogram bins.
This measured entropy serves as a proxy to quantify the Data
Dispersiveness. Entropy can be calculated by Formula (3),
where Freqi is the frequency (number of data values) of bin
i, B is the total number of bins, and S is the total number of
sampled data points across all bins.

Entropy =

B∑
i=1

−Freq i
S

× log2
Freq i
S

(3)

This entropy value represents the Data Dispersiveness fea-
ture essentially. Intuitively, a lower entropy signifies a greater
concentration of data values within a reduced number of
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bins. Consequently, the dispersion of data values would be
limited, resulting in a narrower distribution. As discussed, this
phenomenon contributes to enhancing the compressibility of
the dataset.

b) Data Variation: As Data Variation reveals the re-
lationship between data points and their nearby data points,
we can approximate it by comparing the currently processed
data value with its neighboring values. Figure 9 shows the
neighboring data points (red circles) with respect to a currently
processed data point (blue circle) for 2D and 3D datasets
respectively.

2D Dataset 3D Dataset

Current data
Neighbor data

Fig. 9: Demonstrating Data Variation Feature Calculation

Data Variation feature is calculated as follows: We first
gauge the difference between the current sampled data point
and the mean of all its direct neighboring points. In For-
mula (4), Di,j refers to the currently processed data point in a
2D dataset while Di−1,j , Di,j−1, Di+1,j and Di,j+1 are four
neighboring data points. There are 6 neighboring data points in
the 3D case. Finally, we compute the average of the difference
values across all of the sampled data points. The intuition is
that if the difference is lower, then the data values in a dataset
tend to be more smooth or less variant in local regions, thus
the overall dataset is expected to be more compressible, and
vice versa.

variationi,j = Di,j − (Di−1,j +Di,j−1 +Di+1,j +Di,j+1)/4
(4)

c) Data Texture: In image processing, researchers of-
ten leverage different kernel filters to characterize different
textures in an image [42]–[44]. As mentioned in Section V,
scientific datasets also exhibit different data textures. Figure 7
serves as a good example of scientific datasets revealing data
textures of varying sharpness. Analogous to image processing
where kernel filters are applied to characterize image textures,
we also apply kernel filters to characterize the data textures
present in scientific datasets. As discussed in Section II-B,
researchers in the image processing community frequently
use two types of kernel filters: (1) sobel and (2) canny [40],
[41], [45]. We infer that the sobel filter is the best choice
in our problem context due to the following reason, Although
both kernel filters-based characterization provide similar XTI-
MATE accuracy, as the number of dimensions and dataset size
increases, canny filter-based texture characterization generally
becomes very expensive. The key reason is that canny needs
multiple passes/steps over the same data points as well as
tuning its parameters (e.g., low and high threshold) for non-
maximum suppression to characterize the textures. On the

other hand, sobel filter-based characterization requires only
one pass [54]. Therefore, sobel filter-based texture character-
ization has a good balance between accuracy and efficiency.

To verify the above point, we compare both the accuracy
(i.e., compression ratio estimation ability) and efficiency (i.e.,
execution speed) of XTIMATE using sobel filter-based vs.
canny-based data texture characterization. Note that during the
comparison, we keep our other proposed features (e.g., Data
Dispersiveness, Data Variation) in XTIMATE as it is. We
use the 1D and 2D training datasets to derive the comparison
results, as canny-based convolution would provide even slower
performance for the cases with 3D datasets. Note that we
do not include testing datasets used in the evaluation for
fairness. Our experiments show that the average estimation
errors are similar. Specificially, they are 6.20% and 5.84%
using sobel filter and canny filter-based data texture char-
acterization respectively in XTIMATE. Moreover, average
execution time of XTIMATE using sobel is only 0.041 sec
while it is 0.335 sec using canny. Based on our results,
the sobel filter-based texture characterization in XTIMATE
brings out two key conclusions: (1) similar accuracy (i.e.,
estimation error) as that of using canny-based convolution,
and (2) much faster execution time as compared to canny-
based convolution in XTIMATE. Consequently, we exclude
canny filter-based convolution and only focus on applying
sobel filter-based data texture characterization for Data Texture
feature in XTIMATE.

We now quantify the sharpness of Data Texture feature
based on sobel filter-based convolution strategy. First, we
apply d-dimensional sobel filter on d-dimensional dataset D
across all sampled data points, where each sample data point
acts as a centered point in each convolution). Note that
our data sampling-based optimization strategy is discussed in
Section VII-B. These convolution results over the sampled
regions correspond to the characteristics of the data texture.
Next, to characterize the sharpness of Data Texture from
these convolution results, we build a histogram to analyze
the distribution of convolution results. Finally, we determine
the entropy of the histogram in a similar way as we did for
the Data Dispersiveness feature extraction by Formula (2)
and (3). The entropy measurement follows the same process as
that of the Data Dispersiveness feature extraction except that
the texture-based histogram projects important insights on the
characteristics of data texture as opposed to that of data values.

3) Correlation Analysis of Features: We now assess the
average correlation between our features and compression ratio
across different training dataset fields based on different error
bounds. Table I shows the results. To compute the correlation
for each feature within a specific compressor context, we eval-
uate feature values and compression ratios under diverse error
bounds for different training datasets. For each error bound,
we obtain two sets of results (feature value vs. compression
ratio) linked with all training datasets. Finally, we calculate
the Spearman Ranking Correlation Coefficient for these two
result arrays and determine the average correlation across di-
verse error bounds. Recall that Spearman Ranking Correlation
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Coefficient provides measurement between -1 and +1, where
-1 implies strong negative correlation and +1 implies strong
positive correlation. Consistent with the insights/observations
from our feature analysis in Section VII-A1, all of our
proposed features yield a strong correlation with compression
ratio. Across all compressors, the average correlations are -
0.69, -0.70, and -0.78 for the three features, respectively. These
results confirm that our proposed features are expected to be
effective in estimating compression ratios with XTIMATE.

TABLE I: Average Correlation Coefficient between Each Fea-
ture Value and Compression Ratio across Different Training
Dataset Fields Based on Different Error Bounds

Compressor Data Dispersive-
ness

Data Variation Data Texture

SZ3 -0.68 -0.69 -0.80

SZ1.4 -0.67 -0.70 -0.79

ZFP0.5.0 -0.73 -0.69 -0.77

MGARD+ -0.70 -0.73 -0.77

B. Optimization Module

Now, we present our optimization strategies for reducing
kernel filter convolution space and data points during feature
extraction to speed up the XTIMATE performance.

1) Optimization 1: Reduce Convolution Space for Sobel
Filter: We expect our framework XTIMATE to be faster
than the the actual compression time with a lossy compressor.
Note that compression time refers to the time needed to
execute a particular lossy compressor with an error bound on
a dataset. One of the dominant factors in the execution time
of XTIMATE is the number of convolved regions required
during Data Texture feature extraction. Assuming we have
N data points and need M convolutions for each data point
(this point acting as the centered one during convolution)
along each direction, the total convolution space is N×M×d,
where d is the number of dimensions of the dataset. This
N×M×d would pose a serious challenge to maintain efficiency
for higher-dimensional datasets. For example, as discussed in
Section II-B for a 3D dataset, there are a total of 27 (3×3×3)
convolution regions in 3D sobel filter along each axis direction.
Consequently, the total number of convolution regions along
all directions for all N data points is N×27×3, which would
be extremely large for a high-dimensional dataset even if we
perform convolution only on sampled data points. Recall that
the expected goal of XTIMATE is to reach a high accuracy
yet without compromising performance.

To address the issue of large convolution space, we ex-
tensively analyze the relationship among convolution space,
visual data texture quality and estimation accuracy, aiming to
reduce the space effectively. Our approach involves identifying
the regions in sobel filter that most significantly contribute
to XTIMATE’s accuracy (i.e., ratio estimation). By selecting
these critical points, we achieve two objectives: (1) maintain-
ing accuracy to the greatest extent possible compared to using
all convolution points, and (2) sustaining high XTIMATE

efficiency. Then the question becomes: How can we rank the
convolution filter regions to retain only the critical ones? To
answer this question, we must revisit the core motivation for
incorporating kernel filters in our study, which is to exploit the
characteristics of data textures inherent in scientific datasets.
As such, the critical convolution points are the ones that enable
the detection of data textures more accurately (the detection
would fail without all of them).

We conduct an extensive offline analysis to pinpoint the
critical convolution regions in the sobel filter. Our analysis
starts with applying the Sobel filter to all data points in dataset
D to obtain the full convolution result, denoted by FC. We
then conduct multiple tests using modified Sobel filters on D,
each forming by skipping a different convolution point for
comparison. For the test iteration i, we denote the sampled
convolution result as SCi. We employ Peak Signal-to-Noise
Ratio (PSNR) to assess convolution distortion between FC and
SCi. PSNR is a common metric for comparing visualization
quality in scientific datasets. In our context, higher PSNR val-
ues indicate better-preserved data texture quality. Using these
PSNR measurements for all SCi, we construct a ranking based
on the normalized values. This ranking allows us to generate
heatmaps for the regions in sobel filter along each axis. Higher
values on these heatmaps indicate greater significance of the
corresponding filter regions in preserving texture quality.

Fig. 10 shows the heat map of 3D filter convolution along
each x, y, z direction based on the average ranking results
across all 3D datasets fields used in the XTIMATE training
only. We do not include the testing dataset fields for fairness
purpose. In the Figure, the more darker the cells are, the
more critical the convolution points would be. Accordingly,
we select the top 10 ranked points for the 3D Sobel filter in
XTIMATE. Likewise, we make similar selections for Sobel
filters of other dimensions (1D and 2D).
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Fig. 10: Heat Map to Identify Significance Level of Each
Convolution Space

TABLE II: Average XTIMATE Estimation Error and Running
Time using Full and Reduced Convolution Space with 2D and
3D Datasets Across Different Error Bounds.

Metrics CESM (2D) Miranda (3D) Nyx (3D)
Full Reduced Full Reduced Full Reduced

Estimation Error 9.24% 9.34% 3.76% 5.10% 5.36% 4.55%

Running time(s) 12.80 8.84 43.24 23.94 269.33 141.32

Finally, we validate XTIMATE’s accuracy and efficiency
with and without this optimization. Table II shows the average
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estimation error and running time across various error bounds
for scientific datasets from different applications. Due to space
constraints, we present results for a selected few datasets,
which closely resemble the other datasets. Regarding accuracy,
the table demonstrates that reduced convolution space yields
similar average estimation errors compared to full convolution
space. However, XTIMATE with reduced convolution is ap-
proximately 2× faster that that with full convolution space.
Moreover, as seen, with increasing dimensions and dataset
size, XTIMATE’s running time significantly increases when
employing full convolution space. Based on the results, we
verify that our reduced convolution space-based optimization
is essential for XTIMATE to execute faster.

2) Optimization 2: Reduce Data Points in Feature Ex-
traction: Now we discuss our second optimization, which
aims at further improving the XTIMATE efficiency while still
maintaining good accuracy.

(b) 3D Dataset(a) 2D Dataset

Fig. 11: Stride-2 Data Sampling

During the features extraction, we employ stride-k uniform
sampling on the dataset. Figure 11 shows two examples of
stride-2 uniform data sampling in 2D and 3D datasets respec-
tively. Our sampling strategy maintains a low average sampling
rate of just 3.02% across all 8 testing datasets. With 3.02%
sampling, XTIMATE’s average running time is approximately
90× faster compared to using all points. We further validate
that this sampling strategy can still maintain high accuracy
for XTIMATE. Based on our experiment results, XTIMATE
average estimation errors across our evaluated datasets and
all the compressors using all and 3.02% sampled data points
are 5.90% and 6.77% respectively. As we can see, the dif-
ference between these estimation errors is negligible, which
consolidates our sampling-based optimization strategy. There-
fore, with this optimization, XTIMATE further improves the
performance significantly while maintaining low estimation
error. Note that the above accuracy and efficiency results are
obtained with the Optimization 1 is in place.

C. ML Module

In this section, we discuss how we train our framework
XTIMATE. Finally, we detail the inference process for XTI-
MATE.

1) Advantage of ML Models over CNNs: In this paper,
XTIMATE ties to traditional statistical ML models for train-
ing and inference instead of depending on CNNs. The reason
is two-fold: (1) CNN-based modeling tends to operate at a high
level of abstraction, lacking the granularity needed to discern

the fine details of which data features play a crucial role in
capturing the compressibility of the data. This limitation arises
due to the automatic feature exploration performed by the
inner algorithm of CNNs. In the realm of lossy compression
studies, understanding the intricate interactions between data
features and their impact on data compressibility is essential.
For example, we would not know that data textures play an im-
portant role in understanding data compressibility (mentioned
in Section V). Only through this comprehensive understanding
can we propose more effective compression algorithms in the
future, which can achieve higher compression ratio and mini-
mized data distortion. (2) the training and inference processes
involved in CNNs are time-consuming and resource-intensive.
In the context of XTIMATE, when dealing with a scientific
dataset, the necessity to partition the dataset into blocks and
treat each block as individual entity to feed CNNs for training
and inference introduces considerable time overhead. This is
especially significant considering that the compression time
taken to execute lossy compressor typically involves only a
few full passes over the data values. On the other hand, CNNs
often comprise numerous layers ranging from tens or hundreds
of intermediate layers to a couple of fully connected layers,
which require extensive fine-tuned parameterizing. In contrast,
traditional statistical ML models are lightweight, enabling
researchers to scrutinize the significance of each data feature
with respect to compressibility very efficiently.

2) Choice of ML models: Recall that the goal of XTI-
MATE is to efficiently estimate lossy compression ratios based
on user-provided error bound. As estimating compression
ratios is a regression task, we focus on widely used ML model
regressors such as decision tree regressor (DTR), random forest
regressor (RFR) [55], support vector regressor (SVR) [56].
Based on our experimental results, we find that DTR and
RFR are the best fit for our framework XTIMATE. Generally,
RFR is more robust and superior to DTR because it aggregates
many decision trees to make decisions and prevent overfitting.
Hence, we adopt RFR in XTIMATE for the estimation.

SVR is not a good fit for our problem setting. The reason
stems from the properties of SVR model. In particular, SVR
requires feeding non-overlapping spaces of training samples to
provide good accuracy. For our problem setting, we observe
that measured compression ratios could sometimes be very
close to each others so that there would be some overlapping
regions in training samples.

To verify the above analysis, we perform a comparison of
average compression ratio estimation errors of XTIMATE
using SVR and RFR based on different testing datasets and
compressors across different error bounds. Table III outlines
the results. For each ML model and within a specific com-
pressor context, we calculate the estimate errors under a set
of various error bounds based on each testing dataset field.
On average, we choose 10 uniformly distributed error bounds
from the range 1E-10 to 1E-1. Finally, for each testing field,
we calculate the average of such estimation errors across all
four compressors. In the Table, compared to RFR, SVR incurs
very high estimation errors for all testing fields. On average,
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while XTIMATE with RFR incurs only 6.77%, XTIMATE
with SVR incurs 44.11% estimation error.

TABLE III: Comparison of average estimation errors with SVR
and RFR across four lossy compressors for testing fields based
on diverse error bounds

ML Exaalt (2D) CESM (2D) Hurricane (3D)
Model Vy Y CLDMED FLNT V PRECIP

SVR 18.31% 21.19% 21.89% 23.59% 75.72% 66.43%

RFR 4.49% 4.76% 10.07% 6.80% 9.29% 13.76%

ML Miranda (3D) Nyx (3D)
Model Viscocity Velocityy Temperature Velocityy

SVR 114.39% 37.80% 19.95% 20.39%

RFR 6.57% 8.14% 8.16% 2.01%

3) XTIMATE Training: We now delve into the training
of XTIMATE. To construct the training samples based on a
given dataset, we first execute the corresponding compressor
based on 25∼30 error bounds with a range encompassing from
∼1e-7 to ∼1e-1. After the executions, we collect the compres-
sion ratio results. Moreover, for each such error bound, we
extract our three key data features by applying optimization
strategies. Following the training data collection, we employ
a 5-fold cross-validation on the training samples to fine-tune
the parameters of RFR to further improve the XTIMATE
accuracy.

4) XTIMATE Inference: We now introduce the inference
phase of XTIMATE. This phase requires inputting a dataset,
a required error bound and an associated lossy compressor
for which the compression ratio would be estimated. With
these inputs, XTIMATE engages its features extraction and
optimization strategies to produce the testing sample. Finally,
this testing sample is fed into XTIMATE to accurately
estimate the compression ratio. We can see that XTIMATE
does not require any execution of lossy compressors for the
compression ratio estimation.

VIII. EXPERIMENTAL METHODOLOGY

In this section, we present the evaluation setup by discussing
the system environment, datasets, lossy compressors and base-
lines.

A. System Setup & Baselines

We conduct our experiments on a server that is equipped
with Intel Xeon E5-2695v4 nodes, where each node has up
to 128GB DDR4 and 36 cores. The experiments regarding
different compressors and estimation methods were executed
in exactly the same environment for fairness. We compare
our framework XTIMATE with two state-of-the-art related
works: ICDE22 [28] and IPDPS18 [29]. ICDE22 proposes
compression ratio modeling with the SZ3 compressor, which
is customized for SZ3 in particular. For fairness, we use
its default settings for the prediction model – lorenzo and
regression. On the other hand, IPDPS18 aims to estimate the
compression ratio with the SZ1.4 and ZFP0.5.0 compressors

based on sampling-based gaussian modeling and trial-and-
error approach respectively. As for IPDPS18 to estimate
SZ1.4 compression ratio, it first reconstructs a new dataset
based on sampling the original dataset, followed by extracting
different parameters results (e.g, curve-fitting hit ratio, huff-
man tree size, etc.) from running SZ1.4 on the newly sampled
dataset. After that, based on the parameters results, it applies
a gaussian model to estimate the huffman node count on the
original dataset. Finally, IPDPS18 uses a formula to estimate
the compression ratio of the original dataset. Moreover, as for
IPDPS18 to estimate ZFP0.5.0 compression ratio, it relies on
a trial-and-error-based iterative approach on the new dataset
based on the sampling. The default number of max-iterations
of IPDPS18 is 20. We also perform IPDPS18 evaluation with
ZFP0.5.0 under 50 max-iterations.

B. Dataset Evaluation Methodology

Evaluated datasets are presented earlier in Section II-A.
Since our goal is to assess XTIMATE across different fields in
an application, we randomly choose one dataset field (among
all fields) as the testing dataset and all the rest of the fields as
training datasets for each assessment. For each application, we
show results with two dataset fields to balance the experiment
time. For example, when we select the Temperature dataset
field from Nyx as testing, we train XTIMATE using all the
remaining fields from Nyx to assess XTIMATE. In a separate
instance, the Velocity-y field from Nyx is chosen as the testing
for XTIMATE, while the rest of the fields serve as the training
datasets. This approach ensures that the evaluation process
tests the XTIMATE’s ability to generalize to the unseen
dataset accurately, as it must perform well on dataset that it
hasn’t been explicitly trained on. Moreover, we also set up
the evaluation process according to strength of the baselines.
Specifically, as IPDPS18 works well with low dimensional
data, we also include 1D and 2D datasets to have a fair
comparison with it. Note that in the evaluation results, labeling
a figure with a dataset field from an application implies its use
as a testing field for that application.

C. Evaluated Lossy Compressors

We conduct the evaluation with three state-of-the-art
lossy compressors such as SZ [11], [12], ZFP [13] and
MGARD+ [50], [51], each with distinct compression design
principles.

• SZ: SZ is a prediction-based error-bounded widely used
lossy compressor. As two baselines in this study use two
different versions of SZ, we conduct the evaluation with
two versions of SZ: SZ1.4 [11] and SZ3 [12].

• ZFP: ZFP by Lindstrom et al. [13] is a tranform-based
error-controlled lossy compressor. We use ZFP0.5.0 in
our experiments as required for the comparison with the
related works. While different transformation methods
are available, Lindstrom et al. [13] indeed shows that
block orthogonal transformation is more efficient on data
correlation than other transformations such as discrete
haar wavelet transform (HWT). Recall that the data
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smoothness is one of the most important aspects when it
comes to scientific data compression. Hence, we choose
ZFP from the family of transform-based compression
models.

• MGARD+: MGARD+ [14] is an accelerated version of
MGARD [50], [51] with same compression quality. It
leverages multigrid adaptive reduction approach.

IX. EVALUATION

In this section, we provide the evaluation results. We
consider two different metrics: (1) accuracy: the less the
estimation error is, the more accurate the corresponding model
is, (2) efficiency: how fast the execution of the corresponding
model is.

A. Ablation Study
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Fig. 12: Ablation Study for Data Features

In this subsection, we validate the significance of each of
our proposed data features with an ablation study based on
Hurricane and Nyx application datasets. For the purpose of
illustration, we show results under SZ3 compressor across
different error bounds based on two testing fields V and
Velocity-y from Hurricane and Nyx application respectively.
Other application dataset fields show similar results. To verify
and illustrate how each data feature takes effect and con-
tribute to the overall compressibility estimation, we construct
XTIMATE by excluding one feature each time, and observe
the effect in estimating the compression ratio. Figure 12
demonstrates the results. In the Figure, MCR, All, F1-out, F2-
out and F3-out denote the measured compression ratio (MCR),
XTIMATE estimation, XTIMATE estimation without Data
Dispersiveness feature, XTIMATE estimation without Data
Variation feature and XTIMATE estimation without Data
Texture feature respectively. As seen in the figure, the con-
tribution of each feature towards the estimation accuracy
varies across both different error bounds and different dataset
fields. For example, the contribution of Data Dispersiveness
feature would have the most significant contribution (highest
estimation error of 38.86% among all other models) when
using Hurricane V dataset. On the other hand, the Data Texture
feature contributes mostly (highest estimation error of 5.08%
among all other models) to overall compressibility when using
Nyx Velocity-y field. It is also evident that the contribution is
not uniform across different error bounds. However, if we use
all of our proposed features (All), the estimated compression
ratios would be the closest to the ground truth MCR, which

are 3.87% and 2.36% with Hurricane V and Nyx Velocity-y
respectively. These result signify the importance of considering
all of our proposed features in XTIMATE to obtain accurate
estimation of lossy compressibility.

B. Accuracy

Here, we perform the accuracy analysis of our framework
XTIMATE compared to the two related works: ICDE22 [28]
and IPDPS18 [29] based on the estimation error.

1) Comparison between XTIMATE and ICDE22: We
compare the accuracy between XTIMATE and ICDE22 by
analyzing the estimation error across different error bounds.
Figure 13 shows the estimation error across uniformly chosen
25∼30 error bounds in the range from ∼1E-7 to ∼1E-1. For
the sake of space, Figure 13 shows partial results with 4 testing
dataset fields from 4 different HPC applications. Other testing
dataset fields demonstrate similar results. On average, the
estimation error for our framework XTIMATE is 7.40% while
ICDE22 shows 12.91% estimation error. As seen in Figure 13,
ICDE22 usually struggles to maintain good accuracy as the
error bound gets larger. The key reason is that ICDE22 lacks
enough quantization information to model the SZ3 execution
under larger error bounds. Nevertheless, the average estimation
is still reasonably good as ICDE22 model follows SZ3 design
principle. The main disadvantage of ICDE22 is that it cannot
be applied to estimate the compression ratios for other lossy
compressors.

2) Comparison between XTIMATE and IPDPS18: We
also compare the accuracy between XTIMATE and IPDPS18
by analyzing the estimation error across a set of error bounds.
These error bounds are used in the IPDPS18 paper [29].
For the interest of space, in Figure 14, we provide partial
results with two compressors: SZ1.4 and ZFP0.5.0 based on
with 3 testing dataset fields (from 3 different applications).
As seen in Figure 14, the compression ratio estimation by
our framework XTIMATE is very close to the MCR for both
SZ1.4 and ZFP0.5.0 results. However, IPDPS18, especially
with SZ1.4, encounters higher estimation error under the
majority of error bounds. We also observe that as the number
of dimensions in the dataset become higher, the estimation
error for IPDPS18 gets higher. The root cause behind the
higher estimation error is the sampling approach adopted by
IPDPS18 in the case with SZ1.4. After performing the sam-
pling, IPDPS18 first reforms a new synthetic dataset by only
considering those sampled data points and then performs the
rest of its design steps. Contrasting to our approach in which
we still consider retaining the characteristics of the original
dataset, IPDPS18 loses the actual data charateristics from
original dataset by constructing a completely new dataset with
sampled data points. This contributes to the incorrect node
count estimation in the guassian model used by IPDPS18,
which in turn produces larger estimation errors. In the case
of ZFPv0.5.0 compression ratio estimation, IPDPS18 follows
trial-and-error-based approach after the sampling. We perform
the evaluation under two max-iterations: 20 (default) and 50
for IPDPS18. As demonstrated in Figure 14, as we set larger
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Fig. 13: Comparison of Estimation Error between XTIMATE and ICDE22 Models across Different Error Bounds.
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(a) Exaalt Y (with SZ1.4)
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(b) CESM FLNT (with SZ1.4)
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(c) Hurricane V (with SZ1.4)
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(d) Exaalt Y (with ZFP0.5.0)
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(e) CESM FLNT (with ZFP0.5.0)
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(f) Hurricane V (with ZFP0.5.0)

Fig. 14: Comparison of Estimation Error between XTIMATE and IPDPS18 Models across Different Error Bounds.
IPDPS18(20) and IPDPS18(50) denote the model execution under 20 and 50 max-iterations respectively.

max-iterations, the estimation error becomes lower. However,
larger max-iterations also drastically reduces the performance
because of the relatively larger number of executions of the
corresponding compressor. On average, the estimation error
for XTIMATE with SZ1.4 and ZFP0.5.0 are only 6.66% and
7.26%, while it is more than 20% for IPDPS18 with both
SZ1.4 and ZFP0.5.0.

TABLE IV: Average Estimation Error of XTIMATE with
MGARD+ across Different Error Bounds.

Comp. Exaalt (2D) CESM (2D) Hurricane (3D)
Vy Y CLDMED FLNT V PRECIP

MGARD+ 2.10% 1.65% 6.31% 5.42% 6.82% 13.01%

Comp. Miranda (3D) Nyx (3D) Average
Viscocity Velocityy Temperature Velocityy

MGARD+ 2.07% 2.79% 8.91% 2.42% 5.15%

3) Accuracy of XTIMATE with MGARD+: We claim that
our framework is compressor-agnostic. To support the claim,
we also evaluate XTIMATE accuracy by analyzing estimation

error with the MGARD+ compressor. Table IV shows the
average estimation error across different error bounds with
MGARD+ based on all 10 testing datasets. On average across
all dataset fields, XTIMATE only causes 5.15% estimation
error. This result confirms that XTIMATE can be applied
to accurately estimate compression ratios with any lossy
compressor.

C. Efficiency

Now, we evaluate the execution time of XTIMATE,
ICDE22 and IPDPS18 by comparing them with actual com-
pression time.

Table V shows the experiment results. We perform com-
parisons with two related works. As for the comparison with
ICDE22, we can see from the Table that, on average across
all testing fields, XTIMATE is 10× faster than ICDE22. The
main drawback of ICDE22 is that even though it leverages
sampling and estimation approaches, the model still requires
going through each stage of SZ3 compressor design. In
contrast, we only need one pass to extract the data features.
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TABLE V: Average Execution Time Compared to Correspond-
ing Compressor’s Compression Time for XTIMATE, ICDE22
and IPDPS18 (20 Iterations) Models across Different Error
Bounds

Application Testing Field SZ3 SZ1.4 ZFP0.5.0 MGARD+
Datasets XTIMATE ICDE22 XTIMATE IPDPS18 XTIMATE IPDPS18 XTIMATE

Exaalt(1D) Vy 0.195x 0.301x 0.405x 7.668x 0.398x 5.416x 0.414x
Y 0.181x 0.309x 0.340x 7.187x 0.338x 4.593x 0.405x

CESM(2D) CLDMED 0.028x 0.390x 0.071x 10.404x 0.063x 3.692x 0.078x
FLNT 0.025x 0.372x 0.064x 8.951x 0.059x 4.088x 0.071x

Hurricane(3D) V 0.017x 0.663x 0.026x 6.377x 0.022x 1.359x 0.041x
PRECIP 0.011x 0.666x 0.022x 8.367x 0.014x 0.943x 0.032x

Miranda(3D) Viscocity 0.012x 0.757x 0.029x 6.782x 0.031x 1.134x 0.034x
Velocityy 0.015x 0.672x 0.024x 5.508x 0.026x 1.058x 0.038x

Nyx(3D) Temperature 0.025x 0.718x 0.056x 4.274x 0.058x 0.796x 0.045x
Velocity-y 0.023x 0.723x 0.059x 5.153x 0.065x 0.914x 0.045x

Average Across All Fields 0.053x 0.557x 0.126x 7.342x 0.122x 2.743x 0.120x

On the other hand, as for the comparison with IPDPS18, we
perform two experiments with SZ1.4 and ZFP0.5.0. Consider-
ing both cases, on average, XTIMATE outperforms IPDPS18
by about 40x. The two key reasons are: (1) we observe
that the gaussian model-based estimation stage reduces the
overall performance of IPDPS18 with SZ1.4, and (2) the trial-
and-error-based iterative approach largely contributes to the
performance decline of IPDPS18 with ZFP0.5.0. As to verify
the generality of our framework XTIMATE, we also perform
experiments with MGARD+ compressor. As seen in the Table,
on average across all testing datasets, the execution time of
XTIMATE compared with the MGARD+ compression time
is only 0.120×.

X. REAL-WORLD USE CASES

In this section, we elaborate several real-world use-cases for
our framework XTIMATE.
a. Control storage space on demand: In the realm of pro-
cessing scientific data or conducting posthoc analyses, HPC
systems frequently grapple with the constraint of limited stor-
age capacity. Employing an error-bounded lossy compressor
emerges as a potent strategy within this context, adeptly
curtailing the expanse of storage required. It is worth noting
that the size of compressed data might still remain substantial
due to the sheer magnitude of the raw simulation data and
varying error control quality. This juxtaposes the situation
where users are typically allotted a fixed storage space.
For example, a user in supercomputing facilities is often
assigned with a very limited storage capacity (e.g., ∼50TB
for an ORNL summit regular user [57] and ∼10TB for an
ANL Theta regular user [58]). Consequently, it becomes
imperative to gauge the compressed data size, necessitating
ratio estimation beforehand (before running compressor) to
avert potential crashes arising from breaching the confines of
the designated storage space threshold.
b. Control memory footprint to improve scalability: In some
real-world applications such as quantum circuit simulation
[23] and deep learning, the execution scalability is often
limited by the strict memory capacity. To address this issue,
there have been quite a few explorations [17], [24], [25]
leveraging error-bounded lossy compression techniques to
reduce the memory capacity requirement. However, memory
needs to be pre-allocated to avail the compressed data. As

the memory requirement cannot be forecast without the com-
pression, each execution of those applications has to allocate
a much larger memory space than actually needed, which
results in waste of available memory resources. This may
contribute to impeding the seamless execution of other pivotal
tasks on the same platform. To mitigate the above issue,
it becomes imperative to forecast the compression ratio to
determine expected memory footprint. By gaining an insight
about the projected memory footprint, such applications can
optimize memory allocation strategies, preventing wastage
and ensuring the smooth coexistence of diverse tasks.
c. Control data transfer time: Scientific data generated by
HPC applications is frequently disseminated through remote
data storage systems [26], [27]. When it comes to local
post-hoc analysis, recipients, including database endpoints
and users, face the challenge of remotely transferring vast
amounts of data. Opting for highly compressed data, as
opposed to the original data, is expected to reduce trans-
fer time and alleviate I/O bottlenecks. However, to make
informed decisions, accurate estimation of the compressed
data size is crucial. This foresight enables users to assess the
necessary data transfer bandwidth without the need for actual
compression procedures, streamlining the planning process
for efficient data handling.

XI. CONCLUSION

In this paper, we introduce a compressor-agnostic frame-
work, XTIMATE, for accurately and efficiently estimating
compression ratios that meets user-defined error bounds. XTI-
MATE leverages key data features, with a particular emphasis
on data textures, to enhance data compressibility projections
in a compressor-agnostic manner. We also propose two op-
timization strategies to further improve efficiency. As our
framework is lightweight, accurate and efficient, it would help
user enabling more efficient data orchestration during runtime,
including memory allocation, storage space preservation, and
remote data transfer. On average, XTIMATE incurs only a
6.77% estimation error, and it can achieve up to 50× speedup
in execution compared to related approaches.
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