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Abstract—Erasure codes are now widely deployed in cloud
storage systems to ensure data reliability while maintaining low
storage overhead. Wide-stripe erasure codes offer an oppor-
tunity for additional monetary cost reduction; however, they
also introduce high recovery complexity, which can negatively
impact the overall system performance. To improve the trade-
off between storage overhead and system performance, it is
crucial to transition cold data from narrow stripes to wide stripes
efficiently. Nevertheless, generating wide stripes poses substantial
challenges: existing methods involve significant computational
and transmission overhead, high degraded read latency during
maintenance tasks, as well as deployment limitations in practical
systems.

To address these issues, we propose Cauchy-Merge, a novel
approach that effectively merges narrow stripes using merge-
friendly Cauchy matrices. Cauchy-Merge reduces both the com-
putational and network transmission overhead during the merg-
ing process and decreases degraded read latency under cluster
maintenance through partial data migration. We also provide the
definition and explicit constructions for merge-friendly Cauchy
matrices along with efficient algorithms for the construction
of encoding matrices and stripe merging. Numerical analyses,
simulations, and testbed evaluations validate the effectiveness of
Cauchy-Merge. Experimental results show that Cauchy-Merge
significantly outperforms the state-of-the-art approaches such as
DISMerge, reducing stripe merging time by up to 89.53% and
degraded read latency by up to 69.17%.

I. INTRODUCTION

In modern cloud storage systems, where data volumes have
reached exabytes (EB) [1], [2], the challenge of data failures
is inevitable [3]. To ensure high data reliability, redundant
mechanisms are essential. Erasure coding is preferred over
replication due to its lower storage costs and equivalent fault
tolerance [4]. Reed-Solomon (RS) codes [5], which encode
k data blocks into r parity blocks to form a stripe that can
tolerate any r block failures, are the most widely used erasure
codes in production systems [1], [6]–[13].

To further reduce storage costs, wide-stripe erasure codes1

have been proposed [14]–[18]. These codes increase the num-
ber of data blocks k within a stripe while maintaining the same
fault tolerance capacity r, thus reducing the storage cost ratio
k+r
k , which approaches 1 as k increases. However, this cost-

saving comes at the expense of system performance due to
higher recovery overhead. As k increases, so does the number

1Wide stripes typically consist of a minimum of 20 data blocks [2], [14].

of blocks needed to recover a single failed block, leading to
greater network and decoding computation costs [19].

Data access frequency typically diminishes over time [6],
and to balance system performance with storage overhead, it
is common to encode new and frequently accessed (“hot”)
data using narrow stripes [20], [21]. As data becomes less
accessed (“cold”), it is re-encoded into wide stripes to benefit
from lower storage costs [22], [23]. Consequently, managing
the redundancy transition from narrow to wide stripes is both
crucial and essential.

The critical challenge of transitioning from narrow to wide
stripes in erasure-coded storage systems significantly im-
pacts network and computational resources. The conventional
method, which involves re-encoding data blocks to create
new parity blocks for wide stripes, is highly inefficient. It
requires substantial network bandwidth to transfer data for
encoding and considerable computational power for the en-
coding process itself, leading to reduced encoding throughput
when moving from narrow to wide stripes [14]. To miti-
gate these issues, extensive research has been conducted to
improve the redundancy transition process. Notable advance-
ments include NCScale [24], [25], which uses network coding
techniques to lessen network transmission overhead, thereby
reducing bandwidth consumption during the transition. Meth-
ods like StripeMerge [17], Zebra [26], [27], and Convertible
Codes [28], [29] leverage existing parity blocks to generate
new ones, significantly reducing computational and network
overhead by avoiding the re-encoding of data blocks from
the ground up. Additionally, DISMerge [30] optimizes data
placement for stripe merging, strategically positioning data to
minimize costs associated with data movement and calcula-
tions during the merging process, leading to more efficient
utilization of network and computational resources.

These innovations represent a concerted effort to make
the redundancy transition from narrow to wide stripes more
efficient. By reducing the need for extensive data movement
and complex computations, these solutions aim to facilitate a
more seamless and resource-efficient process, which is crucial
for maintaining performance and reliability in large-scale
storage systems. However, preceding approaches still exhibit
limitations in certain aspects. The introduction of Cauchy-
Merge presents a promising solution to these limitations:



1) High Computational and Transmission Overhead:
Existing methods like NCScale [24], [25] and DIS-
Merge [30] still require significant merging overhead
because they access all data blocks for merging and com-
pute additional parity information (parity delta blocks).
Cauchy-Merge reduces this overhead by effectively
reusing existing parity blocks, which reduces the need
for data block access and additional computations.

2) Restrict Deployment Limitations: StripeMerge [17]
, Zebra [26], [27] and Convertible Codes [28], [29]
have deployment limitations that are impractical in exist-
ing systems. StripeMerge and Convertible Code-I have
to adopt a larger Galois filed than GF (28), such as
GF (216) to ensure the Maximum Distance Separable
(MDS) property of wide stripes, which will bring out
performance degradation and heightened implementa-
tion complexity [31]. Convertible Code-II reduces the
number of parity blocks after merging, leading to de-
creased fault tolerance capability. Zebra requires that
pre-merging stripes with the same parameters (k, r) use
different encoding matrices, which is unrealistic in many
storage systems. Most storage systems utilize a single
erasure code, i.e., a single encoding matrix, especially
for the same encoding parameters (k, r) [1], [2], [6]–
[13]. Cauchy-Merge circumvents these issues through
the use of carefully designed merge-friendly Cauchy
matrices, making it more adaptable to existing systems.

3) High Degraded Read Latency: Cauchy-Merge also
aims to improve the read performance of post-merging
wide stripes during maintenance activities. By allowing
partial data migration, it minimizes the impact on de-
graded read latency that typically occurs when mainte-
nance zones are unavailable due to cluster maintenance.

In essence, Cauchy-Merge provides a more efficient and
practical approach to stripe merging by addressing the com-
putational and network inefficiencies of previous methods,
offering a solution that is feasible in real-world systems
without imposing restrictive prerequisites or data layout con-
straints. Moreover, it enhances system availability and read
performance during maintenance periods, which is critical
for large-scale storage systems where uptime and data access
speed are paramount.

Our contribution can be summarized as:

• We define a merge-friendly Cauchy matrix and provide a
method for constructing such matrices. An algorithm is
developed allowing for the creation of pre-merging and
post-merging encoding matrices for any given parameters
(k, r) and merging stripe numbers β, which is a flexible
solution adaptable to various storage scenarios without
restrictive deployment requirements.

• We propose Cauchy-Merge, a method for merging narrow
RS stripes into wider RS or Locally Repairable Code
(LRC) stripes. It reduces the computational and network
overhead that typically accompanies the merging process
by leveraging the merge-friendly Cauchy matrix.

TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description
k the number of data blocks in a pre-merging stripe
r the number of parity blocks in a stripe
β the number of stripes to be merged

Ai,j the j-th element in the i-th row of the encoding matrix

Ai,j
the j-th coefficient vector in the i-th row of the
encoding matrix (i.e., Ai,j = [Ai,jk, . . . , Ai,jk+k−1])

Di,j the j-th data block in the i-th pre-merging stripe

Di
the column vector of data blocks in the i-th pre-merging stripe
(i.e., Di = [Di,0, . . . , Di,k−1]

T )
Pi,j the j-th parity block in the i-th pre-merging stripe
P ′
i the i-th parity block in the post-merging stripe

• We employ partial data migration, which is intended to
maintain low degraded read latency even when certain
parts of the storage system are undergoing maintenance.

• We demonstrate the effectiveness of Cauchy-Merge
through numerical analyses, simulations, and practical
experiments conducted on a testbed. The results show
a significant reduction in both stripe merging time and
degraded read latency compared to other methods.

The rest of the paper is organized as follows: Section II
introduces the related work and our motivations. Section III
illustrates the Cauchy-Merge approach based on the merge-
friendly Cauchy matrix in detail. Section IV presents the
evaluation of Cauchy-Merge and other methods, and finally,
we summarize the paper in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we provide a concise introduction to erasure
codes. Then, we present existing approaches for redundancy
transition along with their respective limitations. Finally, the
motivation of this work is proposed. To facilitate comprehen-
sion, Table I lists the notations used in this paper.

A. Basics of Erasure Codes

Reed-Solomon (RS) Codes. RS codes [5], represented by
RS(k, r), are the most commonly used erasure codes [1], [6]–
[9]. RS(k, r) encodes a set of k data blocks to generate an
additional r parity blocks. This assembly of n = k+ r blocks
constitutes a stripe, distributed across n different nodes. Any
k blocks within an RS(k, r) stripe are sufficient to reconstruct
the entire stripe, a property known as Maximum Distance
Separable (MDS). Mathematically, the encoding process of
RS(k, r) involves a linear combination of k data blocks within
the arithmetic framework of the Galois field GF (2w). For a
systematic RS code RS(k, r), a (k + r) × k matrix, denoted
as Ĝ, functions as the generator matrix, and the initial k rows
of Ĝ constitute an identity matrix, allowing us to represent

Ĝ as Ĝ =

[
I
G

]
where G is the encoding matrix. Two

typical encoding matrices of RS codes are Cauchy matrix [32],



D0,0 D0,1 D0,2

D1,0 D1,1 D1,2 D1,3

P0,0 P0,1

P1,0 P1,1

D0,3 P′0 P′1 P0,1P′2

P1,2

D2,0 D2,1 D2,2 D2,3 P2,0 P2,1 P2,2

 DP0,0-7  DP1,0-7  DP2,0-7
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(b) StripeMerge/Zebra/Convertible Codes: The
parity blocks with the same index are gathered
together; for example, P1,0 and P2,0 are sent to
P0,0. For StripeMerge and Convertible Code-I
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(c) DISMerge: Data blocks in one cluster,
such as D1,0 and D1,1, are aggregated, and
three parity delta blocks ∆P0,i, ∆P1,i, and
∆P2,i are computed and sent to three new
parity blocks, respectively. New P ′

0 = P0,0 +∑
i ∆P0,i; new P ′

1 = P0,1 +
∑

i ∆P1,i; new
P ′
2 = P0,2 +

∑
i ∆P2,i.

Fig. 1. The merging processes of several state-of-the-art approaches.

denoted as GC , and Vandermonde matrix [33], denoted as GV

, which are defined as follows

GC =


1

x0⊕y0

1
x0⊕y1

. . . 1
x0⊕yk−1

1
x1⊕y0

1
x1⊕y1

. . . 1
x1⊕yk−1

...
...

. . .
...

1
xr−1⊕y0

1
xr−1⊕y1

. . . 1
xr−1⊕yk−1

 ,

GV =


10 11 . . . 1k−1

20 21 . . . 2k−1

...
...

. . .
...

r0 r1 . . . rk−1

 ,

where X = {x0, . . . , xr−1}, Y = {y0, . . . , yk−1} and X ∩
Y = ∅. While both Vandermonde and Cauchy matrices can
serve as encoding matrices for RS codes, Cauchy matrices
are more favored for wide-stripe RS codes. This preference
is due to the reliability of Cauchy matrices in ensuring the
MDS property for any systematic RS code RS(k, r) within
the commonly used Galois field GF (28), as long as k + r <
28. Conversely, RS codes that employ Vandermonde matrices
are subject to constraints on the stripe length. For instance,
if r = 4, then k must not exceed 21 [34]. Consequently, we
adopt Cauchy matrices as our encoding matrix, particularly
because the stripes tend to be wide after they are merged.

Locally Repairable Codes (LRCs). LRCs are another
class of popular erasure codes [12], [23], [35]. LRCs are RS-
based codes that can be represented as LRC(k, l, g), where
k, l, and g denote the number of data blocks, local parity
blocks, and global parity blocks, respectively. LRCs introduce
local parity blocks to reduce the computational and network
overhead during the recovery process. LRC(k, l, g) divides k
data blocks into l local groups, each accompanied by one local
parity block. In addition, g global parity blocks are computed
from all k data blocks, similar to RS codes. In the event of a
single block failure, it can be reconstructed by accessing only
the k

l surviving blocks within the same local group.

B. Existing Redundancy Transition Methods

To achieve a cost-effective storage system with optimal
performance, the transition from narrow to wide stripes is
of paramount significance. Presently, two primary categories
of methods are employed to execute this transition: scaling-
based methods [24], [25], [36]–[41] and merging-based meth-
ods [17], [28]–[30]. Scaling-based methods convert a (k, r)
stripe to a (k + s, r) stripe, aiming to minimize conversion
costs when adding s data blocks. Merging-based methods
involve merging β (k, r) stripes into a single (βk, r) stripe. We
subsequently explore existing approaches used for redundancy
transition, elucidating their respective strengths and limita-
tions.

1) Scaling-based Methods:
NCScale. NCScale [24], [25] is the state-of-the-art scaling

method that achieves the information-theoretically minimum
scaling bandwidth and minimizes network transmission during
the scaling process through network coding. An example of
merging three RS(4, 3) stripes via NCScale is illustrated in
Figure 1(a). All data blocks from the second and third stripes,
denoted as D1,i and D2,i respectively (where 0 ≤ i ≤ 3),
compute and transmit three parity delta blocks—∆P0,i, ∆P1,i,
and ∆P2,i—to P0,0, P0,1, and P0,2, respectively, to update the
post-merging parity blocks. However, NCScale has a limitation
due to its reliance on storage scaling to accommodate an
arbitrary number of scaling nodes. This constraint hinders
the utilization of parity blocks, resulting in relatively high
computational and network transmission overhead compared
to other merging-based methods.

2) Merging-based Methods:
StripeMerge. StripeMerge [17] is a technique tailored for

merging stripes of Vandermonde-based RS codes, as shown
in Figure 1(b). For Vandermonde-based RS codes, the post-
merging parity blocks can be expressed as linear combinations
of the original stripes’ parity blocks. For example, when
merging three RS(4, 3) stripes into one RS(12, 3) stripe,
the second parity blocks of the three pre-merging stripes are
denoted as Pj,1 =

∑3
i=0 2

iDj,i, for j = 0, 1, 2. Then, the



TABLE II
SUMMARY ON STRIPE MERGING METHODS

Merging Methods Computation Pattern
of Parity Blocks

Computation and Network
Transmission Overhead Deployment Limitations Degraded Read

Latency

NCScale [24], [25] Data only High None High

StripeMerge [17] Parity only Optimal Expand field size High

DISMerge [30] Data only Medium None High

Zebra [26], [27] Parity only Optimal Prerequisite of different
pre-merging encoding matrices High

Convertible Codes-I [28], [29] Parity only Optimal Expand field size High

Convertible Codes-II [28], [29] Parity only Optimal Decrease fault tolerance capability High

Cauchy-Merge Mostly parity +
a small fraction of data Low None Low

second parity block of the post-merging stripe, labeled as P ′
1,

can be expressed as P ′
1 =

∑3
i=0 2

iD0,i +
∑3

i=0 2
i+4D1,i +∑3

i=0 2
i+8D2,i = P0,1+24P1,1+28P2,1. This computing pat-

tern extends to the first and third parity blocks as well. Notably,
StripeMerge significantly reduces both network transmission
overhead and computational complexity by exclusively relying
on parity blocks during the stripe merging process. However,
it faces deployment challenges in real-world systems because
systematic RS codes based on Vandermonde matrices do
not guarantee the MDS property within GF (28) for wide
stripes [34], [42], unless the Galois field’s size is expanded,
which leads to performance degradation and increased imple-
mentation complexity [31].

DISMerge. DISMerge [30] has identified an optimal
data placement strategy that minimizes inter-cluster network
transmission during the merging of LRC stripes. Further
reductions in network transmission overhead are achieved
through encode-by-transfer mechanisms. An illustrative exam-
ple of DISMerge is depicted in Figure 1(c). It aggregates data
blocks within a cluster to compute and transmit parity delta
blocks to update the post-merging parity blocks. For example,
D1,0 and D1,1 are aggregated to calculate and transmit three
parity delta blocks for P ′

0, P ′
1, and P ′

2 respectively, and this
aggregation process is applied to other data blocks in the
same cluster to efficiently perform the merging operation.
However, DISMerge utilizes conventional Cauchy matrices
for encoding, which does not take advantage of pre-merging
parity blocks, resulting in relatively high computational and
network transmission overhead compared to methods that
could reuse existing parity blocks more effectively. Moreover,
DISMerge’s data placement strategy requires data blocks to
be centrally located within local groups, which can lead to
increased degraded read latency during system maintenance.
When a block goes offline, global recovery is needed for
decoding, which can slow down the read operations and affect
the system’s overall performance.

Zebra. Zebra [26], [27] leverages the property that every
submatrix of a Cauchy matrix is itself a Cauchy matrix. It
dissects a Cauchy matrix into multiple sub-Cauchy matrices,
with each serving as an encoding matrix for pre-merging
stripes. The concatenation of these sub-Cauchy matrices then

forms the encoding matrix for post-merging stripes. Conse-
quently, it yields a computational pattern similar to that of
StripeMerge, as depicted in Figure 1(b). The parity blocks of
the post-merging stripes can be efficiently computed through
XOR operations with their corresponding counterparts from
the pre-merging stripes. This approach significantly reduces
the computational and network overhead during stripe merg-
ing. However, Zebra introduces an impractical requirement:
it necessitates that the pre-merging stripes with identical
(k, r) parameters employ distinct encoding matrices, which
is unfeasible in real-world storage systems. In practice, most
storage systems utilize a single encoding matrix for the same
encoding parameters (k, r) [1], [2], [6]–[13].

Convertible Codes. Convertible Codes [28], [29] formally
establish the theoretical lower bound of access costs during the
stripe merging of linear MDS codes. They provide two explicit
constructions of encoding matrices that achieve the theoretical
lower bound, substantially reducing I/O and network overhead
in the stripe merging process. However, both constructions
face practical deployment limitations. Convertible Code-I re-
lies on Vandermonde matrices, similar to StripeMerge, ne-
cessitating the Galois field size to be O(2n

3

)2 [29], which
implies an exponential field size requirement relative to the
number of blocks in the stripe. Convertible Code-II, based
on superregular Hankel arrays, requires a significantly lower
(polynomial) field size. It selects submatrices from the Hankel
array to serve as both pre-merging and post-merging encoding
matrices. Each row of the post-merging encoding matrix is a
concatenation of specific rows from the pre-merging encoding
matrix to facilitate the efficient reuse of existing parity blocks.
This construction has a tradeoff between the field size and the
maximum value of the number of parity blocks after merging,
denoted as r′. However, even at the extreme end, where the
maximum r′ is supported and the field size requirement is
O(kr), it still has to reduce the number of parity blocks,
since r′ ≤ r − β + 1 and β ≥ 2 [29], leading to a decrease
in fault tolerance capability. Consequently, both constructions

2This bound is not a tight one. In fact, GF (216) can cover a wide range
of (k, r) to ensure the MDS property of the Vandermonde-based RS codes,
such as RS(200, 4). However, compared to GF (28), GF (216) will result
in performance degradation and increased implementation complexity [31].
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Fig. 2. The overview of Cauchy-Merge Approach

of Convertible Codes encounter deployment challenges within
real-world systems.

C. Motivation

The properties of various redundancy transition approaches
for merging narrow stripes into wide stripes are summarized
in Table II. As analyzed earlier, NCScale [24], [25] and
DISMerge [30] do not optimize the computation pattern for
the post-merging parity blocks; thereby, they require reading
all data blocks to compute the post-merging parity blocks.
As a result, they do not fundamentally reduce computational
complexity and network transmission overhead. StripeMerge,
Zebra, and Convertible Codes implement the optimal computa-
tion pattern, in which only parity blocks are used to calculate
the post-merging parity blocks, thereby effectively reducing
computational complexity and network transmission overhead.
However, they all face deployment limitations in real-world
systems. StripeMerge and Convertible Code-I impose an in-
crease in the field size to satisfy the MDS property, leading
to performance degradation and heightened implementation
complexity [31]. Convertible Code-II reduces the number of
parity blocks after merging, leading to a reduction in fault
tolerance capability. Zebra requires the existence of different
encoding matrices for the same parameters (k, r) within the
system, which is impractical [1], [2], [6]–[13].

To address these issues, we aim to design a stripe merg-
ing method, Cauchy-Merge, that leverages Cauchy matrices,
which ensure the MDS property, to merge narrow stripes into
wide stripes. By adopting the stripe merging method, we can
alter the computation pattern by reusing existing parity blocks
as much as possible, leading to reduced computational com-
plexity and network overhead. Furthermore, we will ensure
that the pre-merging stripes with the same parameters (k, r)
are encoded by the same encoding matrices, which is the most
practical scenario in real-world systems.

III. CAUCHY MERGE

A. Overview of Cauchy-Merge

RS codes and LRCs are the two most commonly used RS-
based erasure codes in contemporary cloud storage systems,
such as HDFS [13] and Windows Azure Storage [12]. There-
fore, our focus is on stripe merging from RS codes to RS

codes and LRCs (note that merging from LRCs to LRCs can
be regarded as a special case of merging from RS codes to
LRCs). We propose Cauchy-Merge, a methodology for merg-
ing narrow RS stripes into wide RS or LRC stripes. Cauchy-
Merge reduces the computational and network transmission
overhead of the merging process by using merge-friendly
Cauchy matrices, which allow for the efficient utilization of
parity blocks from the original stripes to generate both global
and local parity blocks within the wide stripe. Furthermore,
we employ partial data migration to distribute each local group
across different maintenance zones, thereby reducing degraded
read latency during cluster maintenance. Figure 2 presents
an overview of Cauchy-Merge, which consists of three main
components: merge-friendly Cauchy matrix construction, pre-
merging and post-merging encoding matrix construction, and
stripe merging methods.

• Merge-Friendly Cauchy Matrix Construction.
Cauchy-Merge defines a merge-friendly Cauchy matrix
and constructs it through coset decomposition, as detailed
in Section III-B.

• Pre-Merging and Post-Merging Encoding Matrix
Construction. Cauchy-Merge constructs a pair of pre-
merging and post-merging encoding matrices for RS
codes to facilitate efficient stripe merging. This construc-
tion is based on the merge-friendly Cauchy matrix, as
described in Section III-C.

• Stripe Merging Methods. Cauchy-Merge introduces two
efficient methods for merging RS stripes into RS stripes
or LRC stripes. These methods utilize existing parity
blocks to reduce network transmission and computational
overhead. The methods are based on the merge-friendly
Cauchy matrix and are elaborated in Section III-D.

B. Merge-Friendly Cauchy Matrix

First, we consider the specific problem of merging r
RS(k, r) stripes into a single RS(kr, r) stripe. We will discuss
merging β RS(k, r) stripes into a single RS(βk, r) stripe in
Section III-C.

The size of the encoding matrix changes from r×k to r×kr
when merging r RS(k, r) stripes. To reuse parity blocks from
the original stripes during the merging process, one approach is
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Fig. 3. The merge-friendly encoding matrix for RS(12, 3) is depicted,
with its leftmost four columns forming the encoding matrix corresponding
to the pre-merging RS(4, 3) matrix. Coefficient vectors are highlighted using
identical colors and filling patterns to indicate identity.

to construct the post-merging encoding matrix such that some
of its coefficients align with those of the pre-merging encoding
matrices. This allows original parity blocks to contribute to
the partial sums in the encoding computation of the post-
merging stripe. Specifically, if we view the k elements in
each row of the pre-merging encoding matrices as coefficient
vectors, the post-merging encoding matrix should have a block
symmetric form, with these coefficient vectors serving as
its partitioned blocks. For instance, Figure 3 illustrates an
encoding matrix for RS(12, 3), where the first 4 columns form
the encoding matrix for RS(4, 3) and the full 12 columns
represent the post-merging encoding matrix. The coefficient
vectors are highlighted with different colors and filling patterns
to emphasize their identity. This matrix structure facilitates the
efficient reuse of the original parity blocks during the stripe
merging process, which is further discussed in Section III-D
and Section III-E. Consequently, we define a Cauchy matrix
with a block symmetric structure as a merge-friendly Cauchy
matrix and provide an explicit construction for it.

Definition 1 (Merge-Friendly Cauchy Matrix). Let G be an
r × kr matrix over a field F . We define G as a merge-
friendly Cauchy matrix if G is both a Cauchy matrix and a
block symmetric matrix with r row partitions and r column
partitions. Each block of G is an 1×k row vector, referred to
as a coefficient vector.

Following the definition of a merge-friendly Cauchy matrix,
we proceed to present a general and explicit construction
of this matrix through coset decomposition. To begin, we
introduce some preliminary concepts in group theory and coset
decomposition.

Definition 2 (Finite Groups and Subgroups). A finite group
(G,+) is a set G that is finite and closed under a binary
operation + satisfying the properties of closure, associativity,
identity, and invertibility. A subset H ⊆ G is a subgroup of
G if H is also closed under the binary operation +. The order
of a group is defined as the number of its elements.

Definition 3 (Generating Set and Basis). Let G be a group
under a binary operation +, and let S be a non-empty subset
of G. The set S is termed a generating set of G if every
element in G can be expressed as a finite sum of elements in
S and their inverses under the binary operation +. The basis

of G is the generating set that has the smallest cardinality.

Definition 4 (Cosets and Representatives). Let H be a sub-
group of a group G and let g be a representative in G. Then
the set {g + h | h ∈ H} is called the coset generated by g
with respect to H , denoted by g +H .

Theorem 1 (Lemma 2.40 in [43]). Let H be a subgroup of
a group G and let g1, g2 ∈ G, then g1 +H = g2 +H if and
only if g1 + g2 ∈ H ,.

Theorem 2 (Coset Decomposition [43]). Let H be a subgroup
of a group G. Then the cosets of H in G partition G. In other
words, G is the union of the disjoint cosets of H in G.

G = H ∪ (g1 +H) ∪ (g2 +H) ∪ · · · ∪ (g|G|/|H|−1 +H),

where g1, g2, . . . are elements of G chosen such that all cosets
are distinct.

The encoding matrices of RS codes are defined over the
Galois field, which is a specific type of finite group. Conse-
quently, we can leverage the concept of coset decomposition
in group theory to construct merge-friendly Cauchy matrices.

Construction 1. Let F be a Galois field with order 2w and
let H be a subgroup of F with order 2l, where l < w.

1) Let H = {y0, y1, . . . , y2w−l−1}, with y2w−l−1 =
0 and let α0, α1, . . . , αw−l−1 form a basis of
H . By Definition 2 and Definition 3, there exist
αw−l, αw−l+1, . . . , αw−1 such that α0, α1, . . . , αw−1

form a basis of F .
2) For i ∈ [0, 2l − 1], i has a binary representation

(i0, i1, . . . , il−1), i.e., i =
∑l−1

j=0 ij · 2j . Define

xi =

l−1∑
j=0

ijαw−l+j . (1)

3) For i ∈ [0, 2l − 1], j ∈ [0, 2w−l − 1], denote xi + yj as
yi,j . Let

xi +H = {xi + y0, xi + y1, . . . , xi + y2w−l−1}
= {yi,0, yi,1, . . . , yi,2w−l−1}.

(2)

4) For i ∈ [0, 2l − 1], denote

Yi = (xi +H)\{xi} = {yi,0, yi,1, . . . , yi,2w−l−2}. (3)

The second equality can be derived from the fact that
y2w−l−1 = 0.

5) Define the matrix A ∈ F [0,2l−1]×[0,2w−2l−1] with the
(m,n)-th entry being

Am,n = Am,a·2l+b =
1

xm + ya,b
. (4)

Construction 1 provides a class of encoding matrix for
RS(2w − 2l, 2l). For example, when w = 4, l = 2, we have
F = {0, 1, . . . , 15} and let’s define H = {4, 8, 12, 0}. Recall
that the operation of addition in a Galois field is equivalent to
XOR; therefore, the basis of H is α0 = 4 and α1 = 8, while
the basis of F is α0 = 4, α1 = 8, α2 = 1, and α3 = 2 (step



1). Next, we can deduce that x0 = 0, x1 = α2 = 1, x2 =
α3 = 2, and x3 = α2 + α3 = 3 (step 2). Consequently, we
have Y0 = {4, 8, 12}, Y1 = {5, 9, 13}, Y2 = {6, 10, 14}, and
Y3 = {7, 11, 15} (steps 3-4). Finally, the matrix is defined
by (4) as the encoding matrix for RS(12, 4)(step 5). Here we
present the example where H is selected such that xi = i. In
fact, we can choose any H to complete the construction steps,
as long as H is a subgroup of F with order 2l.

Next, we shall prove that the matrices constructed by
Construction 1 are merge-friendly Cauchy matrices.

Lemma 1. The matrix A constructed by Construction 1 is a
Cauchy matrix.

Proof. For any i, j ∈ [0, 2l − 1] with i ̸= j, using (1), it
is straightforward to derive that xi ̸= xj and xi + xj /∈ H
because the basis of {xi} is disjoint from the basis of H .
Applying Theorem 1, we conclude that xi + H ̸= xj + H ,
implying the disjointness of xi+H and xj+H . Consequently,
{xi + H} forms a coset decomposition of F , according to
Theorem 2. Then all elements in {xi + H} are distinct, and
we have xi /∈ xj + H implying that xi /∈ Yj . Meanwhile,
the definition of Yi in (3) ensures that xi /∈ Yi. Hence, {xi}
and {Yi} satisfy the conditions needed to construct a Cauchy
matrix A.

Lemma 2. The matrix A constructed by Construction 1 is a
block symmetric matrix.

Proof. To prove that A is a block symmetric matrix, it suffices
to demonstrate that Am,a·2l+b = Aa,m·2l+b. According to (4),
this is equivalent to proving that xm + ya,b = xa + ym,b.
Recall the definition yi,j = xi+yj as given in (2); it holds that
xm+ya,b = xm+(xa+yb) = xa+(xm+yb) = xa+ym,b.

Theorem 3. The matrix G constructed by Construction 1 is
a merge-friendly Cauchy matrix.

Proof. This follows directly from Lemma 1 and Lemma 2

C. Pre-merging and Post-merging Encoding Matrix

From Construction 1, we can construct a merge-friendly
Cauchy matrix of size 2l × (2w − 2l). This matrix directly
yields the post-merging encoding matrix for the stripes of
RS(2w − 2l, 2l) and the corresponding pre-merging encoding
matrix for the stripes of RS(2w−l−1, 2l). However, the coding
parameters (k, r) specified by Construction 1 are stringent. It
mandates that the pre-merging stripe has k = 2w−l−1, r = 2l,
and each merging operation involves exactly β = 2l stripes.
Adhering strictly to these parameter requirements from Con-
struction 1 is unrealistic and unnecessary. Another construction
method, based on Construction 1, allows us to generate pre-
merging and post-merging encoding matrices while relaxing
the constraints on the coding parameters. Specifically, for the
pre-merging stripes, k ≤ 2w−l − 1, r ≤ 2l, and the number
of stripes merged each time, β ≤ 2l. This relaxation of
parameters is achieved by carefully selecting submatrices from
the merge-friendly Cauchy matrix. These submatrices, once
selected, act as the pre-merging and post-merging encoding

Algorithm 1 Construct A Pair of Encoding Matrices
1: procedure CONSTRUCT(k, r, β)
2: l← ⌈logr2⌉
3: H ← {i · 2l} : subgroup of GF (2w) with |H| = 2w−l

4: x0 ← 0
5: for i = 1 to 2l − 1 do
6: xi ← smallest element of G\

⋃i−1
j=0(xj +H)

7: end for
8: X ← {x0, x1, . . . , x2l−1}
9: Yi ← (xi +H)\xi

10: X ← first r elements of X
11: Yi ← first k elements of Yi

12: Y ← {Y0, Y1, . . . , Yβ−1}
13: return (X,Y0) and (X,Y )
14: end procedure

71 173 61 216

167 157 170 114

221 93 192122

0

1

2

4 8 12 16 5 9 13 17 6 10 14 18

71 173 61 216

71 173 61 216

167 157 170 114 221 93 192122

186 152 150 88

186 152 150 88

X  =

Y  =

Fig. 4. An example of the merge-friendly Cauchy matrix. The leftmost
column and the uppermost row represent X and Y , respectively, generated by
Algorithm 1, determining the Cauchy encoding matrix. The 3×4 submatrix to
the left of the dashed line is the encoding matrix of the pre-merging RS(4, 3)
code and the entire 3× 12 matrix is the encoding matrix of the post-merging
RS(12, 3) code. The same coefficient vector is highlighted in the same color.

matrices while still maintaining the properties of a merge-
friendly Cauchy matrix. This allows for the efficient reuse of
existing parity blocks during the computation of new parity
blocks in the process of stripe merging.

Algorithm 1 outlines the process of constructing this pair
of encoding matrices, relaxing the constraints on k, r, and
β compared to Construction 1. Algorithm 1 initially follows
the steps of Construction 1 (lines 2-9). Then, it selects the
first r representatives to comprise X instead of the entire
2l representatives (line 10). Furthermore, it takes the first k
elements from each coset to form Yi instead of all 2w−l − 1
elements (line 11). Lastly, it choose β cosets to comprise Y ,
which determines the post-merging encoding matrix with the
size r × βk (line 12).

Figure 4 presents a specific example of the construction
of the encoding matrices for pre-merging RS(4, 3) and post-
merging RS(12, 3) codes via Algorithm 1 over GF (28).
Initially, we determine l = ⌈log23⌉ = 2 (line 2), and define H
as a subgroup of order 26 in GF (28). Let H = {i ·2l} = {4i}
(line 3). We then compute all cosets and their representatives
for H , with each new representative being the minimal element
in GF (28) that does not belong to any pre-existing coset
(lines 5-7). The cosets generated by these representatives
form a coset decomposition of GF (28) (lines 8-9). From
the 2l representatives, we select the first r representatives to
comprise X (line 10), and from the cosets induced by these r
representatives, we take the first k elements of each coset to



constitute Y (lines 11-12). The first coset (H itself) contributes
its first k elements to constitute Y0 of the pre-merging RS code.
Thus, we obtain (X,Y0) and (X,Y ) for the encoding matrices
of the pre-merging and post-merging RS codes, respectively.

D. Stripe Merging Methods

Based on the merge-friendly Cauchy matrix, Cauchy-Merge
can efficiently merge β stripes of RS(k, r) into a single
stripe of either RS(βk, r) or LRC(βk, β, r). We propose
two merging algorithms for Cauchy-Merge: Cauchy-Merge-
RS for merging into an RS stripe and Cauchy-Merge-LRC for
merging into an LRC stripe.

1) Cauchy-Merge-RS: By leveraging the properties of the
merge-friendly Cauchy matrix, the parity blocks in the post-
merging stripe can be computed using existing parity blocks
from the original stripes and some additional data blocks. For
i ∈ [0, r − 1], j ∈ [0, k − 1], i1 ∈ [0, β − 1], i2 ∈ [0, r −
1], let P ′

i represent the i-th parity block of the post-merging
stripe, Pi1,i2 denote the i2-th parity block of the i1-th original
stripe, Di,j be the j-th data block of the i-th original stripe,
Di be the column vector of the data blocks of the i-th stripe,
i.e., Di = [Di,0, . . . , Di,k−1]

T , Ai1,i2 be the i2-th coefficient
vector on the i1-th row of the merge-friendly Cauchy matrix,
i.e., Ai1,i2 = [Ai1,i2k, . . . , Ai1,i2k+k−1]. Notice that Ai,i =
A0,0 and Ai1,i2 = Ai2,i1 according to the block symmetric
property of the merge-friendly Cauchy matrix. Combined with
the fact that Pi1,i2 = Ai2,0Di1 (if Pi1,i2 exists), we can derive
that when i = 0:

P ′
0 =

β−1∑
i=0

A0,iDi =

β−1∑
i=0

Ai,0Di

=



β−1∑
i=0

Pi,i, if β ≤ r

r−1∑
i=0

Pi,i +

β−1∑
i=r

Ai,0Di, if β > r

(5)

when 1 ≤ i ≤ r − 1:

P ′
i = Ai,0D0 +

i−1∑
j1=1

Ai,j1Dj1 +Ai,iDi +

β−1∑
j2=i+1

Ai,j2Dj2

= Ai,0D0 +

i−1∑
j1=1

Ai,j1Dj1 +A0,0Di +

β−1∑
j2=i+1

Ai,j2Dj2

=


P0,i + Pi,0 +

β−1∑
m=1
m ̸=i

k−1∑
n=0

Ai,km+nDm,n, if i < β

P0,i +

β−1∑
m=1

k−1∑
n=0

Ai,km+nDm,n, if i ≥ β.

(6)

Algorithm 2 summarizes the process of Cauchy-Merge-
RS, which merges β narrow RS(k, r) stripes into one wide
RS(βk, r) stripe. It first addresses the calculation of post-
merging parity blocks from the sender’s perspective, determin-
ing which blocks to transmit to which nodes to complete the

Algorithm 2 Cauchy-Merge-RS
1: procedure MERGE TO RS(Di,j , Pi,j , k, r, β)

// Di,j: the j-th data block of the i-th original stripe
// Pi,j: the j-th parity block of the i-th original stripe
// P ′

i : the i-th parity block of the post-merging stripe
2: for j = 0 to r − 1 do // i = 0
3: Send P0,j (if exists) to P ′

j

4: end for
5: for i = 1 to β − 1 do // i > 0
6: Send Pi,0 to P ′

i

7: Send Pi,i (if exists) to P ′
0

8: for j = 1 to r − 1, j ̸= i do
9: Send Dj,0 . . . Dj,k−1 to P ′

j

10: end for
11: end for
12: for i = 0 to r − 1 do
13: Calculate P ′

i by (5) and (6)
14: end for
15: return {P ′

i}
16: end procedure

D0,0 D0,1 D0,2

D1,0 D1,1 D1,2 D1,3

P0,0 P0,1

P1,0 P1,1

D0,3 P′0 P′1 P0,1P′2

P1,2

D2,0 D2,1 D2,2 D2,3 P2,0 P2,1 P2,2

Parity Blocks ②① Data Blocks

P1,0

P1,1

P2,0

P2,2
D1,0-3D2,0-3

Fig. 5. Merging three RS(4, 3) stripes into an RS(12, 3) stripe by Cauchy-
Merge-RS. P1,1 and P2,2 are sent to P0,0. New P ′

0 = P0,0 + P1,1 +
P2,2. P1,0 and D2,0 − D2,3 are sent to P0,1. New P ′

1 = P0,1 + P1,0 +∑3
i=0 A1,i+8D2,i. P2,0 and D1,0 − D1,3 are sent to P0,2. New P ′

2 =
P0,2 + P2,0 +

∑3
i=0 A2,i+4D1,i.

computation of parity blocks (lines 2-11), as opposed to the
receiver’s perspective described in equations (5) and (6). For
the original 0-th stripe, it only needs to transmit its own j-th
parity block (if it exists) to the node corresponding to the j-th
post-merging parity block (lines 2-4). For other i-th original
stripes (i > 0), there are three parts to transmit (lines 5-11):
the first part involves sending the 0-th parity block to the node
corresponding to the i-th post-merging parity block (line 6);
the second part involves sending the i-th parity block to the
node corresponding to the 0-th post-merging parity block (line
7); the third part entails transmitting its own data block to the
nodes corresponding to all post-merging parity blocks except
the 0-th and i-th (lines 8-10). After transmitting these blocks,
the post-merging stripe can compute the new parity blocks
based on equations (5) and (6) (lines 12-14).

Figure 5 illustrates the process of merging three RS(4, 3)
stripes into an RS(12, 3) stripe. According to equations (5)
and (6), P ′

0 = P0,0 + P1,1 + P2,2, P ′
1 = P0,1 + P1,0 +∑3

i=0 A1,i+8D2,i, and P ′
2 = P0,2 + P2,0 +

∑3
i=0 A2,i+4D1,i.

The block P0,0 receives P1,1 and P2,2. The block P0,1 receives
P1,0 and D2,0 − D2,3. The block P0,2 receives P2,0 and
D1,0 −D1,3. Then, all post-merging parity blocks P ′

0, P ′
1 and



P ′
2 can be calculated.
2) Cauchy-Merge-LRC: The recovery overhead of RS

codes is notably substantial, especially in scenarios involving
wide stripes. RS decoding requires the retrieval of k surviving
blocks, which can lead to a decline in system performance.
To alleviate the recovery overhead associated with such wide-
stripe erasure codes, the introduction of local parity blocks is
a common practice [2], [14], [15].

However, the data placement strategy is crucial for LRC,
as it is essential to fully leverage the recovery performance
advantages offered by local parity blocks. It is imperative
to ensure that blocks from a local group are distributed
across different maintenance zones to mitigate performance
degradation due to cluster maintenance, which is both common
and foreseeable [2]. By doing so, when a degraded read
request is triggered during cluster maintenance, it only requires
reading other blocks within the local group to decode the data
block. Otherwise, this degraded read might trigger global RS
decoding, leading to significant performance degradation and
a decline in service quality. Hence, careful attention must be
paid to the placement of data and parity blocks during the
stripe merging process of LRC.

We propose Cauchy-Merge-LRC, which merges narrow RS
stripes into wide LRC stripes while considering the block
placement strategy through the merging process. It consists
of three main steps: Local Parity Block Generation, Global
Parity Block Generation, and Partial Data Migration.

• Local Parity Block Generation. Cauchy-Merge-LRC ini-
tially adopts the first parity blocks of the existing stripes
as the local parity blocks for the post-merging LRC stripe
during the Local Parity Block Generation step. These
local parity blocks are then replicated on a dedicated node
where none of the data blocks from the local group are
stored, ensuring they are not within the same maintenance
zone.

• Global Parity Block Generation. Subsequently, Cauchy-
Merge-LRC executes the Global Parity Block Generation
step, which is the same as the procedure of Cauchy-
Merge-RS, introduced in Section III-D1.

• Partial Data Migration. Finally, we employ Partial Data
Migration to ensure that each maintenance zone contains
at most one block from a local group. This ensures that
all degraded read requests caused by foreseeable cluster
maintenance can be decoded within their respective local
groups. Partial Data Migration examines all local groups
to check whether the blocks are distributed across dif-
ferent maintenance zones and migrate blocks of a local
group that are in the same maintenance zone to other
unused maintenance zones.

Algorithm 3 summarizes the process of Cauchy-Merge-
LRC for merging β narrow RS(k, r) stripes into one wide
LRC(βk, β, r) stripe. Initially, it replicates existing parity
blocks to unused maintenance zones to serve as local parity
blocks for the post-merging stripe. Subsequently, it utilizes
Cauchy-Merge-RS to compute the global parity blocks for the
post-merging stripe. Finally, it examines the placement of data

Algorithm 3 Cauchy-Merge-LRC
1: procedure MERGE TO LRC(Di,j , Pi,j , k, r, β)

// Di,j: the j-th data block of the i-th original stripe
// Pi,j: the j-th parity block of the i-th original stripe
// L′

i: the i-th local parity block of the post-merging stripe
// P ′

i : the i-th global parity block of the post-merging stripe
// Generate local parity blocks

2: for i = 0 to β − 1 do
3: Send Pi,0 to an unused maintenance zone as L′

i

4: end for
// Generate global parity blocks

5: {P ′
i} ←Merge to RS(Di,j , Pi,j , k, r, β)

// Partial data migration
6: for i = 0 to β − 1 do
7: while Two blocks are stored in one maintenance zone do
8: Send one block to an unused maintenance zone
9: end while

10: end for
11: return {L′

i}, {P ′
i}

12: end procedure

D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3

P0,0 P0,1

P1,0 P1,1

L′0

L′1

D0,1P′0 P′1

① P0,0

① P1,0

② P1,0

② P1,1

③ D0,1

①
Local Parity Global Parity

② ③
Partial Data Migration

Fig. 6. Merging two RS(4, 2) stripes into an LRC(8, 2, 2) stripe by Cauchy-
Merge-LRC. Different maintenance zones are marked by red dotted lines.

blocks and ensures, through partial data migration, that each
maintenance zone stores at most one data or local parity block
from a local group.

An example of merging two RS(4, 2) stripes into an
LRC(8, 2, 2) stripe is illustrated in Figure 6. First, P0,0 and
P1,0 are duplicated to serve as the new local parity blocks.
Then, P1,0 and P1,1 are transmitted to P0,1 and P0,0, respec-
tively, to complete the generation of global parity blocks, as
in Cauchy-Merge-RS. Finally, partial data migration identifies
that D0,1 and D0,2 are located within the same maintenance
zone, and consequently, D0,1is migrated to another zone.

E. Properties of Cauchy-Merge

In this subsection, we analyze the properties of Cauchy-
Merge to demonstrate its effectiveness. First, we examine the
proportion of reused parity blocks during the stripe merging
process. We focus on the generation of RS parity blocks, since
this process is required in both Cauchy-Merge-RS and Cauchy-
Merge-LRC, and constitutes all the computational overhead
during the stripe merging process. We can prove that when
merging β RS(k, r) stripes and computing RS parity blocks,



TABLE III
THE REUSE RATE OF EXISTING PARITY BLOCKS (CALCULATION SAVINGS
RATE) DURING THE COMPUTATION OF RS PARITY BLOCKS IN THE STRIPE

MERGING PROCESS FOR DIFFERENT r AND β .

r
β 2 3 4

2 100% – –
3 83.33% 77.78% 58.33%
4 75% 66.67% 62.5%

out of the original βr parity blocks, r − 2 + 2min{β, r} of
them are reused.

Theorem 4. Cauchy-Merge reuses a total of r − 2 +
2min{β, r} out of βr existing parity blocks when merging
β RS(k, r) stripes into a single RS(βk, r) stripe.

Proof. Case 1: β ≤ r. In the computation of P ′
0, β parity

blocks associated with the first β coefficient vectors con-
stituting the first row of the post-merging encoding matrix
are reused, as directly derived from (5). In the computation
of P ′

i (1 ≤ i ≤ β − 1), as formulated in (6), two parity
blocks associated with the coefficient vectors comprising the
first column and main diagonal of the post-merging encod-
ing matrix are reused. Meanwhile, in the computation of
P ′
i (β ≤ i ≤ r − 1), one parity block associated with

the coefficient vectors comprising the first column of the
post-merging encoding matrix is reused. Hence, a total of
β+2(β−1)+(r−β) = 2β+ r−2 original parity blocks are
reused when computing the parity blocks of the post-merging
stripe.

Case 2: β > r. In the computation of P ′
0, r parity blocks

associated with all coefficient vectors constituting the first row
of the post-merging encoding matrix are reused, which directly
derived from (5). In the computation of P ′

i (1 ≤ i ≤ r−1), as
formulated in (6), two parity blocks associated with the coef-
ficient vectors comprising the first column and main diagonal
of the post-merging encoding matrix are reused. Hence, a total
of r+2(r−1) = 3r−2 original parity blocks are reused when
computing the parity blocks of the post-merging stripe.

By considering both case 1 and case 2, a total of r − 2 +
2min{β, r} original parity blocks are reused when computing
the parity blocks of the post-merging stripe.

Theorem 4 demonstrates the number of parity blocks that
can be reused during the merging process. Typically, a stripe
contains 2, 3, or 4 parity blocks. The reuse rate (or calculation
savings rate) during the computation of RS parity blocks in
the stripe merging process for different values of r and β is
presented in Table III.

Additionally, Cauchy-Merge imposes no restrictions on the
selection of stripes for merging, as this choice does not affect
the reutilization of parity blocks. The method does not rely
on specific stripe combinations and can merge any set of r
stripes with equal efficiency in terms of reusing original parity
blocks.

IV. PERFORMANCE EVALUATION

In this section, we conduct a series of mathematical anal-
yses, simulations, and testbed experiments to demonstrate the
effectiveness of Cauchy-Merge under various parameters.

A. Evaluation Methodology

To evaluate the effectiveness of Cauchy-Merge, we com-
pare it with two advanced redundancy transition meth-
ods: NCScale [24], [25] and DISMerge [30]. However,
StripeMerge [17], Zebra [26], [27] and Convertible Codes [28],
[29] are excluded from our evaluation in Table II because
they have specific deployment requirements and can not
adapt to existing storage systems, as analyzed in Section II.
For Cauchy-Merge, we have implemented two approaches:
Cauchy-Merge-RS, merging into RS stripes, and Cauchy-
Merge-LRC, merging into LRC stripes (denoted as CM-RS
and CM-LRC, respectively, for simplicity in figures). We
evaluate the performance of these methods when merging
β RS(k, r) stripes into one RS(βk, r) stripe for NCScale
and Cauchy-Merge-RS, or into one LRC(βk, β, r) stripe for
DISMerge and Cauchy-Merge-LRC.

1) Metrics for Simulations and Numerical Analyses: We
use the Merging Transmission Cost, Algorithm Running
Time as the metrics for simulations and Merging Computa-
tion Cost as the metrics for numerical analyses.

• Merging Transmission Cost is defined as the total
number of blocks transmitted during the merging process.

• Merging Computation Cost is defined as the total num-
ber of XOR operations and multiplications over Galois
field during the merging process.

• Algorithm Running Time is defined as the total time
taken to generate the stripe merging schemes.

2) Metrics for Testbed Evaluation: We use Merging Time
and Degraded Read Latency as the metrics for testbed
evaluation.

• Merging Time is measured by the average time taken to
merge a fixed number of stripes, including transmission
time and computing time.

• Degraded Read Latency is measured by the average
latency experienced during degraded reads when the
nodes of one maintenance zone are offline.

3) Simulator Environment: We implement a simulator for
Cauchy-Merge to evaluate the merging transmission cost and
algorithm running time. NCScale and DISMerge are also
implemented in the simulator for comparison of the merging
transmission cost. The simulator runs on a physical server
equipped with an Intel Xeon Processor E5-2620, 192GB of
memory, and 8TB of disks. The default setup involves merging
6000 stripes, with the blocks distributed randomly across 40
nodes.

4) Testbed Environment: We conduct our experiments on
Amazon EC2 in the US-East-2 (Ohio) region, utilizing 40
m5.large instances as storage nodes and an additional instance
as the scheduling node. These instances are interconnected
with a 10 Gbps network. The scheduling node manages the



entire stripe merging task, while storage nodes handle the
assigned transmitting and computing tasks. We implement the
parity block computation of Cauchy-Merge using Intel ISA-
L [44] and develop a test program to measure the merging
time, including transmission and computation time, along with
degraded read latency. All experiment results are averaged over
5 rounds.

We randomly distribute all blocks of 6000 stripes across 40
storage nodes. To simulate maintenance tasks in the cluster, we
evenly distribute nodes into different maintenance zones and
remove the nodes from one maintenance zone when evaluating
degraded read latency. By default, the block size is fixed at
64MB, and the number of maintenance zones is 20.

B. Simulation and Numerical Results

In this subsection, we evaluate the merging transmission
cost, merging computation cost, and algorithm running time
of various methods during the stripe merging process under
different parameters. The merging transmission cost and al-
gorithm time are evaluated in simulations, while the merging
computation cost is analyzed mathematically.

1) Merging transmission cost versus (k, r): Figure 7 il-
lustrates the merging transmission cost of different methods
under various (k, r) parameters. The results demonstrate that
Cauchy-Merge-RS/LRC effectively reduces the number of
transmitted blocks during the merging process. Specifically,
when β = 2, Cauchy-Merge-RS/LRC achieves a reduction of
47.18% to 93.12% compared to DISMerge. When β = 3, the
reduction ranges from 48.48% to 66.08%. For β = 4, the
reduction varies between 40.51% and 48.07%.

As β increases, Cauchy-Merge-RS/LRC shows a decreasing
trend in the reduction ratio of merging transmission cost. This
behavior is attributed to the fact that the parity block reuse ratio
in Cauchy-Merge is given by r−2+2min{β,r}

βr . With increasing
β, the reuse ratio diminishes, as shown in Table III.

2) Merging computation cost versus (k, r): We analyze
the merging computation cost mathematically and present the
numerical results of different methods under various (k, r)
parameters in Figures 8 and 9.

XOR Operations. When merging β RS(k, r) stripes, the
number of XOR operations (#⊕) for Cauchy-Merge is

#⊕ =


k(β − 1)(β − 2) + k(β − 1)(r − β) + 2(β − 1),

if β ≤ r,

k(r − 1)(β − 2) + k(β − r) + 2(r − 1),

if β > r.

The number of XOR operations for DISMerge and NCScale
is #⊕ = k(β − 1)r. Figure 8 demonstrates that Cauchy-
Merge effectively reduces the XOR computations involved in
the merging process compared to DISMerge and NCScale. For
example, when β = 2, Cauchy-Merge shows a reduction of
45.83% to 83.33%.

TABLE IV
TIME BREAKDOWN OF CAUCHY-MERGE FOR MERGING 6000 STRIPES

(k, r, β) RS Transfer (s) RS Compute (s) LRC Transfer (s)
(8, 2, 2) 110.18 2.18 23.94
(10, 3, 3) 533.90 9.43 33.21
(12, 4, 4) 1009.94 41.08 81.65

GF Multiplications3. When merging β RS(k, r) stripes,
the number of GF Multiplications (#⊗) for Cauchy-Merge is

#⊗ =

{
k(β − 1)(β − 2) + k(β − 1)(r − β), if β ≤ r,

k(r − 1)(β − 2) + k(β − r), if β > r.

The number of GF Multiplications for DISMerge and NCScale
is #⊗ = k(β−1)r. Figure 9 demonstrates that Cauchy-Merge
also reduces GF Multiplications in the merging process. For
example, when β = 2, Cauchy-Merge reduces GF Multiplica-
tions by 50% to 100%.

The results show that Cauchy-Merge effectively reduces
both XOR computations and GF Multiplications compared
to DISMerge and NCScale. However, the reduction ratio
decreases as β increases, similar to the merging transmission
cost, due to the declining parity block reuse ratio in Table III.

3) Running time versus the number of stripes: Figure 10
illustrates the algorithm’s running time for Cauchy-Merge-
RS/LRC under a varying number of stripes. The results
indicate that Cauchy-Merge-LRC is consistently slower than
Cauchy-Merge-RS. This is because Cauchy-Merge-LRC in-
curs additional running time for partial data migration com-
pared to Cauchy-Merge-RS. The overhead caused by running
Cauchy-Merge-RS/LRC to generate the merging schemes is
negligible when compared to the merging time, as evaluated
in the following subsection.

C. Testbed Evaluation

In this subsection, we measure the breakdown of stripe
merging time for Cauchy-Merge. Next, we examine the impact
of different parameters, including the coding parameters (k, r),
the merging number β, block size, and the number of mainte-
nance zones, on the stripe merging time of different methods.
Lastly, we measure the degraded read latency, thereby demon-
strating the effectiveness of Partial Data Migration.

1) Time breakdown: We measured the breakdown of
Cauchy-Merge stripe merging time, demonstrating the addi-
tional overhead introduced by Cauchy-Merge-LRC compared
to Cauchy-Merge-RS. We categorize the Cauchy-Merge time
into three parts: RS Transfer, RS Compute, and LRC Transfer.
RS Transfer refers to the time taken to transmit data blocks and
parity blocks for computing post-merging RS parity blocks;
RS Compute is the time taken to compute post-merging RS
parity blocks; and LRC Transfer is the time taken to generate
local parity blocks and perform partial data migration. The
total time for Cauchy-Merge-RS is the sum of the first two
parts, while the total time for Cauchy-Merge-LRC is the sum

3GF Multiplications is an abbreviation for multiplications over the Galois
field.
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Fig. 7. Comparisons among different redundancy transition approaches in terms of merging transmission cost under various (k, r) parameters.
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Fig. 8. Comparisons among different redundancy transition approaches in terms of the number of XOR operations under various (k, r) parameters.
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Fig. 9. Comparisons among different redundancy transition approaches in terms of the number of GF Multiplications under various (k, r) parameters.
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Fig. 10. Comparisons between Cauchy-Merge-RS and Cauchy-Merge-LRC in terms of algorithm running time under various numbers of stripes.

of all three parts. We tested the breakdown of merging time for
different (k, r), and β, and Table IV presents the breakdown
of time. Compared to Cauchy-Merge-RS, the overhead of
Cauchy-Merge-LRC is 21.74%, 6.22%, and 8.08%, respec-
tively, for different (k, r), and β.

2) Merging time versus (k, r): We conducted experiments
to measure the merging time of different (k, r), and β. The
experimental results, depicted in Figure 11, reveal that, com-
pared to DISMerge, Cauchy-Merge-RS/LRC reduces the total
merging time by 41.18% to 89.53% and 38.41% to 84.77%,
respectively. The reduction is attributed to the efficient reuse
of existing parity blocks. As β increases, the reduction in
merging time decreases. This trend is due to the diminishing
parity block reuse ratio as β increases. Additionally, the extra

overhead of Cauchy-Merge-LRC increases with the growth of
k. For example, with β = r = 3, the overhead rises from
3.2% to 11.52% as k increases from 6 to 10. This is due to
the higher likelihood of storing multiple blocks from the same
local group within a maintenance zone as k increases, leading
to more blocks being transferred during partial data migration.

3) Merging time versus block size: We measured the total
merging time for different block sizes ranging from 8MB
to 64MB, and the results are illustrated in Figure 12. It is
demonstrated that Cauchy-Merge consistently provides sim-
ilar improvements across varying block sizes. For example,
Cauchy-Merge achieves reductions in merging time ranging
from 56.70% to 61.69% compared to DISMerge when k =
8, r = 3, β = 3 across different block sizes. This suggests the
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Fig. 11. Comparisons among different redundancy transition approaches in terms of merging time under various (k, r) parameters.
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Fig. 12. Comparisons among different redundancy transition approaches in terms of merging time under various block sizes.
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Fig. 13. Comparisons among different redundancy transition approaches in terms of merging time under various numbers of maintenance zones.
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Fig. 14. Comparisons among different redundancy transition approaches in terms of degraded read latency under various numbers of maintenance zones.

effectiveness of Cauchy-Merge regardless of block sizes.
4) Merging time versus the number of maintenance zones:

We evaluated the merging time with different numbers of
maintenance zones. Figure 13 presents the experimental re-
sults. The merging time for Cauchy-Merge-RS, DISMerge,
and NCScale remains constant regardless of the number of
maintenance zones. Cauchy-Merge-LRC exhibits a reduction
in merging time as the number of maintenance zones increases.
For instance, when k = 6, r = 2, and β = 2, Cauchy-Merge-
LRC shows reductions of 10.23% and 12.60% in merging time
with 20 and 25 maintenance zones, respectively, compared
to 15 maintenance zones. This is because of the decreased
probability of a maintenance zone storing multiple blocks from
the same local group, resulting in fewer data blocks being

transferred in partial data migration.
5) Degraded read latency versus the number of mainte-

nance zones: We conducted experiments to measure the de-
graded read latency of merged LRC stripes with an unavailable
maintenance zone under different numbers of maintenance
zones. The results, as shown in Figure 14, reveal that Cauchy-
Merge-LRC exhibits the lowest degraded read latency, and
the number of maintenance zones does not significantly affect
it. Cauchy-Merge-LRC without Partial Data Migration’s de-
graded read latency falls between the other two methods and
decreases with an increasing number of maintenance zones.
DISMerge exhibits the highest degraded read latency due to
its restrictions on the data layout, centralizing the placement of
data blocks within a local group. Consequently, it consistently



requires global recovery to decode the offline block during
maintenance tasks. Compared to Cauchy-Merge-LRC without
Partial Data Migration, Cauchy-Merge-LRC significantly re-
duces degraded read latency, especially when k and β are
large, since Cauchy-Merge-LRC only needs to retrieve k
blocks while other methods need to retrieve all βk blocks.

V. CONCLUSION

In this paper, we propose Cauchy-Merge, a redundancy
transition method that merges narrow RS stripes into wide RS
or LRC stripes, based on the merge-friendly Cauchy matrix. It
reuses original parity blocks in the merging process, thereby
reducing computation and network transmission overhead.
Additionally, Cauchy-Merge employs partial data migration to
lower degraded read latency during cluster maintenance. We
evaluate the performance of Cauchy-Merge through numerical
analyses and testbed experiments. The results demonstrate
that Cauchy-Merge can reduce stripe merging time by up to
89.53% and degraded read latency by up to 69.17%.
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