
Repair I/O Optimization for Clay Codes via
Gray-Code Based Sub-Chunk Reorganization in

Ceph
Baijian Ma

Huazhong University of Science and Technology
Wuhan, Hubei, China
mabaijian@hust.edu.cn

Yuchong Hu
Huazhong University of Science and Technology

Wuhan, Hubei, China
Shenzhen Research Institute of

Huazhong University of Science and Technology
Shenzhen, Guangdong, China

yuchonghu@hust.edu.cn

Dan Feng
Huazhong University of Science and Technology

Wuhan, Hubei, China
dfeng@hust.edu.cn

Ray Wu
Inspur

Jinan, Shandong, China
wuruizhen@inspur.com

Kevin Zhang
Inspur

Jinan, Shandong, China
zhangkai bj@inspur.com

Abstract—Erasure coding provides high fault tolerance with
low storage redundancy, albeit at the expense of excessive repair
bandwidth. Minimum-Storage Regenerating (MSR) codes employ
sub-chunk partitioning to minimize repair bandwidth with the
lowest storage redundancy. Clay codes stand as state-of-the-art
access-optimal MSR code (i.e., the amount of data read from disk
equals that of network transmission). However, it has an issue of
significant non-sequential I/Os during repair, making disk read
a bottleneck for repair performance. Some studies explore the
adoption of a larger chunk size to alleviate I/O overhead, yet the
effect is limited.

We find that adjusting the order of sub-chunks on the disk
contributes to enhancing I/O continuity during repair, and we
theoretically prove the existence of a minimum overall I/O amount.
Furthermore, we propose G-Clay, employing a Gray code sequence
as the sub-chunk arrangement for Clay codes, transforming non-
sequential disk access into sequential access with optimal I/O
efficiency. We design read and write schemes based on Ceph and
optimize additional overhead. Experiments indicate that G-Clay,
compared to Clay, optimizes overall single-chunk repair time by
43.6%.

I. INTRODUCTION

Erasure codes are widely employed in modern storage
systems [16], [44], offering higher reliability with lower
redundancy compared to replication schemes. Among erasure
codes, Reed-Solomon (RS) codes are particularly popular in
production due to their simple structure and Maximum Distance
Separable (MDS) property (i.e., fault tolerance equals the
additional storage overhead) [35]. Systems like Azure [16],
Google [12], Facebook [25], etc., widely employ RS codes.
However, RS codes suffer from high repair overhead, requiring
the reading and transmission of k times the data for repairing
a lost chunk in a storage system with k data chunks and m
parity chunks.

Various repair-friendly codes have been proposed in the
literature to reduce repair bandwidth, such as locally repairable
codes [16], [19], [36], piggybacking codes [33], and regener-
ating codes [9]. Among these, the Minimum Storage Regen-
erating (MSR) code maintains MDS property similar to RS
and achieves the lowest repair bandwidth. Several theoretical
MSR constructs have been developed, including NCCloud [15],
PM-RBT [31], Butterfly [27], and Clay codes [42]. We define
the amount of data read from disks by helping nodes as the
repair-read volume and the transmitted data volume as repair
bandwidth. For example, with k = 10, m = 4 MSR code,
the repair bandwidth is only 32.5% of RS code, showing a
substantial bandwidth reduction. Early MSR codes require
repair-read volume greater than repair bandwidth, but Clay
codes possess the access-optimal property, ensuring these two
are equal and minimized (i.e., helper nodes directly transmit
locally read data). Additionally, as the theoretically state-of-the-
art MSR code, Clay exhibits advantages like flexible parameter
selection, low computational overhead, and serves as a plugin
in Ceph [1].

Despite the bandwidth advantages, we observe disk per-
formance becoming the bottleneck for Clay code repairs in
modern data centers due to the sub-packetization of MSR. As
illustrated in Figure 1, we define the single-chunk repair time
as the sum of disk read, network, and computation for k = 16,
m = 2 Clay code using 2MB chunks. We employ mature
SIMD computation libraries for the decoding calculation [23],
[30] (green portion), and configure a 20Gbps RDMA network,
capable of supporting up to 100Gbps [11], [17] (yellow portion).
Thus disk read time becomes the bottleneck (blue portion).

The leftmost bar in Figure 1 represents the repair time of
RS code, where each chunk exhibits identical performance. In

0

20

40

60

80

100

120

140

RS c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17
RS + Clay Chunk Index

R
ep

ai
r

T
im

e
(m

s)
Compute Network Disk

Figure 1. Comparison of single-chunk repair time between RS and Clay Code
(k = 16,m = 2) on HDD. c0 ∼ c17 represent the repair time for the 18
chunks of Clay code, respectively.

contrast, the repair process for Clay codes involves helping
nodes transmit a subset of sub-chunks within a chunk. Due
to its unique coupled structure (see §II-B), the sub-chunk
access pattern varies based on the repaired chunk’s position,
demonstrating different degrees of non-sequentiality. Therefore
we provide the repair time for all chunks of Clay (use c0 ∼ c17
in Figure 1 to represent each chunk). For repairing c0, the
other 17 helper nodes need to transmit the first half of the
sub-chunks within the chunk, requiring only one I/O. This
amount is 2 for c2 or c3, 4 for c4 or c5, and for c17, accessing
256 discontinuous sub-chunks leads to 256 I/Os, resulting in
significantly high disk read time, surpassing even RS repair
time, as depicted in Figure 1.

A direct approach involves reading the entire chunk into
memory in a single I/O, filtering a subset of sub-chunks, and
then transmitting them. However, this naive method increases
system overhead, violating the access-optimal property. In
§V, we discuss the limitations of this approach. Some studies
attempt to mitigate non-sequential I/O overhead by utilizing
larger chunk sizes while maintaining the minimum repair-read
volume [1], [39], [42]. However, the sub-packetization level
of access-optimal MSR codes (i.e., the number of sub-chunks
within a single chunk) has been proven to be exponential [5].
For moderately large k and m, even with the largest chunk
sizes allowed by system configurations, it is not effective in
reducing I/O overhead (see §V). Furthermore, if small chunks
are unavoidable, there is no existing research addressing the
disk read efficiency issues for Clay codes.

Our insight is that, while maintaining the same repair-read
volume, reorganize the positions of sub-chunks to improve the
continuity of sub-chunk access. Placing two required scattered
sub-chunks together on the disk allows for the subsequent repair
to read them in a single I/O (see §II-E). The key challenge
here is how to carefully select the order of sub-chunks (with
a total of α! possible permutations) to achieve the best repair
I/O performance. We consider the scenario where adjusting
the sub-chunks for better continuity in the repair of one chunk
might aggravate non-sequential I/O overhead for the repair
of another chunk. We model the I/O problem of Clay codes,
define optimization objectives, and through various attempts

and comprehensive theoretical analysis, ultimately demonstrate
that using Gray codes achieves the lowest number of I/O
operations (see §III-D).

We propose G-Clay, an I/O optimization scheme that uses
Gray code sequence as the sub-chunk arrangement for Clay
codes, significantly enhancing the continuity of sub-chunk
access during single-chunk repairs. Our contributions are as
follows:
• We highlight the severe non-sequential I/O problem in Clay

codes, demonstrating that disk read performance becomes a
bottleneck for Clay code repairs.

• We model the I/O issues of Clay codes, demonstrate the
optimality of using Gray code sequence for sub-chunk
arrangement, and analyze optimization bounds.

• We implement the G-Clay plugin based on Ceph, design read
and write processes incorporating sub-chunk reorganization,
and optimize additional overhead. We propose a non-cyclic
Gray code generation method, expanding the selection space
for sub-chunk arrangements. The source code is available
at: https://github.com/YuchongHu/G-Clay.

• We demonstrate the optimization effect of G-Clay with
varying chunk sizes through experiments on different storage
media. Results indicate that, compared to Clay, G-Clay
optimizes overall disk read time by 47.3%, overall single-
chunk repair time by 43.6%, with negligible additional
overhead.

II. BACKGROUND AND MOTIVATION

We introduce the background details of erasure codes and
MSR codes. We discuss the pairwise coupling structure of Clay
codes and the issue of excessive I/O operations during single-
chunk repair. We review the existing solutions and propose our
motivation.

A. Erasure Coding and MSR Codes

Erasure codes are commonly used as a redundancy scheme
in modern storage systems [32], [44]. One popular type is Reed-
Solomon (RS) codes, where divides a fixed-size object into k
data chunks and computed with m parity chunks, distributed
across n = k +m failure domains (e.g., nodes). This provides
strong reliability with smaller storage overhead, allowing for
data recovery with k chunks even in the presence of up to m
chunks loss.

However, the repair overhead of erasure codes is substantial.
Compared to replication-based schemes, repairing a chunk
incurs k times more disk reads and bandwidth amplification.
Existing studies have explored various optimization approaches
for RS code repair. Two main directions have emerged: the first
involves system-level optimizations such as PPR [24] and repair
pipeline [21], which distribute repair traffic across all nodes.
However, these approaches do not effectively reduce repair
bandwidth. The second approach involves designing new coding
structures, such as locally repairable codes [16], [28], [36],
where repairing a data chunk within a group requires accessing
fewer nodes and less data, but at the cost of increased storage
overhead. Network coding [9] encompass Minimum-Storage

z=1

z=0

z=3

z=2

z=5

z=4

z=7

z=6

c0
c1

c2
c3

c4
c5

x

y

Figure 2. The pairwise coupling structure of sub-chunks in k = 4,m = 2
Clay code.

Regenerating (MSR) and Minimum-Bandwidth Regenerating
(MBR) codes. MBR codes require storing more data, while
MSR codes satisfy the MDS property and minimize repair
bandwidth, making them popular alternatives to RS codes.

In the past decade, MSR codes have seen significant
theoretical advancements [15], [20], [34], [46], however, they
each have limitations. NCCloud [15] requires m = 2 and is
a functional code, PM-RBT [31] requires n ≥ 2k − 1, and
Butterfly [27] is applicable only to m = 2 with optimizations
limited to data chunk repair. The recently proposed Clay
code [42] is the closest MSR code to perfection in theory
and has found practical applications [1].

B. Clay Code

Clay code is one of MSR codes with various desirable
properties, achieving the lowest repair bandwidth while mini-
mizing storage cost. Compared to other MSR codes, Clay codes
offer advantages such as flexible parameter selection, smaller
sub-packetization level, lower computational complexity, and
equivalent repair efficiency for data and parity chunks. Clay
codes have been implemented as an erasure coding plugin
in Ceph, establishing the practical superiority over other
theoretically MSR codes.

The core idea of Clay codes is sub-packetization, with
parameter set {(k,m), d, α, β}, where k represents the number
of data chunks, m represents the number of parity chunks,
and the total number n = k + m. d denotes the number of
helper nodes participating in data transmission during repair,
considering only single-chunk repair with all other nodes
involved, i.e., d = n − 1. α represents the sub-packetization
level, indicating the number of sub-chunks within a chunk.
Assuming n is divisible by m, then α = m

n
m . β represents the

number of sub-chunks transmitted by each helper node during
single-chunk repair, β = α

m .
The construction of Clay codes is based on pairwise coupling

between sub-chunks across multiple stacked layers. Figure 2
illustrates the construction details of a Clay code with k = 4

and m = 2, where each chunk can be divided into eight sub-
chunks. c0, c1, c2, c3 represent the four data chunks, while
c4, c5 represent the two parity chunks, with each chunk
distributed to a separate node. Nodes can be represented
using coordinates (x, y), with m nodes on each y-plane, thus
satisfying 0 ≤ x < m, 0 ≤ y < n

m . The coordinates for c0 to
c5 are as follows: (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2).

A set of sub-chunks with the same position from n different
chunks is defined as a layer. In Figure 2, there are eight
layers, from z = 0 to z = 7. z can be represented using n

m
coordinates in m base. For example, z = 6 can be represented
as (1, 1, 0), where z0 = z1 = 1, z2 = 0. Uncoupled sub-chunks
are represented by red cylinders in Figure 2, satisfying x = zy .
Paired coupled sub-chunks are represented by yellow cylinders
and connected by yellow dashed lines, where the values of x
and zy are exchanged. Half of the eight sub-chunks in each
chunk remain uncoupled (this ratio depends on m). Clay codes
achieve encoding and decoding through the transformation
of coupled and uncoupled structures, and based on the data
mapping of different layer sub-chunks, single-chunk repair can
be achieved with a smaller amount of data [42].

When repairing a chunk in Figure 2, the red points determine
the four layers involved, and the other n − 1 helper nodes
transmit the corresponding four sub-chunks of those layers.
Compared to RS codes, which require transmitting 4 ∗ 8 = 32
sub-chunks from four nodes during single-chunk repair, Clay
codes only require transmitting 5 ∗ 4 = 20 sub-chunks from
five nodes, reducing the amount of disk read and bandwidth.
The decode process involves pairwise reverse transform (PRT),
MDS decode, and pairwise forward transform (PFT) [42].

C. Excessive Non-Sequential Reads in Clay

Although Clay codes have the theoretically lowest sub-
packetization level in access-optimal MSR codes, they still
exhibit exponential behavior [5]. In practical storage systems,
without increasing the repair-read volume, the repair process
for certain nodes inevitably introduces a significant amount
of non-sequential I/Os determined by the theoretical coding
structure. In this paper, we focus on the issue of single-chunk
repair, as it accounts for the majority of chunk losses [18],
[38].

As shown in Figure 3, for a Clay code with k = 4 and
m = 2, the missing chunk are represented by dashed lines, and
the uncoupled red points determine the layers to be accessed
from the helper nodes. For instance, to repair c1, the remaining
five helper nodes need to read sub-chunks at positions 4, 5,
6, and 7, which are then transmitted over the network to the
substitute node for decoding calculations. Clearly, this requires
one sequential I/O. When repairing c3, the remaining five nodes
need to read sub-chunks at positions 2, 3, 6, and 7, resulting
in two reads. Similarly, for repairing c5, the remaining nodes
need to read sub-chunks at positions 1, 3, 5, and 7, but none
of the sub-chunks are colocated, resulting in four reads. The
I/O access patterns for repairing c0, c2, and c4 are similar to
that of c1, c3, and c5, respectively.

z=5

z=4

z=7

z=6

c0
c1

c2
c3

c4
c5

z=3

z=2

z=7

z=6

c0
c1

c2
c3

c4
c5

z=1

z=3

z=5

z=7

c0
c1

c2
c3

c4
c5

(a) Repair c1 (b) Repair c3 (c) Repair c5

Figure 3. Illustration of sub-chunks access pattern for single-chunk repair in Clay(4, 2). Dashed bars represent missing chunks.

In practical storage systems, larger parameter values for k
are often used [4], [6], [16], [25], such as k = 16 and m = 2.
In this case, α = 512 and β = 256, meaning that in the worst-
case scenario (repairing the last two chunks), since all the
target sub-chunks stored in helper nodes are not contiguous,
similar to Figure 3(c), a separate I/O operation is required to
retrieve each sub-chunk, resulting in a total of 256 disk reads.

Such a high number of I/O operations required for single-
chunk repair will be an unbearable overhead in storage system.
Figure 1 illustrates this severe issue, where the chunk size
is 2MB, and the sub-chunk size is 4KB. Repairing c0 or c1
represents the best-case scenario, requiring only one disk read,
Clay codes outperform RS codes in terms of repair performance.
Unfortunately, as the index increases, the number of disk reads
doubles, resulting in increasingly longer repair time. When
repairing c17, the disk read time is 10x of RS, and the repair
time is 4.9x of RS.

D. Increasing Chunk Size to Mitigate I/O Overhead

Researchers have proposed some solutions in addressing
fragmented reads. Vajha [42] suggests that using a stripe size
of 64MB for parameters k = 16 and m = 4 can eliminate
read amplification on SSDs, as the SSD page size is 4KB,
thereby making the repair-read volume equal to the theoretical
minimum. However, even with a sub-chunk size of 4KB, as
shown in Figure 1, the worst-case disk read time increases
sharply. The Ceph documentation [1] also points out that for
better disk I/O performance, it is recommended to use a larger
stripe size for larger k and m.

Geometric partitioning [39] employs a hybrid strategy to
mitigate the impact of fragmented reads in Clay codes. It adopts
a bucket-based stripe layout, dividing objects into a geometric
sequence. Smaller chunks use RS encoding to eliminate
fragmented reads while larger chunks utilize Clay encoding to
improve disk efficiency and reduce repair bandwidth.

The essence of these approaches is to use larger chunks. In
fact, for HDD, a disk read operation includes disk rotation, head
seeking, and data reading, while SSD, built with flash memory

chips, can directly access data without mechanical movement,
resulting in faster access speed and higher throughput. Addi-
tionally, a single read() operation is often accompanied by the
overhead of system calls. Therefore, reading more contiguous
data can undoubtedly improve performance. However, using
large chunks is not general (i.e., small chunk sizes have
to be used for small objects), and larger chunks increase
system overhead and lead to read amplification in partial reads.
Furthermore, when applying Clay codes, moderate to large
parameters are typically used, and the sub-packetization level
remains relatively high. Therefore, after striping and sub-chunk
partitioning, the size of a sub-chunk for a larger object (e.g.,
64MB [12]) is at KB level. In the worst-case repair scenario
based on HDDs, each read request involves a small amount
of data, and the accumulated seek time is significant [26].
Even for SSDs, minimizing the number of sub-chunk reads is
preferred.

Finding a solution that optimizes read time while maintaining
the access-optimal property of Clay codes has become an
urgent problem. In this paper, we propose a novel system-level
optimization.

E. Motivation

Since the performance issue of Clay code repair is mainly
caused by excessive disk reads, is there a way to reduce the
number? A natural idea is: for repairing c5, originally we need
to access sub-chunks 1, 3, 5, 7 (see Figure 3), which are all
non-contiguous and require 4 I/O operations. Is it possible to
place these sub-chunks together to read the required ones with
fewer I/O?

The motivation diagram is shown in Figure 4, where the ar-
rangement of sub-chunks follows the order {0, 1, 3, 2, 6, 7, 5, 4}.
This implies that the pairwise coupling during encoding follows
the normal order {0, 1, 2, 3, 4, 5, 6, 7}, but when the chunks
are written to disk, the internal sub-chunks are reorganized in
the modified order. In this way, when repairing c5, we still
need sub-chunks 1, 3, 5, 7, but their arrangement has changed.
Sub-chunks 1, 3 are placed together, allowing both to be read

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

c0 c1

c2

c4

c3

c5

Figure 4. Motivating example for Clay(4, 2). The eight sub-chunks of each
chunk are reorganized in the specified order. Yellow brackets representing the
positions of sub-chunks that should be read from the other five nodes for
repairing that node.

in a single I/O operation, and the same goes for sub-chunks
7, 5. As a result, when repairing c5, the remaining 5 helper
nodes only need to perform two I/O operations each, compared
to the original 4, resulting in a 50% reduction. Besides c5,
similar benefits can be achieved for repairing other nodes. For
repairing c4, the number of I/Os is reduced from 4 to 3, for
repairing c3, it is reduced from 2 to 1. The numbers of I/Os
for repairing c0, c1, and c2 remain the same as before, with
no increase.

We need to point out that not every arrangement
of sub-chunks can achieve optimization effects. Taking
{2, 5, 0, 7, 4, 3, 6, 1} as an example, the numbers of I/O op-
erations for repairing c0 to c5 are: 4, 3, 3, 3, 4, 4, resulting in
a significant increase. How to choose the appropriate order of
sub-chunks is precisely the core problem we aim to solve.

III. ANALYSIS OF SUB-CHUNKS OPTIMAL ARRANGEMENT

We define the overall number of I/O operations and explore
generating the optimal arrangement using a brute force method.
We demonstrate that Gray code can achieve optimality and
provide the optimization upper bound.

A. Definition and Objective
An intuitive observation is that after reorganizing the sub-

chunks, the goal is to minimize the number of I/O operations
for repairing a single chunk. Different orders of sub-chunks
will result in different I/O distributions, and it is one-sided
to only consider the I/O improvement that a certain chunk
gains from the order. Here, we consider the problem from an
overall perspective. Therefore, we define the overall number
of I/O operations, denoted as Stotal, to measure the quality of
a sub-chunk order. For convenience, we assume that d = n− 1
and that n is divisible by m.

Let Si represent the number of I/O operations for repairing
the ith node, where 0 ≤ i < n. Then, we have:

Stotal =

n−1∑
i=0

Si (1)

We denote the Stotal for the sub-chunks arranged in sequen-
tial order as Sseq . In this case, Si is dependent on the position i
of the node and forms an approximately geometric progression
as i increases. For example, when m = 4, the sequence of Si

starting from i = 0 is 1, 1, 1, 1, 4, 4, 4, 4, 16, 16, 16, 16.... We
can generalize Si as:

Si = m⌊i/m⌋ (2)

Generate the
next Permutation

...

Calculate Stotal
Update MIN Stotal

Save MIN Permutation

A Sub-chunk Permutation

Figure 5. Finding all optimal permutations using brute force.

We can calculate the value of Sseq as:

Sseq =
m(m

n
m − 1)

m− 1
(3)

Our objective is to minimize Stotal as much as possible. For
the original sequential order of sub-chunks, when m = 2, we
have Si = 2

i
2 and Sseq = 2

k
2+2 − 2, where k = 16 results in

Sseq = 1022. Such a high number of sub-chunk reads has a
significantly negative impact on repair performance.

B. Brute Force

For a given set of parameters defining a Clay code, the
number of possible sub-chunk orders is fixed. We can determine
the order with the minimum Stotal by exhaustively enumerating
all possible permutations. As illustrated in Figure 5, we
start with an initial sequential order and generate the next
permutation based on current one until we have exhausted all
permutations. For each generated sub-chunk permutation, we
calculate Stotal, and continuously update the min value.

The brute force enumeration guarantees finding all permuta-
tions with the minimum Stotal, but it suffers from high com-
plexity. For example, consider the parameters k = 4,m = 2,
resulting in α = 8. There are a total of 8! = 40320 possible
permutations of sub-chunks. It can be quickly determined that
there are 144 permutations with the minimum Stotal = 10.
However, when k = 6,m = 2 with α = 16, the number of
possible permutations exceeds twenty trillion. As k increases,
the size of solution space becomes α!, making it practically
infeasible to compute the minimum Stotal.

We need to address the following questions: Is there an
efficient algorithm to obtain an optimal sub-chunk arrangement
with the minimum Stotal? Alternatively, can we derive a
theoretical lower bound for Stotal within α! permutations?

C. Introduction to Gray Code

Gray code [2], [7], [10], [14] is widely used in electrical
field, refers to a coding scheme where adjacent code words
differ in only one position. Its initial purpose is to prevent false
intermediate states during switch transitions. For example, when
transitioning from 3 to 4, using natural binary representation
would require a conversion from 011 to 100, indicating that all
three voltages have to flip. However, this is not an atomic
process, meaning the three switch operations may not be
synchronized. This problem can be resolved by changing
only one switch at a time. For instance, representing 3 as
011 and 4 as 010 in binary, the transition process only requires
a single pulse. This is precisely the definition of Gray code: an
arrangement of code words where any two words are different,

and adjacent code words differ by only one symbol (also known
as single-distance).

Gray code can also exist in non-binary form [14]. For
example, consider a 3-ary Gray code with two digits, where the
underlined positions indicate changes compared to the previous
code word:

{00, 01, 02, 12, 11, 10, 20, 21, 22}

D. Optimality of Gray Code

We have found that there exists a theoretical lower bound
for Stotal, achieving it represents a Gray code sequence
(Theorem 2).

First, we define the concept of bit flipping. Given a sub-
chunk arrangement, we write it as a sequence of digits in base
m. Bit flip is defined as the position of a value that differs from
the previous value encountered while traversing from top to
bottom. Table I shows the bit flips for the sequential sub-chunk
order of k = 4,m = 2 Clay code. Each bit flip is indicated
in bold, and the total number of bit flips at each position is
provided at the bottom. Here, we distinguish the concept of
cyclic [10]. The value in the first row always represents one
bit flip, even if it is the same as the value in the last row
(implying that if the required sub-chunks are at first and last
positions, also requiring two I/O operations).

In §II-B, we mention that the sub-chunk index z can be
represented by n

m m-base digits, as the three binary digits
shown in Table I. When d = n− 1 and n is divisible by m,
the n nodes of Clay code are organized into n

m y-planes, each
plane containing m nodes. Therefore, 0 ≤ y < n

m , and a node’s
y-coordinate can also represent the y-th digit (or column) in
the m-base table (e.g., in Table I, y = 0, 1, 2 corresponds to
positions Bit0, Bit1, Bit2, respectively).

We use BitF liptotal to denote the total number of bit flips
and BitF lipy to denote the number of flips in the y-th column.
Thus, we have the following equation:

BitF liptotal =

n
m−1∑
y=0

BitF lipy (4)

Lemma 1. The number of flips in y-th column of the m-base
table is equal to the sum of ranges with the same value in y-th
column.

Proof: In y-th column, there are z values, each taking a
range of 0 ≤ value < m. Each bit flip from top to bottom
represents encountering a different range of values (the first
bit flip represents the first value range). Therefore, the sum
of bit flips in a column is equal to the sum of ranges. □

We illustrate this with Table I, for instance, in Bit1 position
(y = 1), there are a total of 4 bit flips (indicated in bold), each
flip represents encountering a different continuous range of 0
or 1. Thus, these two quantities are equivalent.

Lemma 2. The number of flips in y-th column of the m-base
table is equal to the sum of all node’s single-chunk repair

Table I
BIT FLIPS OF SEQUENTIAL ORDER IN CLAY(4, 2)

Sub-chunk Index Bit0 Bit1 Bit2
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Sum = 14 2 4 8

Table II
BIT FLIPS OF GRAY CODE ORDER IN CLAY(4, 2)

Sub-chunk Index Bit0 Bit1 Bit2
0 0 0 0
1 0 0 1
3 0 1 1
2 0 1 0
6 1 1 0
7 1 1 1
5 1 0 1
4 1 0 0

Sum = 10 2 3 5

I/O operations in the y-plane. With nodes represented by the
coordinates x and y, we have:

BitF lipy =

m−1∑
x=0

S(x,y) (5)

Proof: For a given y = Y plane, the uncoupled sub-chunks of
an internal node (x, Y) satisfy x = zY , which means that the
positions of required sub-chunks that other helper nodes read
and transfer should satisfy this equation. The arrangement of
sub-chunks on disks follows the order of the m-base table, and
the sub-chunks satisfying x = zY corresponding to all rows
in the table’s Y -th column with a value of x. Each separated
range of value = x represents one I/O operation. The sum of
I/O operations for all nodes with 0 ≤ x < m in the Y -plane
is equal to the sum of ranges for all 0 ≤ value < m in the
Y -th column of the table. According to Lemma 1, it is also
equal to the sum of bit flips. □

For example, in Table I, the number of bit flips in the Bit2
column is 8, and the I/O amount of repairing the two nodes
c4 and c5 with y = 2 is 4 each (see Figure 2), which adds up
to 8.

Theorem 1: For any Clay code, the overall number of I/O
operations is equal to the total sum of bit flips in the m-base
table organized in sub-chunks order. We have:

Stotal = BitF liptotal (6)

Proof: Based on Lemma 2, summing both sides over all y
planes, according to Equation (1) and (4), the proof holds. □

Lemma 3. In the m-base table of a Clay code order, the lower
bound for the total number of bit flips only exists when there
is exactly one bit flip between every two adjacent code words.

Proof: Each z value is unique, which means that there is at
least one differing bit between every two adjacent z values.
Therefore, if we can ensure that there is only one bit flip
between adjacent code words, it implies the minimum total
number of flips. □

Theorem 2. For any Clay code, the minimum overall number
of I/O operations can only be achieved by using a Gray code
sequence as the sub-chunks order. Denoting the lowest Stotal

as Smin, we obtain:

Smin = m
n
m +

n

m
− 1 (7)

Proof: Based on Lemma 3 and the definition of Gray code
in §III-C, it can be concluded that the Gray code sequence
achieves the lower bound of bit flip amount. Furthermore,
according to Theorem 1, the Gray code sequence minimizes
the overall number of I/O operations. In this case, Smin can be
calculated as the sum of n

m flips in the first row of the m-base
table, and one flip per row for the remaining m

n
m − 1 rows. □

Table II provides the bit flips for a Gray code sequence
{0, 1, 3, 2, 6, 7, 5, 4} when k = 4 and m = 2, with Smin = 10.
The repair I/O patterns of this order is shown in Figure 4.

E. Applying Gray Codes

We refer to Clay codes with sub-chunks reorganized in Gray
code order as G-Clay. Based on Equation (3) and (7), we
can calculate that for k = 16 and m = 2, Sseq = 1022 and
Smin = 520, which represents an optimization of nearly half
I/O amount.

There are multiple methods to generate Gray codes, and
different Gray codes have the same minimum Stotal, albeit the
distribution of I/O amounts can vary. This may impact the repair
performance of practical storage systems. Here, we introduce
two Gray code generation algorithms: Binary Reflected Gray
Codes (BRGC) [13] and Balanced Gray Codes (BalanceGC) [7].
BRGC is a classic method that generates Gray code using
mirror symmetry, while BalanceGC can be generated using
partitioning and Hamiltonian cycle [40], with the characteristic
of nearly equal digit flips at each position. Taking k = 6 and
m = 2 as an example, with α = 16 sub-chunks, the Gray codes
generated by these two methods are as follows (SeqOrder
representing the original sequence):

SeqOrder = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
BRGC = {0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8}

BalanceGC = {1, 3, 7, 5, 4, 12, 14, 6, 2, 10, 11, 15, 13, 9, 8, 0}

Table III provides the distribution of I/O amounts for these
three sub-chunk orders. It can be observed that although both
BRGC and BalanceGC achieve the optimal sum of 19 I/O
operations, the distribution in BalanceGC is more uniform.
While BRGC has a difference of up to 4, which implies that
there can be significant variations in disk read time when
repairing chunks with different indices, i.e., non-uniformity.

It is worth mentioning that when it is possible to manually
control how chunks are distributed across each node (unlike

Table III
COMPARISON OF I/O AMOUNTS FOR DIFFERENT ORDER IN CLAY(6, 2)

Repaired Chunk Index SeqOrder BRGC BalanceGC
0 1 1 3
1 1 1 2
2 2 2 3
3 2 1 2
4 4 3 3
5 4 2 2
6 8 5 2
7 8 4 2

Sum of I/O amounts 30 19 19

Ceph’s CRUSH algorithm [45]), it is feasible to allocate indices
requiring fewer I/Os for repair to nodes that are more prone to
failure. This way, G-Clay demonstrates excellent disk access
performance for frequent repairs on that node.

There can be additional overhead while writing Clay-coded
data to disk with a well-designed sub-chunk order. For instance,
when reading the object normally, the sub-chunks are retrieved
from disk of the order different from sequential, requiring
restoration to the original sequence. However, as we will discuss
later, this overhead can be optimized to a low level, making it
acceptable (see §IV-C).

F. Optimization Upper Bound

Here we prove that the reduction ratio of I/O operations
Smin compared to Sseq has an upper bound, determined by
m. Dividing Equation (7) by Equation (3), we obtain:

Smin

Sseq
=

n(m− 1)

m2(m
n
m − 1)

+
m− 1

m
(8)

As n increases with a fixed m (i.e., more data chunks),
the left side of Equation (8) approaches 0, converging to a
constant:

lim
n→+∞

Smin

Sseq
=

m− 1

m
(9)

Therefore, the ratio of the reduction in Smin compared to
Sseq is:

lim
n→+∞

Sseq − Smin

Sseq
=

1

m
(10)

Typically m ≥ 2 is required in MSR codes. When m = 2,
the theoretical upper bound for I/O optimization is achieved at
50%. Figure 6 illustrates the converging trend of the reduction
ratio applying Gray codes as digits increases, where digits
represents the number of digits in z, equal to n

m . Clearly, as
the number of data chunks increases, the I/O optimization ratio
becomes higher, while it quickly approaches the theoretical
upper bound, For example, when m = 2, k = 16 achieves a
ratio of 49.1%, while for m = 4, k = 16 achieves 24.6%, and
for m = 5, k = 15 achieves 19.5%, without imposing a large
value of k.

IV. DESIGN AND IMPLEMENTATION

We design G-Clay, the enhanced Clay code aims to improve
I/O efficiency. We outline the system architecture, and propose
an algorithm for generating non-cyclic Gray codes. We optimize
the additional overhead of encoding and reading.

50%

33.3%

25%

20%

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 inf
Digits (n/m)

T
he

or
et

ic
al

 P
er

ce
nt

ag
e

R
ed

uc
tio

n
(%

)
m=2
m=3
m=4
m=5

Figure 6. Theoretical optimization upper bound with different m of applying
Gray codes.

A. Architecture

We design G-Clay based on Ceph. Ceph is a popular
open-source distributed unified storage system that supports
object, file, and block storage applications [44], based on
the underlying Rados object store. Ceph eliminates the need
for metadata maintenance on a single node through CRUSH
algorithm [45], making it highly suitable for distributed
scalability with massive data. Each OSD (Object Storage
Daemon) serves as a backend daemon responsible for storing
actual data, typically managing one storage device (HDD or
SSD), and acts as an individual storage node (i.e., failure
domain is a node). Ceph adopts BlueStore as the backend
storage engine, replacing the old file system-based FileStore.
BlueStore allows direct data writes to block devices, eliminating
the additional overhead of file systems. It also integrates data
compression and checksum functionalities more effectively.
Additionally, Ceph has been optimized for modern hardware,
such as SSDs, resulting in improved performance.

Figure 7 illustrates the architecture of G-Clay. First, outside
the Ceph system, we generate a Gray code in advance to
serve as the sub-chunk reorganization scheme. Generally, using
BRGC yields satisfactory results. When writing an object to
Rados, it is initially mapped to a Placement Group (PG) based
on its object ID, determining the backend OSD daemons to store
the chunks after divided into erasure coding stripes. Each PG
has a primary OSD, denoted as p-OSD, responsible for dividing
the object into k equal-sized chunks, performing encoding
to generate m parity chunks, and transmitting the remaining
k +m− 1 chunks to other OSDs within the same PG.

Before the chunks are persisted to disk, we need to perform
the sub-chunk reorganization. As depicted in Figure 7, assuming
there are four sub-chunks and the desired order is {0, 1, 3, 2},
all chunks need to be rearranged accordingly. This operation
takes place in memory and involves simple copying, resulting
in fast execution.

Once all sub-chunks within a chunk have been persisted
in the Gray code sequence, the benefits of improved read
performance with increased continuity can be realized when
repairing a stripe.

Precompute a
Gray code

Algorithm

BRGC Balanced

Algorithm

BRGC Balanced

Object

PGsPool

Divide & Encode

...

0 1 2 30 1 2 3

0 1 3 20 1 3 2

0 1 2 30 1 2 3

0 1 3 20 1 3 2

0 1 2 3

0 1 3 2

...

...OSDs

Write Object

Reorganize Sub-
chunks & Write to

Disk

Figure 7. Architecture of G-Clay based on Ceph.

B. An Algorithm for Generating Non-Cyclic Gray Codes

Most existing methods for generating Gray codes require
ensuring cyclic property or obtain only one result [13], [14].
This limitation hinders the selection of suitable Gray codes.
Recall that sub-chunks order does not need to be cyclic (§III-D).
Therefore, given the challenges posed in this paper, it is
necessary to design a new algorithm for generating non-cyclic
Gray codes.

Figure 8 illustrates the algorithm, which offers the advantage
of a significantly larger solution space, facilitating easier
selection. Firstly, for 4 sub-chunks with k = 2 and m = 2,
there are a total of 4! = 24 permutations. By using a brute-
force method, we find that there are 8 permutations satisfying
Stotal = Smin = 5, as shown in Figure 8 for k = 2. Here,
we demonstrate how to recursively obtain a portion of the
optimal permutations for k = 4 based on the results for k = 2.
For example, considering the first permutation {0, 1, 3, 2}, the
last digit is 2. Based on the condition of starting with 2,
we can select two permutations: {2, 0, 1, 3} and {2, 3, 1, 0}.
Adding 4 (the number of sub-chunks for k = 2) to these two
permutations gives {6, 4, 5, 7} and {6, 7, 5, 4}, respectively.

0,1,3,2
0,2,3,1
1,0,2,3
1,3,2,0
2,0,1,3
2,3,1,0
3,1,0,2
3,2,0,1

6,4,5,7
6,7,5,4

+4

0,1,3,2,6,4,5,7
0,1,3,2,6,7,5,4

k=2
k=4

...

complement

7,6,4,5,1,3,2,0
7,6,4,5,1,0,2,3

append

Figure 8. An example of generating non-cyclic Gray codes.

We then append them to the end of {0, 1, 3, 2}, resulting in
two optimal permutations for k = 4: {0, 1, 3, 2, 6, 4, 5, 7} and
{0, 1, 3, 2, 6, 7, 5, 4}. Furthermore, applying the complement
operation with respect to 8 (the number of sub-chunks for
k = 4) yields {7, 6, 4, 5, 1, 3, 2, 0}.

In this way, each permutation for k = 2 can determine
four optimal permutations for k = 4, resulting in a total of 32
results. However, this is not the entire solutions for k = 4 but a
subset (total is 144). Nevertheless, by continuing to recursively
iterate from k = 4 to k = 6, k = 8, and so on, the resulting set
becomes extremely large, enabling a more deliberate selection
of Gray codes that meet the desired I/O distribution.

Moreover, we can start the iteration from the 144 optimal
permutations for k = 4 and move forward, resulting in a richer
solution space. The correctness is similar to the proof of BRGC.
For example, consider the sequence {0, 1, 3, 2, 6, 4, 5, 7}, the
first four and last four digits are individually Gray codes.
Besides, the middle two digits, 2 and 6, differ only in the most
significant bit being 0 or 1. Therefore, the entire sequence is a
Gray code.

C. Parallel for Reading

We can optimize the overhead of reorganizing sub-chunks for
normal reads by using multithread, similar for encoding phase.
Firstly, we distribute the overhead of sub-chunk reorganization
evenly among the participating OSDs, allowing them to execute
in parallel instead of single-point bottleneck. As shown in
Figure 9, for a given OSD, we first read a single chunk
belonging to the stripe from persistent storage (e.g., HDD
or SSD) and obtain a set of sub-chunks organized in a Gray
code.

The traditional approach involves using a single thread to
process α sub-chunks and restore them to the initial order of
0, 1, 2, 3, 4.... However, this process can be accelerated using
multiple threads. For example, as shown in Figure 9, we use
thread 1 to process the restoration of the first four sub-chunks
and thread 2 to process the restoration of the next four sub-
chunks, and so on. Because the position of each sub-chunk
is unique, there are no conflicts between threads, eliminating
the need for thread locks. Once finished, the original chunk is
sent to the p-OSD. The p-OSD then receives all the original

0 1 3 2 6 7 5 40 1 3 2 6 7 5 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Thread1 Thread2

Reorganized
Chunk

Original
Chunk

Thread
Pool

...

...

...

Reverting
Sub-chunks Order

Client
Join K Chunks
to an Object

Read from OSD Disk

p-OSD

network
transfer

...

Figure 9. Parallel sub-chunks order restoration during reading.

chunks, concatenates them into a complete object, and sends
to the client.

Depending on the machine performance and α, we can set
different number of threads. For instance, on a 4-core machine
with 512 sub-chunks, we can run 8 threads simultaneously,
each responsible for restoring a smaller range (64 each).

We provide clarification that the introduction of sub-chunk
reorganization does not impact data integrity checks in Ceph.
1) At the chunk level, the chunks sent to OSD are as original.
OSD generates and stores the checksum based on the original
chunk, then reorganizes the sub-chunks. When reading the
chunk, the checksum is verified on the restored chunk. 2) At
the stripe level, writing and reading objects involve the original
data chunks, following the same process as before.

D. Implementation in Ceph

We implement the G-Clay plugin on Ceph (Jerasure 2.0 as the
RS component library to leverage Intel SIMD instructions [29]),
along with several Gray code generation algorithms, about 2k
lines of C++ code. G-Clay plugin requires the addition of a
class member vector called order, which represents the chosen
Gray code sequence. During plugin initialization, we hardcode
the constant order, which means that the Gray code used
remains unchanged throughout the system’s runtime.

The most critical modification involves altering the mini-
mum to decode() function. It serves as a interface exposed by
the erasure coding module. It determines which sub-chunks
need to be read from other nodes when Clay code needs to
repair a chunk at a specific index. The function returns a list
of tuples in the form < pos, count >, indicating that count
sub-chunks need to be read from position pos. The more tuples
in the list, the more I/O operations are required.

With G-Clay, we need to modify the range of sub-chunks
to be read based on the existing order. For example, for
Clay(4, 2), when repairing the 5-th chunk, the original code
requires the other five nodes to access sub-chunks at positions
1, 3, 5, 7, resulting in a list of tuples: [< 1, 1 >,< 3, 1 >
,< 5, 1 >,< 7, 1 >]. However, with G-Clay and the order
{0, 1, 3, 2, 6, 7, 5, 4}, the list is modified to [< 1, 2 >,< 5, 2 >
], which instructs the ECBackend module to read sub-chunks
at positions 1, 2 (corresponding to the original sub-chunks 1, 3)
and sub-chunks at positions 5, 6 (corresponding to the original
sub-chunks 7, 5) in fewer I/O operations. In the end, BlueStore
reads the disk in a DIRECT manner. It is important to note that
BlueStore does not have a built-in prefetch mechanism, so it
does not transparently read additional unnecessary sub-chunks.

During single-chunk repair, it may seem that we encounter
a problem: the help data read and transmitted to the p-OSD
is reorganized based on order, do we need to restore sub-
chunks? Actually it does not. We can slightly modify the
decoding calculation. For example, when we need the original
Clay’s sub-chunk at position i, we directly map it to the sub-
chunk at position j in the help data, which actually holds the
original i-th sub-chunk. Similarly, a mapping is required when
specifying the destination sub-chunk positions. So the decoding
process incurs no additional overhead.

V. EVALUATION

We conduct experiments on different Gray codes and
parameters across various storage media. Results reveal the
benefits of the sub-chunk reorganization scheme in reducing
non-sequential I/Os, while demonstrating that the side effects
can be minimal.

A. Experiment Setting

We conduct tests on a local cluster comprising 18 nodes, each
node deploying an OSD daemon for data storage, and there are
3 monitors and 1 manager, with each daemon coexisting on a
single OSD node. We perform direct read and write operations
on the underlying objects using rados command. Each node
is equipped with a Intel Xeon CPU of 3.3GHz (supporting
SSE and AVX), 8GB of memory, and both a 1TB 7200RPM
HDD and a 500GB NVMe SSD. By binding an OSD to either
HDD or SSD, we are able to evaluate the optimization effects
on different storage devices (for each experiment, a consistent
set of HDD or SSD is used). We use Ubuntu 18.04 as the
operating system and Ceph version 15.2.17.

Servers are connected via a 25Gbps RoCEv2 network, we
configure the bandwidth using Linux tc command. To measure
the time taken for a single chunk repair, we first write 1000
objects of the same size to a single PG. We then manually
take one machine offline to initiate the automatic node repair
process within the cluster. All experiments are run 10 times,
and the average repair time are calculated. Ceph provides
logging capabilities, so we add additional logging codes to the
G-Clay plugin and the ECBackend module. We set a certain log
level and after the repair process concludes, analyze the result
logs (located in systemd journal [3]). By correlating specific
behaviors with timestamps, we can determine the read time,
network transmission time, computation time, and sub-chunk
reorganization time.

To evaluate the algorithm’s effectiveness on large objects,
we need to set osd recovery max chunk to a sufficiently large
value. Additionally, when varying the chunk size, we can adjust
the stripe unit parameter in the erasure-code-profile. Before
each experiment, we thoroughly clean up the previous pool and
data, and set a new erasure-code-profile to avoid any impact
on the results due to old stripes.

B. Codes Evaluated

For the most focused parameters with k = 16 and m = 2,
we compare four different Gray codes with the original order.
The main one used is BRGC, which has the effect of almost
halving the number of I/O operations required for each chunk’s
repair (see Table IV). We also employ the Gray code generation
methods mentioned in §IV-B, randomly selecting two of them,
naming as Special1 and Special2. We also generate balanced
Gray codes as [40]. Table IV presents a comparison of these
Gray codes in terms of I/O amounts for repairing each chunk.

When m = 2, since the repairing I/O amounts for chunks at
odd positions are very close to those at adjacent even positions,
for the sake of clarity, we only plot the disk read time for odd

Table IV
COMPARISON OF I/O AMOUNTS FOR DIFFERENT ORDER IN CLAY(16, 2)

Indexa SeqOrder BRGC Special1 Special2 BalanceGC
0 1 1 1 1 29
1 1 1 1 1 28
2 2 2 2 2 29
3 2 1 1 1 28
4 4 3 3 3 29
5 4 2 2 2 28
6 8 5 5 5 30
7 8 4 4 4 29
8 16 9 9 9 30
9 16 8 8 8 29

10 32 17 17 17 30
11 32 16 16 16 29
12 64 33 33 72 30
13 64 32 32 71 29
14 128 65 117 66 29
15 128 64 117 65 28
16 256 129 76 89 28
17 256 128 76 88 28

Sum 1022 520 520 520 520
aRepaired Chunk Index.

chunks. However, the reduction ratio is with respect to the total
of all chunks.

C. Experiments

Experiment 1 (Optimization Effects of BRGC on HDD):
In §I, we discuss how the disk read time of repairing becomes

a bottleneck for Clay(16, 2). Here, we employ BRGC as the
sub-chunk reorganization scheme and measure the repair time.
Figure 10(a) only presents a comparison of the disk read
time since the overhead for G-Clay network transmission and
decoding computation is the same as Clay. We use a yellow

RS

0

20

40

60

80

100

120

140

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

(a) HDD-2MB

RS

0

20

40

60

80

100

120

140

160

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

(b) HDD-16MB

Figure 10. Experiment 1: Effects of G-Clay(16, 2) on HDD using chunk
sizes of 2MB and 16MB (yellow dashed line representing RS reads an entire
chunk).

RS
0

5

10

15

20

25

30

35

40

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)
Clay G-Clay

RS

0

5

10

15

20

25

30

35

40

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

RS

0

10

20

30

40

50

60

70

80

90

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

(a) SSD-2MB (b) SSD-16MB (c) SSD-256MB

Figure 11. Experiment 2: Effects of G-Clay(16, 2) on SSD using chunk sizes of 2MB, 16MB and 256MB.

RS

0

10

20

30

40

50

60

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

RS

0

10

20

30

40

50

60

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

RS

0

10

20

30

40

50

60

OSD1 OSD3 OSD5 OSD7 OSD9 OSD11 OSD13 OSD15 OSD17

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

(a) Special1-32MB (b) Special2-32MB (c) Balance-32MB

Figure 12. Experiment 3: Effects of G-Clay(16, 2) on SSD using other Gray codes.

dashed line to represent the time taken to read an entire chunk
of RS code (subsequent experiments follow the same pattern).

We observe that G-Clay reduces the reading time for
repairing almost each chunk, with savings reaching close to
50% in the worst-case, resulting in an overall disk read time
reduction of 40.2%. Correspondingly, the overall repair time
(i.e., the sum of repair time for all chunks) reduced by 37%
compared to Clay in Figure 1.

We also measure the repair performance for 16MB chunks on
HDD. As shown in Figure 10(b), when the chunk size increases
to 16MB, the additional I/O operations do not significantly
affect the reading time due to the low throughput of HDD
media. Thus, G-Clay, as a solution aimed at reducing the
number of I/O, achieves modest optimization effects of 12.9%.

Experiment 2 (Optimization Effects of BRGC on SSD):
Here we explore optimization when using a faster storage

medium. We utilize an NVMe SSD with read speed of 3GB/s,
which is a significant improvement compared to the 150MB/s of
the HDD mentioned above. The SSD also performs excellently
in terms of IOPS and other aspects. Figure 11(a) illustrates the
significant optimization effect of G-Clay compared to Clay in
terms of disk read time when the chunk size is 2MB, resulting
in a reduction ratio of 45.6%. As the chunk size gradually
increases, the optimization effect diminishes, but at a slower
rate compared to HDD. For instance, Figure 11(b) shows that
even with a chunk size of 16MB, the SSD can still achieve a
35.4% optimization. Moreover, Figure 11(c) indicates that with
a chunk size of 256MB, i.e., each sub-chunk being 512KB,
the reduction ratio is 11.7%.

We can use empirical deduction to explain the reasons of the

significant performance differences between HDD and SSD.
Defining a disk read as the sum of two parts: preparation delay
and storage media read. For high-end storage devices like SSDs,
both the parts are fast. Regardless of reading large or small
chunks, the preparation delay remains the same, while the time
for storage media read increases with larger chunk sizes. It
becomes apparent that when the chunk size is small, reducing
the number of disk reads yields significant optimization due to
the preparation delay and storage media read being relatively
equal. However, as the chunk size increases, the proportion of
storage media read gradually rises, while the preparation delay
represents a negligible portion. Thus, larger chunks degrading
the advantages of G-Clay.

Additionally, it is challenging to determine whether the trade-
off on reading more data to reduce I/O operations genuinely
reduces disk read time (e.g., read an entire chunk and transfer
required sub-chunks). It leads to reading a substantial amount
of unnecessary data (e.g., when m = 4, only 1

4 of sub-chunks
are needed), which indicates that repair-read volume can not
remain minimal. In practical storage systems, disk performance
is affected not only by the medium itself but also by factors
such as machine load and I/O queues [26]. In some cloud
environments, block device may not be locally attached to
the OS, and additional read data is translated to network
overhead [43], leading to increased repair time.

In short, our algorithm effectively reduces the number of
I/O operations and improves disk efficiency without increasing
the repair-read volume.

Experiment 3 (Optimization Effects of Different Gray
Codes): Based on Table IV, it can be observed that different

Gray codes have the same Smin = 520, but the distribution
differs. We compare different Gray codes using 32MB chunk
size. The impact of BRGC has already been discussed,
and Figures 12(a)(b) demonstrate the optimization effects of
Special1 and Special2, respectively. We can see that the disk
read time is proportional to I/O amount. For example, the I/O
operations for repairing OSD17 is reduced from 256 to 76
in the case of Special1, showing a significant optimization
effect in Figures 12(a). Balanced Gray codes, on the other hand,
exhibit the characteristic that the I/O amounts are more uniform.
Figure 12(c) validates this observation, and the optimized disk
read time are all lower than that of RS reading an entire chunk.
Therefore, balanced Gray codes are suitable for clusters that
require uniformity in repair operations.

Despite the different distribution of I/O amounts, all three
Gray codes mentioned above achieve approximately a 30%
optimization in disk read time compared to the original Clay
order. This validates our empirical analysis, which focused on
reducing the number of preparation delay.

Experiment 4 (Case of m > 2): We further evaluate the
actual disk read time for k = 9 and m = 3 to provide more
comprehensive evidence for the benefits. Figure 13 illustrates
the disk read time required for repairing each OSD when sub-
chunk size is 4KB, i.e., the chunk size is 324KB. Unlike the
case of m = 2, where the reduction in I/O operations per
chunk is nearly halved, we plot the results for all OSDs in this
scenario. According to Equation (8), the theoretical reduction
ratio should be 30%, while the actual results achieve 26.5%.
The original I/O amounts for the last three chunks are 27 for
each. After applying BRGC as the sub-chunk arrangement,
the I/O amounts for OSD9 and OSD11 decreased to 14, while
OSD10 remains 27 without any optimization. This demonstrates
that as m increases, the optimization effect indeed diminishes.

Experiment 5 (Optimization Effects of Different k and
Chunk Sizes): We evaluate the overall disk read time (sum
of read time for all chunk’s repair) using various k with fixed
m = 2. Due to the different I/O distributions, we focus on the
collective disk read time rather than a individual chunk. The
results are depicted in Figure 14. Firstly, we observe that as k
increases, the optimization effect becomes more pronounced,
validating our theoretical derivation in §III-F. For instance,
when k = 16 and the sub-chunk size is 2KB (i.e., chunk size
is 1MB), achieving an optimization ratio of 47.3%, which is
very close to its theoretical upper bound of 50%. While the
optimization ratio decreases to 24.4% when k = 4.

We also find that as the sub-chunk size increases, the
optimization effect gradually diminishes, reaching its lowest
point at 512KB sub-chunks, consistently around 10%. This
is because the preparation delay already constitutes a small
proportion, limiting the impact of optimizing this part.

However, we rarely use such large sub-chunk size of 512KB
when k is medium or large in practical scenarios (e.g., HDFS
block size is 64MB [8]), which indicates that G-Clay can bring
an overall I/O performance gain of over 25% in most cases.

RS

0

1

2

3

4

5

OSD
0
OSD

1
OSD

2
OSD

3
OSD

4
OSD

5
OSD

6
OSD

7
OSD

8
OSD

9
OSD

10
OSD

11

OSD Index

D
is

k
R

ea
d

T
im

e
(m

s)

Clay G-Clay

Figure 13. Experiment 4: Effects of G-Clay(9, 3) on SSD using BRGC and
chunk size of 324KB.

0

5

10

15

20

25

30

35

40

45

50

2K4K 16K 32K 128K 512K

Sub-chunk Size

P
er

ce
nt

ag
e

R
ed

uc
tio

n
(%

) k=16
k=14
k=12
k=10
k=8
k=6
k=4

Figure 14. Experiment 5: Reduction ratio of overall disk read time for G-
Clay(k, 2) on SSD varies with sub-chunk sizes.

Experiment 6 (Encoding Time and Reading Time): Sub-
chunk reorganization improves the single-chunk repair per-
formance at the cost of encoding time and normal reading
time, as it introduces an additional sub-chunk reorganizing
process. Figure 15 presents an evaluation of encoding time and
reading time for 2MB chunks with k = 16,m = 2 on HDD.
G-Clay demonstrates that p-OSD completes the sub-chunk
reorganization operation for all chunks using a single thread,
the encoding time increases by 2.3% and the reading time
increases by 3.2%. This indicates that the overhead of sub-
chunk reorganization is already relatively low. After applying
the optimizations mentioned in §IV-C, as shown for G-Clay-
Opt in Figure 15, the additional overhead for encoding and
reading is only 0.04% and 0.06% respectively, which is almost
negligible.

We attribute this to the fact that the sub-chunk reorganization
primarily involves a small amount of memory copying, rather
than slow disk reads or network transfers, and parallelism has
increased the speed. In addition, the normal reading process
already incurs additional calculations such as chunk hash
verification, which helps offset the overhead.

We need to point out that encoding is a one-time task, and
normal reading is optimized to have minimal overhead, it is
worthwhile to balance the routine single-chunk repairs.

71.6 73.26 71.63

45.6 47.08 45.63

0

10

20

30

40

50

60

70

80

Encode Read
Encode and Read

O
ve

ra
ll

T
im

e
(m

s)

Clay G-Clay G-Clay-Opt

Figure 15. Experiment 6: Comparison of encode and read time for Clay,
G-Clay and G-Clay-Opt.

0

200

400

600

800

1000

1200

256KB 512KB 1MB 2MB 4MB
Chunk Size

O
ve

ra
ll

R
ep

ai
r

T
im

e
(m

s) HDD-Clay
HDD-G-Clay
SSD-Clay
SSD-G-Clay

Figure 16. Experiment 7: Overall repair time (sum of repair time for 18
chunks) of Clay and G-Clay (k = 16,m = 2) on HDD and SSD with varying
chunk sizes.

Experiment 7 (Optimization of Overall Repair Time):
The optimization of G-Clay for disk reads translates into
a significant reduction in repair time. Similar to §III-A, we
continue to consider the optimization of repair time from an
overall perspective, defining the overall repair time as the sum
of single-chunk repair time for all k +m chunks. Figure 16
illustrates the comparison before and after optimization on
HDD and SSD.

We configure the bandwidth to 20Gbps within the cluster
and employ Intel Streaming SIMD Extensions [23] (SSE)
instructions to accelerate calculations. We observe that G-
Clay exhibits significant optimization effects on overall repair
time, especially for smaller chunk sizes. For instance, with a
chunk size of 256KB, G-Clay achieves a 43.6% improvement
on HDD and a 41.5% improvement on SSD. However, this
optimization ratio gradually diminishes as the chunk size
increases. For example, with a chunk size of 4MB, the overall
repair time optimization on HDD reduces to 22%. This can be
attributed to the fact that larger chunk sizes enhance the disk
efficiency through better sub-chunk continuity, while network
transmission time and computation time gradually occupy a
larger proportion, thereby degrading the advantages of G-Clay.

G-Clay demonstrates more pronounced optimization effects
on HDD since disk read performance is usually the bottleneck
in such cases. Even for high-performance SSDs, adopting small
chunks can still result in a significant number of non-sequential
I/Os becoming a bottleneck for repairs. In this regard, G-Clay
demonstrates outstanding I/O optimization.

VI. RELATED WORK

Increasing Chunk Size. Researchers have proposed solutions
to improve I/O efficiency by increasing the chunk size. Vajha
suggests using 64MB chunks [42], and larger stripe sizes are
also recommended in the Ceph documentation [1]. Geometric
partitioning presents a system-level optimization based on a
hybrid strategy, where small chunks use RS encoding and large
chunks employ Clay encoding [39]. However, these methods
cannot optimize for small chunks. In contrast, our G-Clay can
reduce the number of I/O operations regardless of chunk size.

Parallel Repair. ParaRC [22] parallelizes the repair process of
MSR codes to reduce the maximum repair load of individual
nodes. However, this comes at the cost of increased repair
bandwidth, which is no longer optimal for Clay codes.

Elastic Transformation. Elastic transformation [41] allows
the conversion of a base code into a code with lower repair
bandwidth, which has smaller sub-packetization level than Clay,
thus limiting non-sequential I/O overhead. However, the repair
bandwidth remains higher than that of Clay.

Hop-and-Couple. This method is initially proposed in
Hitchhiker [33] and has been applied to vector codes like
Clay. It involves dividing a chunk into α (sub-packetization
level) sub-chunks. Instead of operating on individual bytes, the
encoding calculations are performed on sub-chunks composed
of a group of bytes. This should serve as a fundamental method
for partitioning sub-chunks in vector code implementations, but
there is still disk inefficiency when accessing non-sequentially
placed sub-chunks.

Gray Code. Gray code is a classic encoding technique
that solves practical problems in various domains, including
electrical engineering [2], [13]. Gray code is defined as a
sequence where adjacent code words differ by only one digit.
There are several ways to generate Gray codes, with the
most typical being Binary Reflected Gray Code (BRGC) [13].
Additionally, there are balanced Gray codes [7], non-Boolean
Gray codes [14], and other theoretical advancements [37], [47].
We now extend the application of Gray code to MSR codes in
the realm of storage, enriching its connotation.

VII. FUTURE WORK

In this paper, we only consider single-chunk repair, and we
will explore how to improve the I/O efficiency of multi-chunk
repair for Clay codes. Furthermore, we will study how to design
the arrangement of sub-chunks within adjacent stripes during
full-node repair to achieve better I/O contiguity. It may be
worth considering relaxing the access-optimal property of Clay
codes by reading some additional sub-chunks to reduce the
number of I/O operations. We will explore I/O optimization
for regenerating codes in more complex scenarios, such as
involving background operations, SSD aging, storage device
heterogeneity, etc. We also plan to implement G-Clay on
different storage platforms to provide a more comprehensive
report on repair performance improvements.

VIII. CONCLUSIONS

We propose G-Clay, an optimal sub-chunk reorganization
scheme that using Gray code to reduce non-sequential I/O
overhead and improve disk efficiency for single-chunk repairs.
We prove that employing Gray code is necessary to achieve
the minimum overall number of I/O operations. We analyze
the optimization limits and provide a Gray code generation
algorithm. We implement the G-Clay plugin based on Ceph
and conduct experiments to validate the improved repair
performance with minimal side effects. We believe that the
system-level optimizations presented in this paper can assist
in mitigating the practical challenges of Clay codes.

ACKNOWLEDGMENT

We thank our shepherd, James Hughes, and the anonymous
reviewers for their valuable feedback. This work was sup-
ported in part by the National Natural Science Foundation
of China (No. 62272185), Shenzhen Science and Technology
Program+JCYJ 20220530161006015, Key Research and Devel-
opment Program of Hubei Province (No. 2021BAA189) and
Key Laboratory of Information Storage System Ministry of
Education of China. The corresponding author is Yuchong Hu.

REFERENCES

[1] Ceph erasure-code-clay. https://docs.ceph.com/en/quincy/rados/
operations/erasure-code-clay.

[2] Gray code. https://en.wikipedia.org/wiki/Gray code.
[3] journalctl manual. https://man7.org/linux/man-pages/man1/journalctl.1.

html.
[4] B. Beach. Backblaze Vaults. Zettabyte-scale cloud storage architecture.

https://www.backblaze.com/blog/vault-cloud-storage-architecture, 2017.
[5] S. Balaji and P. V. Kumar. A tight lower bound on the sub-packetization

level of optimal-access msr and mds codes. In 2018 IEEE International
Symposium on Information Theory (ISIT), pages 2381–2385. IEEE, 2018.

[6] S. Balakrishnan, R. Black, A. Donnelly, P. England, A. Glass, D. Harper,
S. Legtchenko, A. Ogus, E. Peterson, and A. Rowstron. Pelican: A
building block for exascale cold data storage. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages
351–365, 2014.

[7] G. S. Bhat and C. D. Savage. Balanced gray codes. the electronic journal
of combinatorics, 3(1):R25, 1996.

[8] D. Borthakur et al. Hdfs architecture guide. Hadoop apache project,
53(1-13):2, 2008.

[9] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. IEEE transactions
on information theory, 56(9):4539–4551, 2010.

[10] R. W. Doran. The gray code. Technical report, Citeseer, 2007.
[11] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,

L. Yan, et al. When cloud storage meets {rdma}. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), pages 519–533, 2021.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 29–43, 2003.

[13] F. Gray. Pulse code communication. United States Patent Number
2632058, 1953.

[14] D.-J. Guan. Generalized gray codes with applications. In PROC NATL
SCI COUNC REPUB CHINA PART A PHYS SCI ENG, volume 22, pages
841–848. Citeseer, 1998.

[15] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang. Nccloud: applying network
coding for the storage repair in a cloud-of-clouds. In FAST, volume 21,
2012.

[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure coding in windows azure storage. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 15–26, 2012.

[17] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for high
performance {RDMA} systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 437–450, 2016.

[18] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang. Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery and
degraded reads. In FAST, page 20, 2012.

[19] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg. On fault
tolerance, locality, and optimality in locally repairable codes. ACM
Transactions on Storage (TOS), 16(2):1–32, 2020.

[20] K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby. Hashtag
erasure codes: From theory to practice. IEEE Transactions on Big Data,
4(4):516–529, 2017.

[21] R. Li, X. Li, P. P. Lee, and Q. Huang. Repair pipelining for {Erasure-
Coded} storage. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 567–579, 2017.

[22] X. Li, K. Cheng, K. Tang, P. P. Lee, Y. Hu, D. Feng, J. Li, and T.-Y. Wu.
{ParaRC}: Embracing {Sub-Packetization} for repair parallelization in
{MSR-Coded} storage. In 21st USENIX Conference on File and Storage
Technologies (FAST 23), pages 17–32, 2023.

[23] C. Lomont. Introduction to intel advanced vector extensions. Intel white
paper, 23:1–21, 2011.

[24] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-parallel-repair (ppr) a
distributed technique for repairing erasure coded storage. In Proceedings
of the eleventh European conference on computer systems, pages 1–16,
2016.

[25] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, et al. f4: Facebook’s warm {BLOB}
storage system. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 383–398, 2014.

[26] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue.
Flat datacenter storage. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 1–15, 2012.

[27] L. Pamies-Juarez, F. Blagojevic, R. Mateescu, C. Gyuot, E. E. Gad,
and Z. Bandic. Opening the chrysalis: On the real repair performance
of {MSR} codes. In 14th USENIX conference on file and storage
technologies (FAST 16), pages 81–94, 2016.

[28] D. S. Papailiopoulos and A. G. Dimakis. Locally repairable codes. IEEE
Transactions on Information Theory, 60(10):5843–5855, 2014.

[29] J. S. Plank and K. M. Greenan. Jerasure: A library in c facilitating
erasure coding for storage applications–version 2.0. Technical Report
UT-EECS-14–721, University of Tennessee, Tech. Rep., 2014.

[30] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast galois field
arithmetic using intel simd instructions. In FAST, pages 299–306, 2013.

[31] K. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran.
Having your cake and eating it too: Jointly optimal erasure codes for
{I/O}, storage, and network-bandwidth. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 81–94, 2015.

[32] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the facebook
warehouse cluster. In 5th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 13), 2013.

[33] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A” hitchhiker’s” guide to fast and efficient data
reconstruction in erasure-coded data centers. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 331–342, 2014.

[34] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-
regenerating codes for distributed storage at the msr and mbr points via a
product-matrix construction. IEEE Transactions on Information Theory,
57(8):5227–5239, 2011.

[35] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–
304, 1960.

[36] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring elephants: Novel erasure
codes for big data. arXiv preprint arXiv:1301.3791, 2013.

[37] C. Savage. A survey of combinatorial gray codes. SIAM review, 39(4):605–
629, 1997.

[38] B. Schroeder and G. A. Gibson. Understanding disk failure rates: What
does an mttf of 1,000,000 hours mean to you? ACM Transactions on
Storage (TOS), 3(3):8–es, 2007.

[39] Y. Shan, K. Chen, T. Gong, L. Zhou, T. Zhou, and Y. Wu. Geometric
partitioning: Explore the boundary of optimal erasure code repair. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 457–471, 2021.

[40] R. Strackx and F. Piessens. Ariadne: A minimal approach to state
continuity. In 25th USENIX Security Symposium (USENIX Security 16),
pages 875–892, 2016.

[41] K. Tang, K. Cheng, H. H. Chan, X. Li, P. P. Lee, Y. Hu, J. Li, and
T.-Y. Wu. Balancing repair bandwidth and sub-packetization in erasure-
coded storage via elastic transformation. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications, pages 1–10. IEEE, 2023.

[42] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan,
P. V. Kumar, A. Barg, M. Ye, S. Narayanamurthy, et al. Clay codes:
Moulding {MDS} codes to yield an {MSR} code. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), pages 139–154,
2018.

[43] H. T. Vo, C. Chen, and B. C. Ooi. Towards elastic transactional cloud
storage with range query support. Proceedings of the VLDB Endowment,
3(1-2):506–514, 2010.

[44] S. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of
the 7th Conference on Operating Systems Design and Implementation
(OSDI’06), pages 307–320, 2006.

[45] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. Crush: Controlled,
scalable, decentralized placement of replicated data. In Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, pages 122–es, 2006.

[46] M. Ye and A. Barg. Explicit constructions of optimal-access mds codes
with nearly optimal sub-packetization. IEEE Transactions on Information
Theory, 63(10):6307–6317, 2017.

[47] K. Zeger and A. Gersho. Pseudo-gray coding. IEEE Transactions on
communications, 38(12):2147–2158, 1990.

