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Abstract—In LSM-tree-based key-value stores (LSM-KV
stores), the high write amplification (WA) in both LSM-KV
store level and device level (device internal GC) caused by
compaction seriously impacts the SSD lifespan. We believe Zoned
Namespace (ZNS) SSD provides a good opportunity to address
the lifespan issues since it can shift the data allocation and
Garbage Collection (GC) capabilities to LSM-KV stores by using
the zoned block interface management. Thus, LSM-KV stores
can potentially reduce the device WA by minimizing the amount
of data migration during zone cleaning. However, most of the
existing studies fail to provide a comprehensive solution for LSM-
KV stores on ZNS SSD to reduce device WA in the whole data
lifecycles including file allocation, file GC, and compaction.

In this paper, we propose Prophet, a WA-optimized LSM-KV
store for ZNS SSDs with techniques of SST (Sorted Static Table)
file lifetime prediction, zone-aware allocation, and WA-optimized
zone cleaning. More specifically, 1) We first propose a novel clock
to precisely measure the SST file lifetime via the sum of flush
and compaction events; 2) We design a quantitative SST file
lifetime prediction algorithm and the SST file allocation scheme
to improve the invalid data ratio of cleaning zones such that the
amount of data being migrated can be minimized; 3) We explore
the possibility of integrating compaction and GC during zone
cleaning and achieve a better trade-off between performance and
WA. We implemented Prophet based on RocksDB and ZenFS,
and evaluated the prototype on real ZNS SSDs. Our evaluations
show that Prophet achieves 79% of SST file lifetime prediction
accuracy and it successfully reduces up to 31% of WA compared
to state-of-the-art LIZA in ZenFS.

Index Terms—ZNS SSDs, LSM-KV stores, write amplification

I. INTRODUCTION

The log-structured merge tree (LSM-tree) [1]–[8] is a
widely used data structure to organize data in KV-store by
creating sequential writes in the Write Ahead Log (WAL) and
immutable SST files. LSM-KV stores batch key-value pairs
(KV-pairs) in memory and writes them out to the storage via
Flush. KV-pairs are stored as immutable files, called SST files.
SST files are organized in different levels (i.e., from Level-0,
Level-1, to the bottom-most level) and the key-ranges of SST
files in the same level do not have overlaps. The Compaction
mechanism merges the one SST file from Level − i with
SST files in Level − i + 1 that have key-range overlaps into
new SST files. After compaction, the newly generated SST
files are allocated at Level − i + 1, and all the old SST
files are deleted. Compaction effectively improves the space

efficiency by eliminating the stale KV-pairs and improves the
read performance.

However, compaction causes a high write amplification
(WA) at LSM-KV store level since the KV-pairs are read and
written multiple times by different compaction jobs until it
is finally compacted to the bottom-most level. The high WA
can explicitly reduce the SSD lifespan [9]–[13]. Moreover, the
frequent SST file deletion causes a large amount of cleaning
pressure on the SSD device’s internal Garbage Collection
(GC), which further increases the device’s internal WA. Since
LSM-KV stores have no control over the device level garbage
collection applied by FTL in regular SSDs, optimizing the WA
at the device level (i.e., reducing the data migration during GC)
is difficult.

We believe Zoned Namespace SSD (ZNS SSD) provides
a good opportunity to address the lifespan issues of LSM-
KV store since it can shift the data allocation and cleaning
capabilities to the application level by using the zoned block
interface management. ZNS SSD divides the storage space
into fixed-size zones (e.g., 512 MB or 1077 MB per zone).
Similar to existing zoned block devices such as SMR [14]–
[18] and IMR [19], data can only be appended sequentially on
the zone write pointer, and in-place updates are not allowed.
After resetting the write pointer to the beginning of the zone,
the whole zone is cleaned and ready to accept new writes.
Zone cleaning must be applied by the applications to identify
and migrate the valid data from the cleaning zone such that
we can ensure data correctness during the zone cleaning. In
an ideal case, if one zone does not have any valid data before
zone cleaning, there is no device-level WA. More importantly,
fewer valid data can minimize the data migration efforts during
cleaning and achieve higher performance, which is validated
in the related work [20], [21].

Therefore, the main challenges of designing and optimizing
LSM-KV store for ZNS SSD are: 1) to design an appropriate
data allocation strategy such that most (or all) of the data in
the same zone become invalid at about the same time and
we can minimize the WA, and 2) to design a sophisticated
zone cleaning scheme such that the zone selected for cleaning
can achieve a better tradeoff between valid data migration
overhead and space reclaiming efficiency. There are several
existing studies that are optimizing LSM-KV stores on ZNS
SSDs, which mainly focused on reducing the zone cleaning



overhead and device internal write WA [21]–[29]. In particular,
existing studies like LIZA in ZenFS [21], [26], CAZA [27],
LL Compaction [28], [29], ZNSKV [30], lifetimeKV [31], are
focusing on adapting RocksDB (a widely used LSM-KV store)
on ZNS SSDs and optimizing device level WA. However,
there are several critical issues that are not fully explored and
resolved, which hinder the application of existing studies.

First, precisely predicting the SST file deletion time is
difficult. The previous studies [21], [26]–[28] have reached
a consensus that we need to allocate SST files with a similar
deletion time to the same zone. Consequently, when a zone
is selected to be cleaned, most of the SST files are already
deleted, which can minimize the cleaning overhead and WA.
If we perfectly predict the deletion time of all SST files and
allocate them to the zones with minimal deletion time variance,
the cleaning zone can be reset as early as possible to minimize
the data migration overhead. Since the creation time of each
SST file is known, the key to the problem is to predict the
SST file lifetime (i.e., the time from creation to deletion). But
precisely predicting the lifetime time of a newly generated SST
file is fundamentally challenging. The deletion of an SST is
triggered when this file is compacted. However, compaction
is determined by several factors: 1) Compaction policy (it
determines the SST files to be compacted); 2) The LSM-KV
store status, including total data size, levels, and level fan out;
and 3) workload characteristics including key-range hotness,
access patterns, and queries.

Second, how to effectively allocate SST files with a similar
deletion time to a group of open zones is a complex issue.
If we know the deletion time of all the SST files, grouping
them into several zones to minimize the deletion time variation
is feasible (i.e., a typical clustering algorithm can achieve
optimal results). However, during the LSM-KV store running
time, when one SST file is generated, we are not able to know
the actual deletion time of allocated SST files in different
zones and the deletion time of SST files being created in
the near future. Therefore, there is only limited information
available for designing the SST file allocation algorithm. Also,
the number of open zones is also changing dynamically, which
makes the problem even more complex.

Third, the tradeoffs between GC and compaction are not
fully explored. There are two possible solutions for LSM-
KV stores to clean one zone: 1) aggressively compact all
the valid SST files in one zone such that all the SST files
in this zone become invalid and we can directly reset the
write pointer, and 2) apply traditional GC policy to migrate
the valid SST files to other zones and then reset the write
pointer. Some existing studies ( [21], [26], [27], [32]–[35])
use GC to clean a zone while other studies ( [28], [36]–
[38]) redesigned the compaction policy to actively compact
the valid SST files during the zone cleaning to achieve GC-
free. Using compaction to delete all the SST files ahead of the
zone reset can fully avoid the device level WA (i.e., no data
migration is needed). However, it will increase the LSM-KV
store level WA and may cause performance regression due to
the extra unnecessary compaction jobs that are not triggered

by the compaction policy itself.
To address the aforementioned critical issues and chal-

lenges, we propose Prophet, a comprehensive optimization
solution for LSM-KV stores on ZNS SSDs to achieve better
tradeoffs between the SSD lifespan and overall performance.
Prophet is a framework that includes the precise SST file
lifetime prediction, deletion-time aware allocation, and GC
with compaction compensation during zone cleaning. We first
analyze the lifetime of SST files in different compaction
scenarios and propose a complete lifetime prediction algorithm
for each case, which is independent of the compaction policies.
We innovatively propose to use the number of flush and
compaction as logical clocks (FC-ticks) instead of natural time
to achieve a more precise lifetime measurement. Second, to
leverage the predicted lifetime of each newly generated SST
file in the allocation, we propose the dynamic deletion-time
range assignment scheme for each zone. We propose a way
of estimating the deletion time range of each open zone and
allocating the SST files to a zone that matches its predicted
deletion time. We have considered the situation when there is
no suitable zone to allocate the SST file and given a solution
to make sure the deletion time distribution is similar in each
zone. Finally, we analyze and compare the advantages and
limitations of using GC and compaction during zone cleaning.
We found the observations and insights that compaction can
be a good compensation for GC when the valid SST files
are expected to be compacted in the near future. Thus, we
propose to dynamically apply GC and compaction for different
SST files during the zone cleaning based on the compaction
estimations. In this way, we can achieve the lowest device
writes with minimal performance overhead compared with the
full GC or full compaction schemes.

We implement Prophet based on RocksDB v7.6 and ZenFS
v2.1.0, and open-sourced it at Github1 for further investi-
gations and research. We evaluate Prophet via db bench in
RocksDB on the real ZNS SSD prototype (WD ZN540 with
1TB capacity [39]). Our evaluation shows that Prophet can
reduce up to 31% of WA compared to LIZA in ZenFS.
Specifically, Prophet can achieve about 79% SST file lifetime
prediction accuracy (the prediction error is smaller than 20
FC-ticks). Also, the GC with compaction compensation can
further reduce about 7% to 10% of the device writes compared
to the full GC or full compaction schemes. We summarize our
contribution as follows:

• We propose to use the number of flush and compaction
as the clock “Tick-Tock” to measure the SST file lifetime
and design a detailed SST file lifetime analysis and
prediction algorithms.

• We address the SST file allocation issue by dynamically
assigning the deletion time range for each open zone.
It successfully ensures a similar SST file deletion time
distribution for each zone.

• We explore the tradeoffs between GC and compaction for
zone cleaning, and propose compaction as compensation

1https://github.com/asu-idi/prophet-rocksdb



for GC. It avoids the potential extra I/Os caused by
unnecessary compaction and further reduces device writes
by about 7% to 10%.

• Prophet includes a complete solution to optimize LSM-
KV stores on ZNS SSDs, which achieves up to 31% of
WA reduction with no performance regression compared
to LIZA in ZenFS.

II. BACKGROUND AND RELATED WORK

A. LSM-based Key-Value Store

The log-structured merge tree (LSM-tree) [1] is a widely
used data structure to organize data in KV-store suck as HBase
[40], LevelDB [41], and RocksDB [42]. A noticeable feature
is that LSM-tree writes data to the storage system sequentially,
which is a preferred feature for ZNS SSDs. LSM-tree-based
key-value stores (LSM-KV stores) caches key-value pairs in
memory as Memtables and persist the Memtable in Sorted
State Table Files (SST files) as tiered levels fashion on the
storage system [43]. The data in Memtable will finally be
written to Level 0 by flush operation.

Each level (except Level 0) contains a number of SST files
that partition the key range of the level. The size limit of
the level increases exponentially in a specific constant number
(i.e., level fan-out). If the size of the level reaches the limit,
compaction will be triggered to merge some of the SST files to
the adjacent higher level (assume leveli+1 is the higher level
of leveli and leveli−1 is the lower level of leveli in LSM-KV
stores).

During one compaction job, a victim SST file in leveli is se-
lected based on the compaction policies. Then, all the SST files
that have key-range overlaps with the selected file are selected
at leveli+1. Finally, all those selected SST files are merged
into new SST files and registered at leveli+1. Different LSM-
KV stores may have different compaction policies, for exam-
ple, LevelDB [41] supports Round Robin compaction policy,
while RocksDB [42] supports 5 different compaction policies
(By Compensated Size, Oldest Largest Seq First, OldestS-
mallestSeqFirst, Min Overlapping Ratio, Round Robin).

Take the Round Robin compaction policy as an example.
Round Robin compaction (RR-compaction) is a widely used
compaction policy both implemented in RocksDB and Lev-
eldb. In the RR-compaction design, each level maintains a
compaction cursor that points to an SST file to be selected
as the victim to start compaction, when leveli triggers com-
paction. After that, the compaction cursor will move to the
next position or the beginning (if it’s at the end).

RocksDB is one of the most widely used and explored
LSM-KV stores in both academia and industry. Therefore,
in this paper, we are focusing on analyzing the compaction
of RocksDB and optimizing RocksDB for ZNS SSDs. Con-
sidering the typicality and generality of RocksDB’s design
and implementation, the analysis and proposed scheme of
this paper can be easily applied to other LSM-KV stores like
LevelDB and HBase. RocksDB accesses on-disk data through
its file system wrapper API which uses a unique identifier
(e.g., a file name) that maps to a byte-addressable linear

address space (e.g., a file). The identifier supports a set of
operations such as random read/write, add, remove, and meta
operations. ZenFS [21], [26] is an implementation of the file
system wrapper to support end-to-end data placement onto
zoned storage devices (e.g., ZNS SSD). ZenFS is a minimal
on-disk file system, which follows the access constraints of
zone-based interfaces and collaborates with device-side zone
metadata on writes (e.g., write pointer) when placing data into
the zone [44].

B. Zoned Namespace SSD

The NVMe Zoned Namespace (ZNS) is a new stor-
age interface that divides the logical address space into a
batch of zones. It can achieve better write performance and
cost-effectiveness than conventional SSDs [21], [45]–[48].
ZNS SSDs eliminate the in-device garbage collection, over-
provisioning, and some mappings by transferring the work
from device FTL firmware to host software or applications.

A zone is the basic space management unit of ZNS
SSDs. Compared with the conventional SSD which executes
garbage collection by the internal FTL, ZNS allows the host
to have control of data allocation, garbage collection, and
over-provisioning. Different from the existing open-channel
SSDs [49], [50], ZNS SSDs still have a simple FTL [51] to
achieve the internal wear-leveling, performance isolation, and
reliability guarantees, which makes ZNS SSDs easier to use
and manage than the open-channel SSDs [52], [53].

However, applying the existing applications on ZNS SSDs
also faces challenges. First, a non-empty zone only allows
sequential writes [20] after erasing all the data in it by calling
RESET command [54]. Thus, the host that manages the data
has direct responsibilities for data allocation and zone cleaning
before calling the command. Second, ZNS SSDs only accept
sequential writes as they use the zones for storage and non-
sequential writes violate zone operations. Most applications
are not suitable for direct ZNS SSDs usage. Importantly,
applications need to optimize the performance and device WA,
which are missing in most of the current designs.

C. Related Work

There are several studies focusing on optimizing RocksDB
on ZNS SSDs including LIZA in ZenFS [21], [26], CAZA
[27], ZNSKV [30], lifetimeKV [31], and LL compaction [28].
All previous studies can be divided into two categories: the
first is to modify the execution logic of the compaction to
make the SST file deletion time on the same zone similar
(e.g., lifetimeKV and LL compaction), the disadvantage of
this approach is the need to modify compaction. However,
previous studies have shown that compaction requires a trade-
off among write amplification, space amplification, and read
amplification. When optimizing write amplification by modi-
fying compaction, it invariably increases space amplification.
The second is to attempt to predict the lifetime of the SST file
and allocate SST files with similar deletion times on the same
zone (e.g., CAZA, LIZA, ZNSKV). However, their predictions
are rough and have strict assumptions: LIZA assumes that



all SST files at the same level have the same lifetime, while
ZNSKV simply calculates the lifetime by adding the level and
the overlapping number together.

LIZA in ZenFS [21], [26] In the ZenFS implementation,
it assumes that SST files at the same level have the same
lifetime. SST files lifetime prediction based on four different
file hotness hints (i.e., Short, Medium, Long, and Extreme)
from RocksDB. Write-Ahead Log (WAL) and Manifest have
the Short hint, files in level 0 or 1 have the Medium hint; files
in level 2 have the Long hint, and the remaining files that
reside in larger levels have the Extreme hint [55]. Each open
zone is also assigned a lifetime hint which is equal to the first
SST file allocated to the zone. In the allocation part, SST files
with x lifetime hint will be allocated to the minimal lifetime
hint zone that the hint is larger than x.

CAZA [27] CAZA algorithm finds that there are two
inaccurate prediction phenomena in LIZA: 1) SST files having
overlapping key ranges at adjacent levels of RocksDB can be
placed in different zones and invalidated at the same time by
compaction, and 2) compaction can invalidate SST files across
zones with different lifetime hint values. To solve these two
problems, CAZA proposed that files with key-range overlaps
in adjacent two levels should be placed in the same zone
first. Therefore, for SST file S which will be compacted to
leveli, CAZA builds a set of SST file Soverlap by searching
leveli+1 files which have key-range overlap with S. Then, it
also builds a zone set Z containing SST files from Soverlap

sorted in descending order by the zone remaining capacity
and allocating S to Z in order. CAZA further proposes two
Fallback mechanisms 1) allocate S to a zone that has the
closest key with S, and 2) fall back to LIZA for the long-
term segregation effect.

Lifetime-Leveling Compaction Algorithm [28] Lifetime-
Leveling Compaction finds that in Round Robin Compaction
Policy, there are some SST files with an extremely long life-
time while others with an extremely short lifetime. Therefore,
they modify the Compaction policy: 1) For the extremely long
lifetime SST file, when compaction is triggered at lower levels,
it will be forced to compact, regardless of whether it has an
overlap with other SST files. 2) For the extremely short SST
file, it will be written into two new SST files. One SST file
has no overlap with the lower level, so it won’t be compacted
in a short time. Therefore, the extra compaction cost is only
counted in another new SST file.

LifetimeKV [31] Similar to the LL Compaciton Algorithm,
LifetimeKV implements range compaction to solve short live
SST files and proposed Overlap Ratio Lifetime Victim SST
Selection to prioritize long live SST files for compaction. With
this new compaction policy, the lifetimes of SST files at the
same level will be more similar to each other. Although it
reduces write amplification, it increases the amount of GC
Migrate data, requiring the use of parameter alpha for further
tradeoffs.

ZNSKV [30] ZNSKV attempted to use a quantitative
method to study the lifetime of SST files, but their prediction
method is more workload-dependent with low accuracy. They

defined f to represent the current level and g to represent the
overlapping number of the SST file with leveli + 1, using
f + g as the predicted lifetime of the SST file. However, in
our analysis, we found that the situation regarding the deletion
of SST files is more complex. Additionally, combining two
unrelated variables as the predicted result for the lifetime
prediction lacks a certain level of logical coherence.

D. Motivations

To reduce the WA of LSM-KV stores on ZNS SSD for
a longer lifespan, the SST files with a similar deletion time
should be allocated to the same zone. Therefore, a precise
lifetime prediction algorithm is a must. At the same time,
we should design a dynamic allocation algorithm to take
into account the prediction error. The integration of GC and
compaction is not fully explored, we expect to propose an
algorithm to combine the GC and compaction to optimize WA
without extra overhead. Previous studies have tried to solve
these problems, but they have the following limitations:

• Prediction: None of the previous studies predicts SST file
lifetime in a quantitative way. ZenFS only uses the levels
to represent an SST file’s lifetime. However, the lifetime
distribution at the same level is not always similar. CAZA
algorithm finds that files with overlaps in adjacent levels
have a more similar lifetime, it also fails to make a clear
estimation of the lifetime for each SST file due to the
high complexity.

• Allocation: CAZA ignores the open zone limitations and
does not have a dynamic adjustment for allocations when
the lifetime prediction is not accurate. LIZA considers
the hotness change as LSM-KV stores runs and tries
to allocate the SST file to a zone with higher hotness.
However, all of these studies do not have a quantitative
separation of lifetime coverage between zones and adjust
the allocation as the LSM-KV store state changes.

• GC and compaction: When space utilization is insuf-
ficient, the previous studies only discussed how to use
GC-only or compactions-only schemes to optimize the
throughput and WA. However, tradeoffs between them are
not clearly explored. For example, aggressively applying
compaction to delete the SST files in a zone to avoid the
file migration overhead may cause extra SST file I/Os
and CPU utilization, which can lead to an even shorter
SSD lifespan and lower performance.

To address the aforementioned limitations and optimize WA
for LSM-KV stores on ZNS SSDs, we propose Prophet, a
comprehensive solution for optimizing LSM-KV stores on
ZNS SSDs with a quantitative SST file lifetime prediction
algorithm, a dynamic allocation algorithm, and a zone cleaning
scheme with compaction compensated GC algorithm. The
benefits of the Prophet can be summarized as follows:

• Prediction: 1) Prophet designed a physical clock FC-
Ticks based on the properties of LSM-Tree to quantify
the lifetime of SST files. 2) Prophet does not require
modification of compaction, thus enabling it to reduce



Fig. 1. Architecture of Prophet and its major components.

write amplification without any additional overhead. 3).
Prophet can adapt to any existing compaction policy, such
as Min Overlapping Ratio, Round Robin, and others. 4).
Prophet’s predictions are designed based on the properties
of the LSM tree rather than the variations in workload.
Therefore, it demonstrates excellent optimization perfor-
mance in both random workload and skewed workload.

• Allocation: We designed the allocation algorithm based
on the prediction results from the LSM-tree and the char-
acteristics of ZNS SSD. The elegance of the allocation
algorithm lies in its isolation from prediction. This means
that if users implement their own prediction algorithm,
there is no need to modify the allocation algorithm.

• GC and compaction: The GC and compaction algorithm
will determine whether an SST file needs to be GC or
compacted based on the predicted results and the current
timestamp, thereby further reducing write amplification.
The GC and compaction algorithms are isolated from
prediction and allocation.

III. SST FILE LIFETIME PREDICTION

In this paper, we propose a comprehensive solution to opti-
mize the WA of LSM-KV stores on ZNS SSDs. Specifically,
we will use RocksDB [42] to analyze and evaluate our design
and implementation. We propose to resolve the WA with a
complete solution by combining SST file lifetime prediction,
file allocation, and GC with compaction compensation. We
will first present a quantitative and precise SST file lifetime
prediction algorithm in this section. Then, the zone-based
allocation and GC with compaction compensation will be
discussed in Sections IV and V respectively. Figure 1 shows
the architecture of Prophet and its major components including
prediction, allocation, and compaction compensation in GC.

A. LSM-KV Store State Clock with FC-Tick

The previous studies do not answer the following questions
clearly when they classify the SST files in different zones: 1)
what is the appropriate clock to be used to define the lifetime
of an SST file? 2) How precisely can we predict the SST file
lifetime?

To answer the aforementioned questions and design a
meaningful and feasible SST file lifetime prediction algo-

rithm, we need to select an appropriate clock to measure the
duration between SST file creation and deletion. The most
straightforward idea and the widely used scheme in all related
studies [27], [28], [30], [31] is to use the system default
clock, which uses seconds or milliseconds to measure the
time duration. However, LSM-KV stores state changing and
SST file creation/deletion are irrelevant to the nature of time
changes. Without the new KV-pair insertions (e.g., system idle
time), flush and compactions will not be triggered no matter
how long it is. Therefore, it is hard to make an accurate SST
file lifetime prediction based on the nature time.

Since LSM-KV store state change is only related to the
operations of flush and compaction, we novelly propose to
use the event of flush and compaction as the new “Tick-
Tock” of the clock. We define it as the LSM-KV store state
clock, and the time unit is defined as an “Flush-Compaction
Tick” (FC-Tick). Therefore, the “time” moment of an LSM-
KV store can be defined as time = flush number +
compaction number, which starts from LSM-KV store open-
ing. There are two benefits of using LSM-KV store state clock
in the SST file lifetime prediction: 1) LSM-KV store state
will change when flush or compaction happens and the SST
file lifetime is only related to LSM-KV store state change.
Therefore, it can successfully filter out the LSM-KV store
idle time, and we can better describe the duration than using
the nature time; And 2) only these two operations can create
or delete SST files. Flush creates SST files in Level 0 and
compaction deletes some files in leveli and leveli+1 and
creates new files in leveli+1. In the following, we will use
the number of FC-Ticks to describe, analyze, and predict
the lifetime of an SST file.

B. Lifetime Prediction in Regular Compactions

To predict the lifetime of the SST file S with the time mea-
surement of the LSM-KV store state clock, we first analyze
the SST file deletion scenarios of S in regular compactions. In
the special case, the trivial move compaction will be discussed
separately (i.e., S does not have key-range overlap with the
next level and it is directly registered in the next level without
any actual I/Os).

We assume that the SST file S is in leveli and its creation
time is CS . T is one of the SST files that have key-range
overlap with S in leveli−1. There are two cases that an SST
file will be compacted and deleted: Case 1 (indicated as c1):
S triggers compaction and it merges with some SST files in
leveli+1 with key-range overlaps, and Case 2 (indicated as
c2): when T triggers compaction and S will be compacted
passively due to the key-range overlaps with T . Suppose the
predicted lifetime of SST file S in two cases are PLc1

S and
PLc2

S .
For c1, we will model the problem by analyzing the process

of the compaction, and simplify the model by using the
properties of the LSM-tree. Then, we will give a simple
formula to calculate PLc1

S . For c2, we analyzed the distribution
of real-life SST files and found that there are two sub-
situations: short-lifetime and long-lifetime. We will analyze



the causes of this phenomenon and propose the prediction
algorithm respectively. Finally, we will analyze the special
case - trivial move compaction (indicated as c3). We propose
a solution to identify and predict the SST file lifetime of PLc3

S

when c3 happens. In contrast, other existing studies just block
the trivial move and fully ignore this important scenario.

Lifetime prediction of SST files that trigger compaction
by themselves (Case 1) For SST files that actively trigger
compaction, the timing of triggering compaction depends on
its ranking in leveli under a certain compaction policy being
used. Therefore, we use rankS to indicate the order of the
SST file that actively triggers compaction in leveli.

For example, in the case of the Round Robin compaction
policy, suppose the position of S in leveli is y and CPi is
the compaction cursor of leveli. When S is created and the
CPi is at position x (x < y). Based on the RR-compaction,
after leveli triggers y − x times compaction, CPi will point
to S, and S will be compacted and deleted. Therefore, we
can infer that rankS equals the absolute difference between
x and y, expressed as rankS = y − x. After considering
the case where x >= y, assume numiis the file number of
leveli, we will get the complete representation of rankS under
the Round Robin compaction policy as shown in formula 1.
Under the kOldestSmallestSeqFirst compaction policy, rankS
is equivalent to the index obtained by sorting all SST files in
that level based on their smallest seqno attribute.

rankS =

{
y − x x ⩽ y

numi − (x− y) x > y
(1)

Next, we need to figure out how many FC-Ticks it takes for
leveli trigger rankS compactions. We already know the Tick
is the number of the flush and compaction in this duration.
If we are able to figure out the compaction order between
different levels and the compaction execution order in each
level, we are able to estimate the lifetime of PLc1

S .
Based on the compaction process in RocksDB, RocksDB

will pick the first level which has a score > 1. The score is
calculated by the predefined formula in RocksDB Compaction
Picker score(i) = Sumi

Mi
. Here Mi is a constant number for

each level which represents the maximal file number of leveli,
and Sumi is the total size of SST files in leveli. When leveli
triggers compaction, one SST file will be deleted in leveli so
scorei will decrease and it will be smaller than 1 (i.e., once
the scorei > 1, the compaction will be triggered immediately,
so after the compaction, the scorei will be smaller than 1).
More files will be created in leveli+1, which increases its
scorei+1. Consequently, if scorei+1 is very close to 1 before
the new SST files are added in, there is a very high probability
that scorei+1 will be greater than 1 after leveli finishes its
compaction. In this way, leveli+1 will be selected to apply
compaction in the next run. Otherwise, if scorei+1 is much
smaller than 1 and scorei+1 will still be smaller than 1 after
the compaction. According to the structure of the LSM-tree,
if leveli+1 is much smaller than the size limit, leveli+2 will
have a very high probability that scorei+2 << 1. Therefore,

Fig. 2. Flush/compaction level distribution.

the higher levels (level > i + 1) have a very low probability
to be selected to apply compaction.

Note that, after leveli finishes the compaction, the scores
for 0 ⩽ level ⩽ i−1 are also below 1. This is because if there
is a j that j < i and scorej > 1, RocksDB will first pick j
as compaction level instead of selecting level i. Therefore, the
next compaction will happen when the flush fully fills level0
and the next compaction trigger level will be level0. After
level0 triggers compaction, level1 may trigger compaction and
cause score2 increases, and level2 may trigger the compaction
next time. Thus, we propose a conjecture: after leveli triggers
compaction, either leveli+1 triggers the compaction or waits
for flush to fully fill level0. Most likely, compaction will be
triggered in order from level0.

To verify our conjecture, we run RocksDB (default config-
urations) with RR-compaction under random workloads via
db bench (60 million insertions in total) and plot out the time
and number of compactions in different levels under LSM-
KV store state clock as shown in Figure 2. The X-axis is
the FC-Tick (from 9800 to 9850 when level6 is the highest
level) and the Y-axis is the level that triggers the compaction.
We can see that the distribution of flush and compaction
exactly match our conjecture: After leveli(i ∈ [0, 4]) finishing
the compaction job, leveli+1 will be selected to execute
compaction because level1 to level5 is nearly full. After
level5 triggers compaction, level6 will not trigger compaction
because it is far away from full. At this moment, all the
levels satisfy scorei < 1 and RocksDB will wait for flush
to fill level0 with newly generated SST files. After that, the
compaction will be triggered from level0 again.

Suppose max level represents the highest level that is full,
and flush num is the number of SST files that are needed
to fully fill level0. We have C = max level + flush num.
For example, in Figure 2, C = 6 + 4 = 10. We try to
prove another conjecture: ∀leveli(i ∈ [0,max level]), The
FC-Ticks costs between adjacent compactions are always the
same as C. From Figure 2, we can see the distribution of
flush and compaction is periodic and suppose leveli triggers
compaction at this moment. After max level − i clock, the
max level will trigger compaction and after flush num+ i
clock, leveli will trigger compaction once again. The total time
duration is max level− i+ flush num+ i = max level+
flush num = C. Therefore, the time duration for leveli to
trigger compaction will likely be a constant number C.

Based on the analysis, we are able to estimate the number
of FC-Ticks for leveli to trigger rankS compactions. It will



cost rankS × C FC-ticks, therefore, the predicted lifetime of
SST file S in case c1 is: PLc1

S = C × rankS
Lifetime prediction of SST files that are passively com-

pacted (Case 2)
Predictions for Case2 can be categorized into two scenarios:

if there is an overlap between S and leveli−1, it may be a
short-lived SST file; otherwise, it is a long-lived SST file. The
concept of short-lived SST files has been previously proposed,
yet prior studies consistently aimed to circumvent them by
modifying compaction strategies [28]. In contrast, Prophet
identifies and forecasts short-lived SST files non-intrusively.
We delineate Case2 into these two scenarios.

* Case 2A (indicated as c2A, and PLc2A
S indicate the

predicted lifetime of c2A): S compacted by lower-level
with a long lifetime.

* Case 2B (indicated as c2B, and PLc2B
S indicate the

predicted lifetime of c2B): S compacted by lower-level
with a short lifetime.

For c2B, the short-lived SST files have the same scenario:
they have overlaps with the lower-level SST files when it was
created. We explain it in an example shown in Figure 3. If SST
file 1 in leveli triggers compaction, files 1, 3, and 4 will be
compacted and create files 6, 7, and 8. When the leveli triggers
compaction again, if SST file 2 triggers the compaction which
deletes files 2, 5, and 8. SST file 8 will be deleted. According
to the distribution of flush and compaction, the lifetime of
those files will be about rankSSTfile2 × C (the time cost is
SST file 2 triggers compaction). Therefore, suppose the file
at leveli−1 which has overlap with S is T , we can estimate
PLc2B

S = rankT × C.
Predicting c2A is challenging due to the scarcity of ex-

ploitable conditions. Therefore, we need to design the pre-
diction algorithm from a higher-level perspective. Previous
studies have indicated that in LSM trees, as the level of SST
files increases, it signifies colder data. Additionally, for data
at the same level, they exhibit similar lifetimes. For instance,
while the LIZA algorithm assumes that SST files at the same
level possess identical lifetimes (though our analysis reveals
otherwise). For c2A prediction, Prophet follows a similar
logic. As Prophet quantifies the lifetime of SST files, we utilize
the average lifetime of all SST files that have been passively
compacted in leveli as the prediction for c2B. Specifically,
when S is created, we get Averagei which is the previous
c2A average lifetime in leveli. We have PLc2A

S = Averagei.
It should be noticed that if there is no c2A before in leveli,
we think that S will not be deleted in case c2A.

The final question is: which of the following predicted
lifetimes (PLc1

S , PLc2A
S and PLc2B

S ) can be used as the final
lifetime estimation of file S? Obviously, the true lifetime of
SST file S depends on the minimum predicted value, therefore
we choose min(PLc1

S , PLc2A
S , PLc2B

S ) as our final result.

C. Lifetime Prediction of Trivial Move

There is a special case that needs to be resolved separately:
SST file trivial move compactions. If S triggers compaction
and there is no SST file that has key-range overlap with S

Fig. 3. The example of Case2B.

in leveli+1, S will be moved to leveli+1 logically in LSM-
KV stores metadata (i.e., Manifest and Vstorage in RocksDB).
But actually, the file continues to be maintained in the storage
system. It will significantly increase the actual lifetime of S
and cause the long time zone occupation in ZNS SSDs. We
summarize it as Case 3 (c3): S in leveli triggers trivial move
and moves to leveli+1, which will be deleted in leveli+1.
Previous study LL algorithm [28] also encountered the same
problem but they ignored it in their design and turned off it in
evaluation and prototype. However, the trivial move can have
a high ratio in RocksDB compactions (e.g., 20% based on our
evaluation) and it has a very high impact on the WA.

The first step is to identify the file S that will trigger
the trivial move. There are two conditions: 1) S triggers
compaction. In our prediction algorithm, we find that if
PLc1

S < min(PLc2A
S , PLc2B

S then S will trigger compaction;
and 2) S has no key-range overlap with files in leveli+1,
which can be checked easily by comparing the key-ranges
of SST files in this level. Suppose trigger time(S) is the
time duration between S creation time and the trivial move
time, compacted time(S) is the lifetime of S in leveli+1.
We have PLc3

S = trigger time(S) + compacted time(S).
The trigger time(S) equals to PLc1

S because the time of
triggering trivial move and compaction is the same. When
S is an SST file of leveli+1, it will be deleted either by
compaction triggers from S (c1) or compacted by an SST
file T that has overlap with it (c2) in leveli. Therefore its
lifetime will be extended and more closer to SST files in
leveli+1. The structure of LSM-tree will change when S is
compacted and the prediction algorithm based on rankS in
c1 will be inaccurate. Since The average lifetime of SST
files in leveli+1 is stable, therefore we have the following
estimation compcated time(S) = Averagei+1. Finally, we
have PLc3

S = PLc1
S + Averagei+1. The lifetime prediction

algorithm will run as Algorithm 1.
In general, the proposed SST file lifetime prediction

schemes can have board impact and have been used in other
LSM-KV store optimization directions like tiered storage
[18], [56]–[58], performance optimizations for disaggregated
storage [8], [59], and SST file caching [60].



Algorithm 1: SST file Lifetime Prediction.
Input: SST file S, level LS

Output: predicted lifetime
Function Predict(S,LS):

Lifetime ← INF
PL 1 ← C ×Dis(S)
PL 2A ← Average (LS)
if LS ̸= 0 and has overlap (S, LS - 1) = true then

PL 2B ← C
end
if PL 1 ¡ PL 2A and has overlap (S, LS+1)=false

then
PL 3 ← PL 1 + Average (LS+1)
Lifetime = PL 3

end
else

Lifetime ← min(PL 1, PL 2A,PLB)
end
return Lifetime;

IV. DELETION-TIME AWARE FILE ALLOCATION

A. Allocation Algorithm Design

In Section III, we discussed the insight and algorithm to
predict the lifetime PLS of SST file S. We are able to calculate
the predict the deletion time PDS = PLS+CS , and CS is the
creation time of S. In this section, we will use the predicted
deletion time PDS to select an appropriate zone to allocate
the file S such that the WA can be effectively optimized. The
previous studies [21], [26]–[28] have the same optimization
objective of the allocation algorithm: we should allocate the
SST files that have similar deletion times to the same zone.
However, they do not have a comprehensive allocation design
to address all the possible scenarios.

Ideally, when we accumulate all the SST files and their
predicted deletion time, we can easily classify them into N
groups, and each group satisfies the zone size limitation and
minimizes deletion deviations. However, in reality, we can
only make the decision once the SST file is created, which
is challenging and difficult since we are not able to know the
deletion of SST files generated in the future. We propose to
assign a deletion time range for each newly opened zone. We
first define a zone Z’s deletion time range as [LZ , RZ ]. It
indicates that the predicted deletion time of the SST files in
this zone should be in the range of [LZ , RZ ]. For example, if
the deletion time range of a zone is [5, 8], it indicates that the
smallest predicted deletion time is 5 and the largest predicted
deletion time is 8. We can allocate S to the zone Z that satisfies
LZ ⩽ PDS ⩽ RZ . Therefore, we need to solve the following
two problems: 1) How to estimate the L and R of one zone
when the zone is opened. And 2) For SST file S, if we cannot
find a suitable zone Z that satisfies LZ < PDS < RZ , how
to resolve this issue?

If open zone number < max open zone number and
we cannot find an open zone that satisfies LZ < PDS < RZ ,
We will open a new zone for S and set L and R as its deletion

Fig. 4. Ideal deletion time distribution.

time range. To make it simple, we set L = PDS to make sure
that the deletion time range can include this newly generated
SST file. For example, in Figure 4, when the first file with
deletion time 5 is created, we open Zone1 and set L1 = 5. It
should be noted that the setting of L can still be optimized,
which will be discussed in Section optimizationIV-B;

The estimation of R of the newly opened zone depends on
the total SST file whose deletion time is in [L,R] and the
zone size. Suppose the size of SST file S is Ssize (by default
all the SST files have same size)and the size of zone Z is
Zsize. Num(L,R) is the number of SST files with deletion
time in the [L,R] range. In the ideal case, the SST files with
PDS ∈ [L,R] should fully fill this zone. Therefore, R should
meet the following equation:

Num(L,R)× Ssize = Zsize (2)

Now, the problem is how to estimate Num(L,R).
Num(L,R) depends on two values: 1) the compaction trigger
number in [L,R], and 2) the deleted file number of each com-
paction. For the compaction trigger number, we assume Crate

is the proportion of compaction in flush and compaction, there-
fore we can infer that Crate = compaction num

compaction num+flush num in
time [L,R]. From compaction distribution analysis in Section
III-B, we know that the flush/compaction distribution is pe-
riodic. The duration of the cycle is C and the compaction
number is max level + 1 (max level is the maximal full
level). Therefore, the Crate =

max level+1
C .

We define Dnum to represent the average deletion file
number in each compaction (also means the average file
number with the same deletion time). We can collect Dnum

through statistical data during LSM-KV store running time.
Therefore, the Num(L,R) = (R − L) × Crate × Dnum so
that (R − L) × Crate × Dnum × Ssize = Zsize. Finally, we
have R = L+ Zsize

Ssize×Crate×Dnum
.

For example in Figure 4, each zone can hold up to 10 SST
files, after L1 is set to 5, R1 should satisfy the number of the
deletion time between L1 and R1 is 10 so that a zone can be
exactly fully filled. It’s Crate =

6
9 and Dnum = 4.So we have

R = 8 and there are 10 files that deletion time is in [5, 8].
If open zone number = max open zone number, we

will allocate S to an existing zone and violate the deletion
time range requirement. In this case, for any open zone Z,
we have either PDS < LZ or PDS > RZ . We first try to



allocate it to one of the zones with PDS < LZ because PDS

will not prolong the reset time of Z. It should be noticed that
we should find the lowest LZ in all zones that meet PDS <
L to make sure that the deletion time distribution is similar.
Otherwise, we need to allocate S to the remaining zones that
satisfy PDS > RZ . We will also choose the zone with the
largest RZ to maintain the deletion time distribution similarly.

B. Allocation Optimizations

We can further optimize the aforementioned allocation
algorithm with range rounding and level segregation.

Rounding the range [L,R]. As discussed in Section IV-A,
we set the L = PDS at the beginning. If there are two SST
files S1 and S2 with PDS1

= 15, PDS2
= 13, and T =

10(Suppose T = Zsize

Ssize×Crate×Dnum
), we will open a new zone

Z1 when allocating S1 with LZ1 = 15, RZ1 = 25. However,
we need to open another zone Z2 with LZ2

= 13 and RZ2
=

23 for S2. Therefore Z1 and Z2 have deletion time range
overlaps and it causes space waste. To avoid this, we will
round L and R as follows.

L = ⌊PDS

T
⌋ × T (3)

R = (⌊PDS

T
⌋+ 1)× T − 1 (4)

After rounding, LZ1 = 10, RZ1 = 19 so S1 and S2 will
allocate to the same zone.

Level Segregation. We find that for lower levels, the
lifetime will be much smaller than those of higher levels.
The low-level SST files will be quickly deleted after creation.
Therefore, if we allocate these files together, then the zone
will be reset soon. We call this zone a ”short-lived” zone.
Therefore, we set a SHORT THRESHOLD and allocate the
SST file which level ⩽ SHORT THRESHOLD to the
same zone. In section III-B, we use C to predict short-
lifetime SST files, we will allocate these files to short-lived
zone directly as well. SHORT THRESHOLD needs to be
determined through experiments. If the value is set too small,
the level aggregation will not cover more files. If the value is
too large, the file deletion time on the short live zone will be
uneven.

We propose to design the level-based segregation: we should
not allow higher-level SST files to be allocated to the short-
lived zones even if their predicted deletion time satisfies the
deletion time range of these short-lived zones. The reason is
that SST files at higher levels usually have large deviations in
deletion time prediction. There is a high probability that the
higher-level file may prolong the reset time of the zone if it
is allocated to a short-lived zone. For example, if there is a
short-lived zone with a deletion time list [1, 2, 3, 4]. A high
level S with the predicted deletion time = 5 is actually deleted
at FC-ticks = 50 and it is allocated to this zone. Then the zone
will not be reset until FC-ticks = 50. Allocating lower-level
SST files to a zone that stores SST files from the higher levels
are permitted since they will be deleted earlier and will not
prolong the reset time of the zone.

We summarize the SST file allocation algorithm runs
as follows (Suppose LS is the level of S): 1) If LS <
SHORT THRESHOLD or deletion type of S is c2B,
allocate it to a short-lived zone (or open a new zone if
there is no short-lived zone); 2) Try to allocate S to a zone
Z suck that LZ < PDS < RZ ; 3) Open a new zone if
open zone number did not reach limit; 4) Try to allocate
S to the zone with smallest LZ with PDS < LZ ; 5) Try to
allocate S to the zone with largest RZ which PDS > RZ .

V. GC WITH COMPACTION COMPENSATION FOR ZONE
CLEANING

When we select one zone to apply zone cleaning, we need
to take care of the valid SST files in this zone. First, in
Prophet, we follow the space-oriented zone-selecting policy,
which chooses the zone with the smallest valid data size to
clean. This policy has been used in most of the existing studies
[27], [28], [55]. After one zone has been selected, existing
studies use either GC or compaction to remove the valid
SST file from the zone to ensure data correctness. GC is an
operation to migrate the valid data to another open zone before
the original zone is reset, which is widely used in applications
for zone-based storage [21], [26], [27]. The previous study LL
algorithm [28] and GC-free design of GearDB for SMR [36]
avoid GC via redesigning the compaction to actively delete all
the valid SST files in the cleaning zone.

However, the performance and trade-offs between GC and
compaction are not well explored. We believe, in some sit-
uations, applying GC can achieve a better performance than
using compaction to actively delete the SST files with a very
small WA overhead. However, if we are able to avoid trigger-
ing the unscheduled extra compactions, the active compaction
design can effectively reduce WA with minimal performance
overhead. Therefore, in this section, we explore the tradeoffs
between GC and compaction and propose to use compaction
as a compensation operation for GC in some cases to avoid
valid data migration.

We conduct an experiment to compare the performance,
I/Os, and compaction information of full GC and full active
compaction schemes. We load 100GB of data to RocksDB
on ZNS SSD. We find that: 1) active compaction causes the
performance regression due to the resource contention with the
foreground writes, 2) although active compaction achieves low
device level WA, it actually causes 1.6X RocksDB I/Os than
the full GC scheme due to the extra SST file reads and writes,
and 3) there is a portion of the compaction jobs triggered by
zone cleaning are the same compaction jobs between triggered
in full GC scheme, which indicates that these compaction jobs
are automatically scheduled and will not introduce extra I/Os
and performance regression.

Ideally, when we actively compact the valid SST files in
a cleaning zone, it has the same effect as executing the
future scheduled compaction jobs in advance. Therefore, we
do not trigger the extra RocksDB I/Os and introduce the extra
performance overhead. However, since we do not know the
relationship between the compaction job scheduling order and



the workloads, a GC-free scheme (i.e., active compaction) can
easily trigger a large number of extra compaction jobs and
bring in heavy SST file reads and writes. The actual total
device I/Os can be even higher.

Based on the observations and analysis, we propose to use
compaction as the compensation for GC to achieve a lower
actual device I/Os than the full GC or GC-free schemes. We
are targeting to achieve explicit smaller actual device writes
than the full GC or active compaction schemes. However, it is
hard to predict whether this compaction job will happen in the
future or not. We find that a file S can be used for compaction
compensation only if it will trigger the same compaction job in
the near future. Therefore, during the zone cleaning, Prophet
checks each valid SST file and applies compaction to delete
the SST file if the following two conditions are satisfied: 1) S
will be compacted as c1 (Case 1 discussed in Section III-B),
and 2) PDS < MAX DELETION TIME (the maximal
deletion time of the SST files that will be deleted). However,
since MAX DELETION TIME is determined by work-
load, we use the current FC-ticks T and PDS to determine
whether S will eventually trigger the same compaction job
in the future. If T ≥ PDS , the lifetime prediction of S is
incorrect and its real lifetime is unpredictable. Therefore, we
will migrate S via GC. If T < PDS , it indicates that S
might be compacted in the future and we will compact S
in advance during the cleaning. The detailed algorithm of GC
with compaction compensation runs as follows:

1) Apply the Reset command if no valid data on the zone.
2) Compact the file S on the zone which the deletion type

is c1 and PDS > FC-Ticks in advance.
3) Apply GC to the remaining SST file.

VI. IMPLEMENTATION AND EVALUATIONS

A. Prototype Implementation

We implement Prophet based on RocksDB v7.6 and ZenFS
v2.1.0, and open-sourced it at [61], [62]. We collect SST file
information in the RocksDB compaction jobs and predict the
file lifetime before it is written to ZNS SSD. Note that we
need to increase the size of the write buffer to ensure that
the file will not be allocated to a zone before the largest key
is decided (the largest key is needed to check the key-range
overlap in prediction 1). We implement the zone allocation
algorithm of Prophet in ZenFS. The total code change is 3879
lines added with 309 lines removed.

B. Experimental Setup

Since CAZA, LL, LifetimeKV, and ZNSKV algorithms are
not open-sourced, we use LIZA in ZenFS as the baseline to
compare with Prophet. All the experiments are carried out on a
Dell server with Intel (R) Xeon (R) Silver 4210 CPU, 192GB
memory, and the 1TB ZNS SSD prototype (WD ZN540)
(100GB is reserved in evaluation with max open zone 14
and each zone is 1GB). We use db bench, a benchmark
tool released with RocksDB, to generate the workloads for
RocksDB. The key size is 8B and the value size is 256B. We
set the max level0 size = 4, max level1 size = 4, and the

multiplier = 4. We set different SST file sizes for different
experiments. To evaluate the prediction algorithm, we set the
SST file size to 1MB to generate a large number of SST files to
achieve a larger-scale evaluation. In the rest of the evaluations,
we set the SST file size to 64MB and SHORT THRESOLD=2
in Prophet to make the system evaluation more realistic. All
the experiments are executed at least 3 times and we present
the average results.

C. FC-Ticks Evaluations

In Section III-A, we discussed the advantages of FC-Ticks,
the FC-Tick duration will not change when database writes
are halted or idle. However, when using a physical nature
clock (e.g., seconds) as the time unit, it continues to increment
even when KV-pair write stops, leading to a big bias in the
prediction of SST file lifetimes.

To validate the effectiveness of the proposed FC-Ticks,
we modified the db bench to achieve KV-pair ingestion rate
variation over time based on the production workload char-
acterized in [43]. We use Round Robin compaction policy,
random workload, and construct test data such as: at 0-2500s,
the KV-pair ingestion rate is unlimited, at 2500-4500s, the
KV-pair ingestion rate is set to 0 to simulated write stop or
idle period, and at 4500-7000s, the KV-pair ingestion rate is
recovered back to unlimited, which we call “VariableTest”. In
other test, we use random workload to continuously execute
5000s of KV-pair ingestion of unlimited rate, which we call
“FixedTest”. Under two types of tests, for FC-Ticks Prediction
and Real-Time Prediction (Prediction using physical clock
seconds), we separately calculated the SST file numbers
predicted incorrectly due to write stopping which under the
condition of real lifetime > 3 × predicted lifetime and
real lifetime > gap time (The reason for using 3 as
the threshold is that when the deviation is greater, it is
highly likely to be placed in the zone with a larger deletion
time deviation). In Real-Time Prediction, gap time is set to
2000s. In FC-Ticks Prediction, gap time will be converted
to the average number of FC-Ticks corresponding to the
2000s period under continuous write conditions. Table I shows
the results of the evaluation, in the VariableTest, Real-Time
Prediction would result in 152 wrong SST file predictions (i.e.,
at least 3 times larger actual time compared with predicted
results). While, in FC-Ticks Prediction, there were no SST
files predicted incorrectly in both tests.

TABLE I
FC-TICKS EVALUATION

Number VariableTest FixedTest
FC-Ticks Prediction 0 0
Real-Time Prediction 152 0

D. Lifetime Prediction Analysis

In this experiment, 8GB of key-value pairs (KV-pairs) were
loaded to the RocksDB instance randomly and 8,192 SST files
were created in the loading process. After all the KV-pairs are
inserted, 1388 SST files are alive in the database.



(a) Real lifetime distribution

(b) Lifetime prediction error distribution

Fig. 5. SST file lifetime prediction accuracy analysis.

Overall File Lifetime Prediction. We first analyze the
lifetime prediction distribution and accuracy of all the SST
files. Figure 5(a) shows the distribution of the real SST file
lifetime in FC-ticks. The X-axis is the real lifetime in FC-
ticks and the Y-axis is the number of files. There are three
observations that align with our analysis in Section III: 1) the
lifetime of most SST files is short, 2) SST files at a lower level
usually have a shorter lifetime, and 3) the average lifetime of
SST files in the same level is usually similar. For example,
SST files at level 4 have a similar lifetime and the average
is about 250. Differently, the average lifetime of SST files at
Level 5 is about 1000.

Figure 5(b) shows the lifetime prediction error distribution
(predicted lifetime minus real lifetime). The X-axis is the
lifetime prediction error and the Y-axis is the number of files.
In general, most of the predictions are accurate and 79% of
the files have a prediction error smaller than 20 FC-ticks.

Prediction Type Analysis. To analyze the prediction accu-
racy of Prophet in detail, we print the accuracy in different
types of compactions in level4 as an example, since level
4 is large enough and full, which can cover all the cases.
We set an error bar for each level to evaluate the accuracy.
The error bar is different. In the lower level (Level 1 or 2),
we can accommodate smaller prediction errors. Here, we set
errorbar = 5 × (level + 1). For level 4, the error bar is 25,
max file number is 256, and the average real lifetime is 194.

We measure the accuracy of each compaction case sepa-
rately. Suppose Dx is the deletion type of SST file S. D1

means S is deleted by the current level. Note that we use
D2 to include case c2A or c2B. Px is the predicted SST
file deletion type for each case. For example, P2A means we
predict S will be deleted by c2A. P2A ·D1 means we predict
the S will be compacted by the compaction triggered from
the lower level in Case c2A. But actually, it’s deleted by the
compaction triggered in the current level in case c1.

TABLE II
LEVEL4 PREDICTION DISTRIBUTION.

Type Accuracy Number
P1 ·D1 99.2% 2890
P1 ·D2 5% 101
P2A ·D1 60.6% 493
P2A ·D2 67.6% 6695
P2B ·D1 23.1% 26
P2B ·D2 92.8% 1356
P3 ·D1 0% 5
P3 ·D2 22.9% 774
Total 74.0% 12340

Table II shows the prediction accuracy for each type and the
detailed prediction result distribution is shown in Figure 6. We
can find that in most cases, we have a high accuracy and the
prediction error is low. The detailed analysis is as follows: 1)
P1 · D1: we achieve almost 100% of accuracy prediction on
Case c1; 2) P2A ·D1: it indicates that we mistakenly identified
c1 as c2. So the predicted lifetime is larger than the real
lifetime; 3) P2A ·D2: the error is caused by the trivial move
prediction and the predicted lifetime is smaller than the real
lifetime; 4) P2B ·D2: we have accurately identified most short-
lifetime SST files (92.8%); 5) P3 ·D2: although the accuracy
rate is very low, the distribution of results is acceptable, and
most of them are correctly identified. We find the increasing
of KV store lifetime also increases the Average, which leads
to a low prediction accuracy of case c3. 6) Although P1 ·D2,
P2B ·D1, P3 ·D1 has low accuracy, their number is small and
will not have a huge impact.

In summary, Prophet can give a relatively accurate lifetime
prediction result in most cases. SST files deleted by Case 1 and
Case 2 compactions consist of 88.7% of the total file deletions
and we archive about 79% of accuracy.

E. Compaction Compensation Analysis

To evaluate the effectiveness of the GC with compaction
compensation, we set GC START LEVEL = 20% and dif-
ferent GC STOP LEVEL 30%, 35%, 40% and 45% in this
evaluation (i.e., GC will start when the free space is less
than 20% and stop when the free space is higher than
GC STOP LEVEL). With a higher GC STOP LEVEL, more
zones are selected to be cleaned. ”Full GC” means we only use
GC to migrate the valid SST files during the cleaning while
”Full Compaction” only uses compaction to delete the valid
SST files. ”GC-CC” is the GC with compaction compensation
in Prophet. In this experiment, we set the SST file size to
64MB and inserted 100 GB of data (the KV store is about
53GB at the end). We collected and compared the actual writes
from RocksDB and into the ZNS SSDs.

Figure 7(a) shows the RocksDB writes of the three al-
gorithms. The Full GC and GC-CC have similar RocksDB
writes while the Full Compaction causes about 100GB more
writes, which is caused by a large number of extra compaction
jobs. Figure 7(b) and Figure 7(d) show the device writes
on ZNS SSDs and the migrated data volume comparison
respectively. The GC-CC algorithm can always achieve lower
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Fig. 6. The lifetime prediction error distribution analysis of different types.
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Fig. 7. GC and Compaction Compensation analysis of 3 schemes on metrics of RocksDB I/Os, Device I/Os, etc.

(a) Write Amplification (b) Migrated Data (c) Allocated Zone Number

Fig. 8. Overall analysis of 4 schemes on metrics of WA, migrated data, allocated zone number.

device writes than Full Compaction and Full GC. The reason
is that some SST files are compacted in advance and we
avoid triggering the GC to migrate data. It should be noted
that since Full Comparison did not reach the free space of
GC STOP LEVEL before the end of the program, we still
need GC to migrate data. Figure 7(c) shows the difference
in throughput. The GC-CC has a tiny lower throughput than
GC because we cannot guarantee that all the compaction jobs
triggered during the zone cleaning are the compaction jobs
that should be executed in the near future. Differently, full
compaction has a much lower throughput. In general, GC
with compaction compensation design successfully achieves

the tradeoffs between GC and compaction, which effectively
reduces the device writes and extends the SSD life span.

F. Overall Evaluations

We evaluate Prophet and compare its WA (WA =
Device I/Os

RocksDB I/Os ) and performance with the other three base-
lines: 1) LIZA is the default algorithm in ZenFS, 2) Prophet-
GC-NO is the scheme with lifetime prediction and allocation
(using Full GC and excluding the allocation optimization,
3) Prophet-GC is the scheme that we disable the GC with
compaction compensation in Prophet (only full GC is used).

Figure 8(a) shows the the WA of four schemes. Prophet-
GC can always achieve lower WA than LIZA, and with the
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Fig. 9. Throughput and P50 latency Analysis

increase of GC STOP LEVEL, the gap between the two
schemes becomes larger. Figure 8(b) shows the amount of
data being migrated by GC when GC STOP LEVEL is 30%,
Prophet-GC only needs to migrate about 4GB of valid SST
files, while LIZA copied about 100GB of data, which validated
the effectiveness of prediction and allocation algorithm in
Prophet. In Prophet, SST files with similar deletion times
are gathered in the same zones. Therefore, when the zone
is selected for cleaning, there are no valid SST files in the
zone, and data migration is not needed. With the increase
of GC STOP LEVEL, both algorithms need to migrate more
data, but the amount of data that Prophet-GC needs to mi-
grate is always lower than LIZA. In the extreme case of
GC STOP LEVEL=45%, in order to reach the desired free
space, more zones are selected to be cleaned and GC will
migrate much more valid SST files, resulting in extremely high
data migration and WA in LIZA. This problem has been well
solved in Prophet-GC. Even in the extreme case, the migrated
data amount and WA will increase steadily which is only 1.31
(about 26% lower than LIZA) while LIZA is 1.79.

Our two allocation optimizations proposed in Section IV-A
have played a significant role in the reduction of WA and
space utilization, especially in the GC STOP LEVEL is high.
When the level segregation optimization is disabled, the WA
of the Prophet-GC-NO is 1.67 and it is reduced to 1.31 in
Prophet-GC. The rounding optimization effectively reduced
space utilization. After we applied rounding optimization in
Prophet-GC and Prophet, the total allocated zone number
does not increase explicitly when GC STOP LEVEL changes.
Differently, LIZA and Prophet-GC-NO increase the zone al-
location number as GC STOP LEVEL increases.

When we apply the GC with compression com-
pensation in Prophet, it further reduces the WA. In
GC STOP LEVEL=45%, the WA of Prophet is only about
1.22, which is 7% lower than Prophet-GC (WA = 1.31)
and about 31% lower than LIZA (WA = 1.77). Importantly,
applying the prediction, allocation, and GC with compaction
does not cause the performance regressing shown in Figure
9(a) and Figure 9(b).

Throughput and Latency The throughput and latency of
all four schemes are similar in different GC STOP LEVEL.
The NVMe ZNS SSD prototype can achieve more than 1GB/s
of sequential write and 2GB/s sequential read throughput,
and four schemes all use one background thread to apply
zone cleaning (Following the same approach as in ZenFS.).

(a) ReadWrite Throughput (b) ReadWrite Latency

Fig. 10. ReadRandomWriteRandom Analysis.

Therefore, zone cleaning with GC does not become a bot-
tleneck for performance. This is consistent with the results
obtained by CAZA [27]. LifetimeKV and ZNSKV claim to
have achieved throughput improvements of 98% [31] and
32% [30], respectively. This is attributed to their synchronous
garbage collection (GC) process, wherein RocksDB is unable
to write during GC. This significantly enhances the impact
of predictions. However, efficient GC should ideally be per-
formed by background threads (e.g., ZenFS). As a result,
there is no significant change in throughput observed during
evaluation. We also evaluate Prophet with a read-write mixed
workload. In this experiment, we fixed GC STOP LEVEL=45
and set the read ratio from 20% to 80%. Figure 10(b) and
Figure 10(a) show the throughput and P95 latency of Prophet
and LIZA under different read ratios. The throughput and
latency of the two schemes are similar and the very slight
differences are caused by the monitoring and prediction code
paths in Prophet.

G. Evaluations with Various Compaction Policies

Since the Prophet prediction and allocation algorithm
is independent of the specific compaction policies, it can
operate under any existing compaction policy. However, it
is important to note that if users define a new compaction
policy, the corresponding rank calculation function needs
to be added to Prophet. In most cases, this is a simple
task, often requiring just a few lines of additional code.
In our evaluation, we tested the write amplification of
Prophet across the existing five compaction policies in
RocksDB (By Compensated Size, Oldest Largest Seq First,
Oldest Smallest Seq First, Min Overlapping Ratio,
Round Robin). To better reflect the gap between write
amplification, we set GC STOP LEVEL=45%, and the
remaining settings are the same as VI-F.

Figure 11(a) and Figure 11(c) show the write amplification
and migrated data size with different compaction policies. In
the Oldest Largest Seq First and Round Robin compaction
policy, Prophet performs best, reducing write amplification
by 35% and 31% compared to LIZA. However, under
By Compensated Size, Prophet and LIZA performed simi-
larly. This is because RocksDB executes more compactions,
which makes SST files deleted more frequently. Therefore,
zones can be reset earlier, leading to a low write amplification.
However, the disadvantage is that this policy will lead to a
much lower throughput.
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Fig. 11. Random Write With Different Compaction Policy Analysis.
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Fig. 12. Mixgraph Write With Different Compaction Policy Analysis.

H. Real Production Workload Evaluations

Prophet is designed based on the properties of LSM-Tree
and it is independent of the specific workloads. Therefore, we
tested its write amplification and throughput in production sce-
narios with hotspot KV range by Mixgraph [43]. Mixgraph is a
Rocksdb testing framework that can generate KV-ranges with
different access frequencies to simulate real-world workloads.
In the benchmark, we set KV-range to 3, and the remaining
parameters follow the default settings of mixgraph introduced
in [43] appendix. The key and value size and other settings
follow the configurations presented in Section VI-F.

Figure 12(a) and Figure 12(c) show the write amplification
and migrated data size in Mixgraph benchmark with differ-
ent compaction policies. In the mixgraph test, Round Robin
showed the best write amplification optimization of 30%, and
similarly, Prophet is always better than LIZA.

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the WA issues of using RocksDB
on ZNS SSDs without performance regression. We first pro-
posed the flush and compaction event-based clock to precisely
measure the SST file lifetime. Then, we proposed the SST
file lifetime prediction and allocation algorithm to gather
the SST files with similar deletion times in the same zone.
Moreover, we optimized the WA by combining compaction
with GC. Based on the evaluation, we achieve 79% lifetime
prediction accuracy and 31% WA reduction compared to LIZA
in ZenFS. In the future, we will attempt to improve the
accuracy of prediction algorithms. We believe that machine
learning will be beneficial in solving this problem, for instance,

Reinforcement Learning (RL) or other self-improving models
will be our future work.
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