
SAS-Cache: A Semantic-Aware Secondary Cache
for LSM-based Key-Value Stores

Zhang Cao1, Chang Guo1, Ziyuan Lv1, Anand Ananthabhotla, Zhichao Cao1
1Arizona State University

Abstract—LSM-based key-value stores (LSM-KV stores) are
widely used in today’s IT infrastructure to store unstructured
data. Existing LSM-KV stores use various storage backends
including HDD, SSD, and cloud storage, and rely on the in-
memory block cache to improve the read performance. Due to the
memory space limitations and high costs, the high-performance
flash-based secondary cache was proposed as a complementary
cache tier for block cache to extend the cache space with high
cost-effectiveness. However, existing secondary cache designs for
LSM-KV stores do not consider the LSM-specific characteristics
including ignoring the secondary cache operation overhead,
inserting the invalid blocks into the secondary cache, and cache
block invalidation caused by compaction, which leads to low
cache efficiency and even performance regression.

To address the aforementioned critical issues of existing
secondary cache designs in LSM-KV stores, we first conduct a
comprehensive analysis of the design tradeoffs and limitations of
existing secondary cache. Based on the insights and observations,
we propose a Semantic-Aware Secondary Cache (SAS-Cache)
for LSM-KV stores, which consists of three novel optimizations.
First, to effectively reduce the number of unnecessary secondary
cache lookups (i.e., lookups with a high probability of being
missed), we propose Dynamic Adaptive Secondary Cache Bypass
to quickly identify cache items that are most likely not in the
secondary cache and bypass the corresponding lookups. Second,
we design a Valid SST-Aware Insertion Control to prevent the
invalid blocks from being inserted into the secondary cache to
achieve a higher cache space utilization and longer flash lifespan.
Third, we propose the Compaction-Aware Cache Replacement,
which actively removes the cached blocks invalidated by com-
pactions. We implemented the prototype of SAS-Cache based on
RocksDB and CacheLib. Our evaluation shows that SAS-Cache
can achieve about 5% of the overall cache hit ratio increase, 36%
of the throughput improvement, and 20% of latency reduction
compared with the state-of-the-art secondary cache design for
LSM-KV stores. Specifically, SAS-Cache improves the secondary
cache hit ratio by 40% and effectively eliminates the insertion
of invalid blocks.

Index Terms—LSM-KV stores, Flash-based Cache, Secondary
Cache.

I. INTRODUCTION

Log-Structured Merge-tree based Key-Value stores (LSM-
KV stores) are widely used for their high write performance,
such as LevelDB [1], HBase [2], [3], ZippyDB [4], X-Engine
[5], and RocksDB [6]–[9]. In the LSM-KV store, key-value
pairs (KV-pairs) are first cached in the Memtable to achieve
high write performance. When Memtable is full, KV-pairs are
packed into blocks and appended to the Static Sorted Table
file (SST file) in the storage. One SST file is a self-contained
searchable B-tree structure and KV-pairs are organized as
fixed-size data blocks (e.g., 32 KB) and other metadata blocks
(e.g., indexing blocks, filter blocks, and file footer). SST files

are organized into different levels on the storage backend
and they do not have key-range overlap in the same level
(excluding Level-0). To serve a read query, the LSM-KV store
may require reading multiple SST files from a higher level
(e.g., L0) to the lower levels (e.g., bottom-most level) until a
certain KV-pair is found. Therefore, the read performance is
always a big concern of LSM-KV stores due to the SST file
format and level-base designs [10]. Existing LSM-KV stores
rely on the DRAM-based block cache to reduce the number of
storage reads by caching frequently accessed meta blocks and
data blocks. To guarantee high read and write performance,
LSM-KV stores usually use directly attached SSDs as the
storage backend.

In recent years, there has been a growing trend of deploying
LSM-KV stores on alternative storage backends, such as cloud
storage, Hard Disk Drives (HDDs), and zone-based storage de-
vices like shingled magnetic recording (SMR) [11], [11]–[13],
to achieve higher scalability and cost-effectiveness. For exam-
ple, ZippyDB (a distributed LSM-KV store) is deployed in
Meta private cloud storage Tectonic [14], [15]. Also, RocksDB
(one of the most widely used LSM-KV store engines) is also
widely deployed on the public cloud or on HDD to store the
SST files for lower storage costs [16], [17]. However, these
slower storage systems usually have lower bandwidth and
much higher latency compared with the directly attached PCIe-
based SSDs. Furthermore, the I/O performance is relatively
unpredictable and unstable. These can further cause explicit
read performance penalties as indicated in [15].

To effectively address the read performance regression
caused by the low-performance storage backend, a sec-
ondary cache was proposed for the LSM-KV store as a
cost-effectiveness caching extension of existing DRAM-based
block cache [15], [18]. The secondary cache is deployed
on the directly attached flash-based storage (e.g., PCIe-based
SSDs) with a much larger capacity than the block cache and
higher access speed than the storage backend, which bridges
the performance gap between DRAM-based block caches and
slow storage backend. In the existing secondary cache designs
[15], [18], all the blocks being evicted from the block cache are
inserted into the flash-based secondary cache. When the LSM-
KV store has a block cache lookup miss, it will search the
block in the secondary cache. If it is a secondary cache hit, a
certain block in the secondary cache will be promoted back to
the block cache. If it is a secondary cache miss, the LSM-KV
store will read the corresponding block from the corresponding
SST file at the storage backend and insert the block into



the block cache. We can have different secondary cache
implementations with different cache management policies.

Currently, Meta [15] has implemented the secondary cache
for RocksDB using CacheLib [19]. We call this version of
secondary cache the Default Secondary Cache (called De-
SCache). By comprehensively analyzing the characteristics of
De-SCache, we observed that De-SCache can cause explicit
read performance regression due to the ignorance of secondary
cache lookup and insertion overhead and inserting invalid
blocks to the secondary cache. De-SCache only benefits LSM-
KV stores in limited workloads, cache settings, and storage
backends. Based on our analysis, we identify three root causes
that result in the inefficiency of De-SCache.

First, the cache lookup operations to De-SCache are non-
selective. In current De-SCache designs, all block cache
lookup misses will trigger De-SCache lookups. Due to the
high lookup overhead of De-SCache, if there are a large
number of misses in De-SCache, it can explicitly impact the
overall performance. Second, there exists a large number of
invalid blocks being inserted into De-SCache. In De-SCache,
all evicted blocks from the block cache will be inserted into
the secondary cache without identifying whether the block is
still valid or invalid. Inserting invalid blocks will result in
two issues: 1) The block eviction and insertion are applied
by the LSM-KV store foreground read thread. Due to the
relatively higher insertion latency of the secondary cache,
inserting these invalid blocks to the secondary cache will lead
to extra performance overhead; And 2) it will lead to a lower
secondary cache efficiency and more unnecessary writes on
the flash. Third, since the capacity of De-SCache is explicitly
larger than the block cache, a large number of blocks can
become invalid during their lifetime in the De-SCache caused
by compaction. Most of the cache designs and caching policies
do not have the application semantics to know if the cached
blocks are still valid or not, and they rely on the cache eviction
policy to passively evict the blocks. The secondary cache has
a large capacity and its cache operations are less frequent.
Therefore, the average lifetime of cached blocks can be much
longer, and there will be a large portion of cold but still valid
blocks. Those cold but valid blocks might be evicted earlier
than the invalid blocks and can explicitly lower the cache hit
ratio.

To address the aforementioned three fundamental issues of
existing secondary cache designs, we propose the Semantic
Aware Secondary Cache (called SAS-Cache). It is a secondary
cache framework optimization for LSM-KV stores. SAS-
Cache is a flash-based cache and functions as an extension
tier of the memory-based block cache. Importantly, different
from De-SCache, SAS-Cache can selectively apply lookups
and insertions based on the LSM-KV store-specific semantics
to achieve explicitly higher performance, higher cache hit
ratio, and better flash lifespan. However, designing such a
SAS-Cache will be challenging:
• First, how to identify and avoid unnecessary secondary

lookups with low operational overhead is difficult. Tracking
every block in the secondary cache (e.g., using a BloomFil-

ter) and achieving dynamic tracking synchronization as the
secondary cache insertion/eviction can lead to high memory
cost and long latency.

• Second, we need a strategy to prevent invalid blocks from
being inserted into the secondary cache. However, it is diffi-
cult to know the status of the blocks with low memory and
operational overhead since blocks are dynamically inserted,
evicted, and invalidated during their lifetime in the block
cache.

• Third, considering the large capacity of the secondary cache
and the randomness of blocks invaliding by compaction, it
is challenging to identify and handle the invalid blocks in
the secondary cache. On one hand, the secondary cache is
not able to know if a cached block is valid or not. On the
other hand, scanning the cache and removing/replacing the
invalid blocks can introduce extra overhead.

To address the aforementioned three challenges, we propose
the following three novel designs to achieve a highly effi-
cient, workload-adaptive, and flash-friendly secondary cache:
1) Dynamic Adaptive Secondary Cache Bypass is used to
quickly filter out the unnecessary lookup operations on the
secondary cache by using the LSM-based internal information,
which achieves a much higher secondary cache hit ratio. We
propose the LSM-Managed Cache Filter, which utilizes two
synchronization methods: a lightweight cache filter synchro-
nization for regular cache insertion/deletion and asynchronous
reconstruction to synchronize different types of cache items
in the cache filter with the secondary cache, minimizing
the synchronization overhead; 2) Valid SST-Aware Insertion
Control is used to identify and prevent invalid blocks from
being inserted into the secondary cache. We propose to lever-
age the cache-key composition to quickly identify the invalid
blocks. We store the file number of invalid SST files (i.e.,
deleted by compaction and no longer referenced by snapshots)
instead of recording the cache-keys of all the blocks, which
significantly reduces the number of records that need to be
tracked in memory. Furthermore, we propose using a FIFO
queue to track the file number of invalid SST files, minimizing
the management overhead; And 3) Compaction-Aware Cache
Replacement is used to solve the issues caused by invalidated
blocks in the secondary cache. SAS-Cache asynchronously
scans the secondary cache after a number of compactions and
removes invalid blocks by comparing their cache-keys with
the invalid SST file number. To further improve the cache hit
ratio, we propose the block prefetching methods to insert some
of the blocks at the hot key-ranges of the newly generated SST
files into the secondary cache.

We implemented SAS-Cache based on RocksDB [6] and
CacheLib [19] and open-sourced at [20]. We evaluated our
prototype with db bench in various workloads and different
storage backends. Compared with De-SCache, SAS-Cache
effectively improves the secondary cache hit ratio by up to
40%. Additionally, it boosts throughput by up to 36% and
reduces latency by up to 20%. We also conducted a detailed
breakdown analysis of each major optimization design: 1)



the LSM-managed cache filter significantly improves the sec-
ondary cache hit ratio, achieving an improvement of up to
37%. It also enhances throughput by up to 15% and reduces
latency by up to 8%; 2) Valid SST-aware insertion control
plays a vital role in avoiding the insertion of invalid blocks
and leads to a 5% improvement in the secondary cache hit
ratio. Moreover, it enhances throughput by approximately 8%
and reduces latency by around 2.5%; And 3) compaction-
aware cache replacement enhances the secondary cache hit
ratio by up to 14% and boosts throughput by about 17%, while
reducing latency by approximately 5%.

II. BACKGROUND

A. LSM-KV Store Preliminary
LSM-KV stores are extensively used in today’s IT infras-

tructure due to their high write performance. Notable examples
include LevelDB [1], HBase [2], ZippyDB [4], X-Engine
[5] and RocksDB [6]. The generic architecture of an LSM-
KV store is shown in Figure 1, which contains two key
components: a memory-resident segment and a disk-resident
segment. New KV-pairs are inserted into active Memtables lo-
cated in the main memory. When an active Memtable reaches
its capacity, it is transformed into an immutable Memtable
and scheduled to be flushed to the storage system as a Static
Sorted Table (SST) file. SST files are organized into multiple
levels and each level (excluding Level-0) maintains a number
of SST files with non-overlapped key-ranges. Compaction is
applied to merge one SST file at Level-i with multiple SST
files at Level-(i+ 1) into new SST files at Level-(i+ 1) and
remove records marked for deletion or updated.

Fig. 1. Architecture of LSM-KV Stores and SST File Format

The aforementioned write flow is optimized for high write
throughput but comes at the expense of read performance. On
one hand, a certain KV-pair may exist in multiple Memtables
and in multiple SST files at different levels. LSM-KV store
needs to search from a higher level (e.g., L0) to the lower
levels (e.g., bottom-most level) until a certain KV-pair is found
(or confirm the KV-pair does not exist). On the other hand,
to locate a KV-pair in an SST file, multiple blocks including
index blocks, filter blocks, and data blocks are needed for the
in-memory binary search. Therefore, the read performance is a
big concern of LSM-KV stores [10]. Existing LSM-KV stores
rely on the DRAM-based block cache by caching frequently
accessed blocks in memory to reduce the reads from the

underlying storage system. Block Cache is a key component of
LSM-KV stores to improve the performance of different types
of read queries, such as Get, Multi-Get, and Range queries.

The SST file format is also shown in Figure 1. Since
compaction deletes the old SST files, the blocks belonging
to these deleted SST files are no longer valid and will not
be accessed anymore if there is no snapshots pinpointing
the blocks. These invalid blocks in the block cache will be
passively evicted by the cache policies (e.g., LRU). Each block
is uniquely identified in the block cache by a combination of
(db-unique id, SST file id, block offset), which is also known
as the cache-key.

B. Storage Backend for LSM-KV Stores
LSM-KV stores are widely deployed on SSDs due to their

low latency and high throughput. Some LSM-KV stores, like
RocksDB, are well-optimized for SSDs [10]. However, there
is a growing trend of deploying LSM-KV stores on alternative
storage backends, such as cloud storage and HDDs (Hard
Disk Drives), to achieve higher scalability and better cost-
effectiveness. Cloud storage services or disaggregated storage
like AWS S3 [21], Microsoft Azure Blob Storage [22], and pri-
vate cloud storage services like Tectonic at Meta [14] have be-
come increasingly popular due to their high cost-effectiveness
and better reliability. However, accessing data from cloud
storage typically involves higher latency and less predictable
performance compared to directly attached PCIe SSDs [23].
HDD is advantageous for cost-effective high-capacity storage,
making it suitable for scenarios with large datasets or long-
term data persistent storage demands. However, HDDs have
much worse random access performance, explicitly lower
throughput, and limited I/O operations compared with SSDs,
which can hinder overall performance, particularly for appli-
cations demanding low-latency, high throughput. Therefore,
when LSM-KV stores are deployed on those slower storage
backends, they face serious performance challenges, especially
for read queries.

C. Existing Secondary Cache Designs
To bridge the performance gap between DRAM-based block

caches and slow storage backend (e.g., cloud storage or HDD),
the secondary cache was proposed [15] as an extension of the
DRAM-based block cache for LSM-KV stores. The secondary
cache is designed based on the high-performance SSD or
Optane Memory to achieve significantly larger capacity than
the block cache and much higher access performance than the
slow storage backend. De-SCache, the current state-of-the-art
secondary cache for LSM-KV stores, is proposed by Meta [15]
and applied in RocksDB production [6]. Figure 2 shows the
basic workflow of the LSM-KV store with De-SCache.

Typically, there are multiple LSM-KV instances launched
on the server, and the local high-performance SSDs serve as
the De-SCache. The LSM-KV instances in the same process
share the same block cache and De-SCache via a shared
pointer. When the LSM-KV store receives read queries, it
will look up the block cache first for a certain block (e.g.,
a metadata block or a data block). If it is a block cache miss,



Block Cache

DB Instances
DB Instances
DB Instances

Secondary Cache

Storage 

Backend

3. Fetch Blocks

5. Evict and 

Insert

Data Flow

4. Insert
1. Lookup

Server

2. Miss & Lookup

Fig. 2. Workflow of LSM-KV Stores with Secondary Cache.

the LSM-KV store will search the same block in De-SCache.
If the target block cannot be found in the secondary cache,
the LSM-KV store instance will read the corresponding block
from the SST file at the storage system and then insert this
block into the block cache directly to search inside the block.
When a block is evicted from the block cache, it will be
inserted into the De-SCache. Additionally, if the LSM-KV
store finds the block in De-SCache (i.e., a secondary cache
hit), the block will be promoted back into the block cache for
future expedited retrieval. It is a typical tiered cache design
and has been explored in other scenarios [19], [24].

III. MOTIVATIONS

A. Secondary Cache Performance Analysis
1) Operations Characteristics of De-SCache.

To comprehensively analyze the characteristics of De-
SCache, we use RocksDB to evaluate the average latency of
flash-based secondary cache lookup/insertion, and storage I/Os
on different types of storage systems. The results are presented
in Table I and we have the following observations: The storage
read latency applied by LSM-KV stores on different types of
storage devices/systems is about 12-95 times that of flash-
based secondary cache. Therefore, the overhead of De-SCache
lookup cannot be easily ignored. Similar to the lookup, we
observe a non-significant difference between storage insertion
and secondary cache insertion (less than 77 times the write
latency), indicating that the insertion overhead of De-SCache
should be considered in the design. Thus, The lookup and
insertion overhead of De-SCache cannot be ignored when
compared with the storage I/Os.

TABLE I
LATENCY OF EACH COMPONENTS IN LSM KV STORES

Type Read Latency (us) Write Latency (us)
Secondary Cache 67.70 158.75

Storage(NVMe SSD) 70.50 92.10
Storage(HDFS) 606.75 651.32
Storage(HDD) 6,580.60 7012.40

2) Performance Tradeoffs Analysis of De-SCache.
Considering the unignorable lookup and insertion over-

head, we provide the following theoretical estimations for
the tradeoffs in the De-SCache design. For simplification, our
analysis is on a one-thread scenario, but it can also show the
performance tradeoffs. For the secondary cache, it has a lookup

latency of Tsec. Reading a block from the storage system has
the latency of Tstg . For LSM-KV stores with block cache,
its storage access account is Nnsc

stg (nsc is an abbreviation
for no secondary cache) and the total latency of responding
queries is Tnsc

total. The total latency here represents the sum of
the latency for all lookups and cache insertions. For LSM-
KV stores with secondary cache, its secondary cache access
account is Nsec and its storage read account is Ndsc

stg (dsc
is an abbreviation for default secondary cache) and the total
latency of responding queries is T dsc

total. We assume that two
LSM-KV stores run with the same workload, configurations,
and hardware (same storage access latency and block cache
access latency) to ensure that we have the same number of
block cache hits and misses. Thus, the total latency of all the
block cache hits in the two scenarios is the same, we donate
it as Thit, and the total latency of all the block cache insertion
in the two scenarios is the same, we donate it as Tbins. We
also can get: Nsec = Nnsc

stg = block cache miss numbers.
We donate the insertion overhead introduced by the secondary
cache as Tsins. Then, we can get:

Tnsc
total = Nnsc

stg ∗ Tstg + Thit + Tbins (1)

T dsc
total = Ndsc

stg ∗Tstg +Nsec ∗Tsec+Thit+Tbins+Tsins (2)
The latency gap between Tnsc

total and T dsc
total is ∆T . ∆T =

Tnsc
total − T dsc

total. Further, we can get:

∆T = Nnsc
stg ∗ Tstg −Ndsc

stg ∗ Tstg −Nsec ∗ Tsec − Tsins (3)
We then replace Nnsc

stg with Nsec, and get:

∆T = Nsec ∗ Tstg −Ndsc
stg ∗ Tstg −Nsec ∗ Tsec − Tsins (4)

= (Nsec −Ndsc
stg ) ∗ Tstg −Nsec ∗ Tsec − Tsins (5)

The first part of the formula 5, (Nsec − Ndsc
stg ) ∗ Tstg ,

represents the benefits introduced by the secondary cache.
The second part, Nsec ∗ Tsec, signifies the lookup overhead
of the secondary cache, and the third part Tsins indicates the
insertion overhead of the secondary cache. If ∆T > 0, it
indicates that we can improve the overall performance with a
secondary cache. Conversely, if ∆T < 0, the using secondary
cache even causes performance regression.

3) Performance Evaluations of De-SCache.
We conducted experiments to validate our aforementioned

analysis. We evaluate De-SCache under a read-only and write-
intensive workload and measure the overall performance. To
be precise, for the read-only workload, we conducted ex-
periments by running De-SCache integrated RocksDB with
different workload skewness on different storage backends
(HDFS and HDD). Here, different storage backends are used to
verify how the secondary cache works when its overhead can
cause varying levels of performance degradation to LSM-KV
stores. For HDD, the overhead brought by the secondary cache
is relatively smaller due to the large latency gap between the
secondary cache and HDD. However, for HDFS, the overhead
brought by the secondary cache is relatively larger due to the



small latency gap between the secondary cache and HDFS.
To control the data skewness, we selected the ReadRandom
workload from db bench [25] and followed the default settings
described in Section V-B. Initially, we used the fillrandom
workload to insert 1 million key-value pairs, and subsequently,
we employed the readrandom workload to retrieve 1 million
keys. We also configured RocksDB with the same block cache
size but without a secondary cache (called W/O-SCache) as
the baseline. For the write-intensive workload, we run the
default workload while maintaining the settings described in
Section V-B, with different block cache sizes. The results are
presented in Figure 3.

5 15 25
Read Random Exp Range

0

500

1000

1500

2000

2500

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

W/O-SCache(HDFS)
De-SCache(HDFS)
W/O-SCache(HDD)
De-SCache(HDD)

(a) Read-Only Workload

128 256
Block Cache Size(MB)

0

250

500

750

1000

1250

1500

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

W/O-SCache(HDFS)
De-SCache(HDFS)
W/O-SCache(HDD)
De-SCache(HDD)

(b) Write-Intensive Workload

Fig. 3. Overall Throughput on HDFS and HDD

In Figure 3(a), as the Exp Range increases (i.e., the work-
load is more skewed), the performance gap (the performance
of De-SCache minus W/O-SCache) between De-SCache and
W/O-SCache becomes smaller (from positive to negative),
which is the same for both HDFS and HDD. Furthermore,
due to the limited latency gap between the secondary cache
and HDFS which amplifies the overhead introduced by the
secondary cache. We observe that when the Exp Range is
set to 15 and 25, the throughput of the De-SCache is even
lower than that of the W/O-SCache (i.e., Nsec∗Tsec and Tsins

dominate the total latency). As shown in Figure 3(b), with
HDD, the performance of De-SCache is higher than W/O-
SCache no matter which block cache size we use. However,
with HDFS, the performance of De-SCache is higher than
W/O-SCache when the block cache size is 128 MB and lower
than W/O-SCache when the block cache size is 256 MB. This
is because when the block cache size is smaller than 128MB,
the block cache is not enough to contain all the working set (or
hot) blocks and RocksDB can get benefits from the secondary
cache. However, with a 256 MB size of the block cache, it
can hold most of the working set items (i.e., almost no block
cache misses), and inserting evicted blocks to the block cache
only introduced extra overhead.

From the above analysis and experiments, we can conclude
that the current state-of-the-art secondary cache design (i.e.,
De-SCache) can cause explicit read performance regression
due to the ignorance of lookup and insertion overhead and
only benefits LSM-KV stores in limited workloads, cache
settings, and storage backends.
B. Why De-SCache is Inefficient?
1) Non-Selective Lookups into De-SCache.

In current De-SCache designs, all block cache lookup
misses will trigger De-SCache lookup. Due to the high lookup
overhead of De-SCache, if there are a large number of misses

in De-SCache, it can explicitly impact the overall performance.
We use Lookup Hit Ratio (LHR) to measure the lookup
efficiency of De-SCache. It is defined as the cache lookup
hit number divided by the total lookup number, commonly
referred to as the hit ratio in other studies [19], [26]. A
higher LHR usually indicates better overall performance. We
collect the statistics of the overall hit ratio (i.e., including
block cache hits and misses) and the secondary cache LHR
(i.e., including secondary cache hits and misses) for the read-
only and write-intensive workloads used in Section III-A3, and
the results are shown in Figure 4. As shown in Figure 4(a),
with the range of read random exp range increases (i.e., the
workload is more skewed and less random), the overall hit ratio
difference between W/O-SCache and De-SCache becomes
smaller, corresponding to a decrease in the performance gap
as described in Section III-A3. Additionally, the LHR also
decreases, indicating that the benefits of De-SCache become
smaller and its overhead becomes more significant. This is part
of the reason that the performance of De-SCache can be even
lower than W/O-SCache, as described in Section III-A3.

5 15 25
Read Random Exp Range

0.0

0.2

0.4

0.6

0.8
C

ac
he

 H
it 

R
at

io

W/O-SCache(Overall)
De-SCache(Overall)
De-SCache(Secondary Cache)

(a) Read-Only Workload

128 256
Block Cache Size(MB)

0.0

0.2

0.4

0.6

0.8

C
ac

he
 H

it 
R

at
io

W/O-SCache(Overall)
De-SCache(Overall)
De-SCache(Secondary Cache)

(b) Write-Intensive Workload

Fig. 4. Overall Hit Ratio and Secondary Cache LHR.
2) Insertion invalid items into De-SCache.

In the De-SCache design, all evicted blocks from the block
cache will be inserted into the secondary cache without iden-
tifying whether the block is still valid (i.e., the corresponding
SST file is maintained by LSM-KV store or pinpointed by
snapshots) or invalid (i.e., the corresponding SST file is already
deleted by compaction and no longer referenced by snapshots).
If we insert invalid blocks to the secondary cache, this will
result in two issues: 1) The block eviction and insertion are
applied by the LSM-KV store foreground read thread. Due
to the relatively higher insertion latency of the secondary
cache, inserting these invalid blocks into the secondary cache
will lead to extra performance overhead; And 2) it will lead
to a lower secondary cache efficiency (i.e., valid blocks in
the secondary cache are forced to be evicted) and more
unnecessary writes on the flash (i.e., impact the SSD lifespan).
Here, we introduce Invalid Blocks Insertion Ratio (IBIR)
to measure how these invalid blocks being inserted impact the
effectiveness of De-SCache. It is defined as the ratio of invalid
blocks among all the inserted blocks. If there is a large number
of invalid cache items being inserted into the secondary cache
(i.e., a high IBIR), it indicates a low efficient cache insertion
policy and a potential overall performance regression.

To precisely analyze the existence and impact of inserting
invalid blocks into De-SCache, we record the IBIR of RockDB
with the write-intensive workload as described in Section



III-A3. To monitor the IBIR, we collected the secondary cache
insertion trace and statistics from RocksDB and filtered out
the inserted blocks that belong to the invalid SST files, such
that we can calculate the overall IBIR. The result is shown in
Figure 5. In Figure 5, we can see a significant portion of invalid
blocks is indeed inserted into the secondary cache (i.e., even
about 60% when the block cache is 512 MB). Furthermore, as
the block cache’s size increases, the number of invalid blocks
and IBIR increases significantly.

64 128 256 384 512
Block Cache Size(MB)

0

100

200

300

400

500

600

N
um

be
rs

(k
)

Insert Numbers
Invalid Numbers
IBIR

0%

10%

20%

30%

40%

50%

60%
Se

co
nd

ar
y 

C
ac

he
 IB

IR

Fig. 5. Secondary Cache IBIR

64 128 256 512 1024
Secondary Cache Size(MB)

0

50

100

150

200

250

N
um

be
rs

(k
)

Total Numbers
Invalid Numbers

0%

10%

20%

30%

40%

50%

Se
co

nd
ar

y 
C

ac
he

 IB
O

R

IBOR

Fig. 6. Secondary Cache IBOR

3) Slow eviction of invalid blocks retained in De-SCache.

Compaction can also directly invalidate the valid blocks
in the De-SCache. Most of the cache designs do not have
the application semantics to know if the cached blocks are
still valid or not, and they rely on the cache eviction policy
to passively evict the cold blocks. If the cache capacity is
relatively small and has highly frequent lookups/insertions
(e.g., the LRU-based block cache in LSM-KV stores), invalid
blocks will be quickly moved to the LRU-end and evicted.
Invalid blocks will not cause explicit cache efficiency issues.
However, if the cache capacity is much larger and the cache
operations are less frequent (e.g., the flash-based secondary
cache design in LSM-KV stores), the average lifetime of
cached blocks can be much longer and there will be a large
portion of cold but still valid blocks. Those cold but valid
blocks might be evicted earlier than the invalid blocks and can
explicitly lower the cache hit ratio. Here, we introduce Invalid
Blocks Occupancy Ratio (IBOR) to measure the impact of
these invalid blocks retained in De-SCache. It is defined as
the invalid block numbers divided by the total block numbers
in the secondary cache. It is dynamically changing during the
running time. If there is a significant number of invalid blocks,
it indicates a low cache space efficiency.

To apply quantitative analysis, we collect the IBOR of
RocksDB with De-SCache under the write-intensive workload
as described in Section III-A3. To track the invalid items
retained in De-SCache, we record all the deleted SST file
names (excluding the one pinpointed by snapshots) from each
compaction and iterate through the secondary cache to find all
the blocks that belong to those deleted SST files. This allows
us to calculate the amount of the retained invalid blocks when
each compaction occurs. We also record the total number of
blocks in the secondary cache to calculate the overall IBOR.
As shown in Figure 6, there is a large number of invalid
blocks retained in the secondary cache. Specifically, when the
secondary cache size is about 256 and 512 MB, the IBOR
can reach approximately 30%, which indicates that 30% of the
cache space is wasted. Furthermore, we can observe that an

increase in cache capacity is directly associated with a higher
number of invalid blocks retained in the cache.

Therefore, motivated by the aforementioned analysis, we are
aiming to design and implement a novel secondary cache that
can explicitly achieve better overall performance for LSM-KV
stores with the improvement of LHR, reducing IBIR, and
reducing IBOR with low memory and operational overhead
and can adapt the secondary cache to more workloads, storage
backends, and cache configurations.

IV. SEMANTIC-AWARE SECONDARY CACHE

A. Challenges
How to Dynamically Bypass Secondary with Low Over-

head. Due to the non-selectivity of the secondary cache
lookup, the LHR of the secondary will change as the LSM-
KV store workloads fluctuate over time, causing performance
regression. To consistently maintain the secondary cache LHR
at a high level we need to determine whether it’s worth
accessing the secondary cache or directly bypassing it (i.e.,
there is a high probability of a secondary cache miss) to read
the block from storage. One simple solution to achieve such
a cache selectivity is to track all the cache-keys of blocks in
the secondary cache and use a data structure (referred to as a
cache filter) to store them in memory, checking their existence
before issuing lookup queries to the secondary cache.

Kangaroo [27] uses the Bloom filter to serve as the cache
filter. In Kangaroo, the flash-based cache is divided into many
sets, each of which has a size of about 4KB. For each set,
Kangaroo maintains a small Bloom filter in DRAM built from
all the keys in the set to reduce unnecessary flash reads.
Whenever a set is written, the Bloom filter is reconstructed
to reflect the set’s contents. However, this method poses two
problems if we directly apply the filter in our scenario. First,
in Kangaroo, the cache size (each set) corresponding to each
Bloom filter is small. However, in our design, we need to track
all the blocks in the cache with the cache filter, making the cost
of reconstruction more expensive due to the larger cache size.
Second, in Kangaroo, any change to the cache only triggers
one of the small Bloom filter reconstructions. However, in our
case, it will trigger the entire cache filter construction, which
increases the reconstruction frequency significantly.

From the above analysis, the cache filter should possess the
following essential attribute: Support for Efficient Synchroniza-
tion with Secondary Cache Content. As the cache filter is used
to dynamically track the cache-keys of blocks in the secondary
cache, it needs to maintain synchronized information with
secondary cache content and the synchronization overhead
should be small. In LSM-KV stores, two types of cache
items need to be synchronized with the cache filter. The first
type is regular cache items. When items are inserted into the
secondary cache or evicted from it, the corresponding cache-
keys in the cache filter should be updated synchronously.
The second type is the invalidated cache items caused by
compaction. When an SST file becomes invalid, the blocks of a
certain SST file in the secondary cache should also be updated
in the cache filter, which can be applied asynchronously.



How to Prevent Invalid Blocks from Being Inserted into
Secondary Cache with Low Overhead. To lower the IBIR,
we need a strategy to prevent invalid blocks from being in-
serted into the secondary cache with low operational overhead.
One approach is to maintain a list of cache-keys for these
invalid blocks in the block cache and use a specific list to track
them. When an SST file becomes invalid (i.e., deleted and no
longer referenced by snapshots), we can scan the block cache,
identify the blocks from a certain SST file, and insert the
corresponding cache-key into the list. Before inserting evicted
blocks into the secondary cache, we check their cache-keys
against this list to determine their validity. If the cache-key is
invalid, it is removed from the tracking list without inserting
it into the secondary cache. Additionally, this list should be
kept in memory to minimize the operational overhead (e.g.,
insertion, removing, and lookup), making memory efficiency
crucial. However, how to efficiently identify the invalid blocks
and track their information during the running time is very
challenging.

How to Address the Large Number of Invalid Blocks
Retained in Secondary Cache. To lower the IBOR, one naive
method is to collect all the cache-keys of the invalid blocks
during compaction and utilize this information to evict the
corresponding blocks from the secondary cache. However, this
method poses several problems. First, how to collect the cache-
keys of invalid blocks without influencing the compaction
process is challenging. Second, we need to store these cache-
keys with minimal memory usage, which can be difficult.
Third, since the secondary cache is large and contains millions
of blocks, scanning the cache and identifying the cache-keys of
invalid blocks is time-consuming and it can influence the cache
performance. Additionally, as the invalid blocks are evicted, a
large amount of SSD space becomes available. How to utilize
this space efficiently and recover the decreased LHR caused
by the invalidation needs to be explored.

B. Architecture Overview of SAS-Cache

To address the aforementioned challenges, we propose a
Semantic Aware Secondary SAS-Cache, which is flash-based
and functions as a second-tier cache alongside the memory-
based block cache. SAS-Cache is a secondary cache optimiza-
tion framework for the LSM-KV store and is independent
of the implementation of the secondary cache. That is, all
existing cache policies (e.g., LRU, FIFO, or Clock) or flash-
based cache implementations (e.g., CacheLib [19] or Flashield
[28]) can be directly integrated with SAS-Cache. We propose
three important components in SAS-Cache to effectively ad-
dress the aforementioned challenges: 1) Dynamic Adaptive
Secondary Cache Bypass, abbreviated as Adaptive Bypass,
is designed to adaptively bypass the secondary cache lookups
that have a high probability of cache misses before we issue
the lookup queries to the secondary cache. We propose an
LSM-Managed Cache Filter (abbreviated as Cache Filter) that
possesses fast lookup operations with high memory efficiency,
and it can sync with the cache content with low operational
overhead. 2) Valid SST-Aware Insertion Control, abbreviated

as Insertion Control, efficiently identifies invalid blocks evicted
from the block cache and prevents their insertion into the
secondary cache. It uses an Insertion Control Queue and a
novel cache-key composition to effectively track the invalid
block. 3) Compaction-Aware Replacement, abbreviated as
Compaction Replacement, leverages low-overhead runtime
compaction information from LSM-KV stores and applies
compaction replacement techniques to replace the invalid
blocks with newly generated blocks (i.e., evict invalid blocks,
prefetch and insert new valid blocks) in the secondary cache.

Block Cache

DB Instances
DB Instances
DB Instances

Sematic Aware Secondary Cache

Storage 

Backend

3. Fetch Blocks

5. Evict and 

Insert

4. Insert
1. Lookup

Server

Insertion Control Adaptive Bypass

Compaction Replacement

2. Miss & Lookup

I. Compaction

II. Evict

III. 

Prefetch

Fig. 7. Architecture of SAS-Cache.

The overall architecture of SAS-Cache is shown in Figure
7. When an LSM-KV instance receives a read query request
(e.g., Get, Multi-Get, or Scan) and fails to find the request
block in the block cache, it will first check the cache-key
of a certain block in the Cache Filter. If the cache-key is
found in the Cache Filter, it will access the secondary cache.
Otherwise, it will bypass the secondary cache, directly retrieve
the block from storage, and insert the block into the block
cache (improve LHR). When the block cache becomes full,
blocks will be evicted from the block cache. Those evicted
blocks will be inspected by the Insertion Control Queue to
determine if they are invalid or not. The valid blocks will be
inserted into the secondary cache, while the invalid ones will
be discarded (reduce IBIR and IBOR). For each compaction
execution, the LSM-KV store instance gathers information of
deleted SST files and newly generated SST files. SAS-Cache
utilizes such compaction information to execute Compaction
Replacement, aiming to mitigate the impact of compaction
on the SAS-Cache LHR. This replacement process includes
evicting invalid blocks and prefetching some of the useful
blocks in the newly generated SST files (reduce IBOR).

C. Dynamic Adaptive Secondary Cache Bypass

To efficiently bypass the secondary cache when a block
cache miss happens, we propose the Dynamic Adaptive Sec-
ondary Cache Bypass, which relies on a key structure: LSM-
Managed Cache Filter. As discussed in Section IV-A, the most
widely used BloomFilter cannot sync with the cache content
changes. The LSM-Managed Cache Filter uses two key de-
signs to efficiently achieve this synchronization: employing a
lightweight synchronization method for regular cache items



and asynchronous reconstruction to synchronize invalid cache
items. These designs are based on two key observations. First,
invalid item synchronization occurs less frequently than regu-
lar item synchronization since the frequency of compaction is
much smaller than cache insertion/eviction. Second, although
the number of invalid items is large, they are generated in a
batch fashion during each compaction. Therefore, for regular
items, a lightweight synchronization method (direct insertion
and deletion) is needed due to its high operation frequency. For
invalid items, we employ asynchronous reconstruction instead
of directly evicting and inserting the invalid items one by one
to mitigate the influence on other cache filter operations, such
as lookups and regular item synchronization.

The LSM-Managed Cache Filter is designed based on
the cuckoo filter [29], ensuring fast lookup/insertion/deletion
operations and high memory efficiency. We leverage the in-
sertion/deletion operations of the cuckoo filter for lightweight
synchronization. For regular item synchronization, it employs
insertion and deletion (eviction) to synchronize the cache-keys
with the secondary cache insertion and eviction. For invalid
item synchronization, we use asynchronous reconstruction to
construct a new LSM-Managed Cache Filter that does not
include the invalid items and replace it with the current cuckoo
filter. The workflow of asynchronous reconstruction is shown
in Figure 8. Note that, this workflow of asynchronous recon-
struction is also closely related to Compaction Replacement
presented in Section IV-E. In Compaction Replacement, the
Replacement Executor has two operational steps: the first is
to evict the invalid items from the secondary cache, and the
second is to prefetch new valid items and insert them into
the secondary cache. For asynchronous reconstruction, it has
two phases: prefill and update phase. In the prefill phase, the
reconstruction executor creates an empty cache filter to insert
the newly prefetched cache items and synchronize it with the
prefetch process. The end of the prefill phase is when the
prefetch process ends. When the prefetch process finishes,
the eviction process has already finished because the prefetch
(insertion) process is usually slower than the eviction process,
which is detailed in Section IV-E. Then the reconstruction
executor is able to collect the invalid item information from
the replacement executor and begins to merge the prefilled
cache filter with the original cache filter.

Update

Phrase
Prefill

Phrase

LSM-Managed 

Cache Filter

Prefilled LSM-

Managed Cache Filter

Reconstruction

Excutor

Replacement

Excutor

New LSM-Managed 

Cache Filter

Prefetched

items

Invalid

items

Cache 

filter

items

Fig. 8. The workflow of asynchronous reconstruction.

When using the cuckoo filter, there are two important
parameters we need to determine: 1) total items in the Cache
Filter, which is determined by the size of the secondary cache
and also the size of each block. Assuming the total number of

cache items is denoted as T , the secondary cache size is S, and
the size of each block is B, they are related by the following
formula: T = S/B; and 2) the size of the fingerprints, which is
determined by the desired target false positive rate ϵ. Smaller
values of ϵ necessitate longer fingerprints to reject more false
queries. In our design, since the LSM-Managed Cache Filter
is used in the filtering step to improve the secondary cache hit
ratio, we can tolerate a high false positive ratio (e.g., 10%).
Therefore, we employ small fingerprints in our evaluations,
such as 16 bits. Compared to the original cache-key size (16
bytes), the memory overhead is minimized by about eight
times.

D. Valid SST-Aware Insertion Control

In Section IV-A, we highlighted a potential issue: tracking
all the invalid blocks in the block cache could lead to high
memory consumption due to the considerable number of
blocks. To address this issue, we propose Valid SST-Aware
Insertion Control, as shown in Figure 9. First, we propose
to leverage the cache-key composition to quickly identify the
invalid blocks. Since the cache-key is constructed based on
the SST file number (it is a unique ID generated by the
LSM-KV store), we can identify whether the block evicted
from the block cache belongs to the invalid SST files by
extracting and comparing the SST file number of the evicted
block. Therefore, instead of recording the cache-keys of all the
blocks, the Insertion Control stores the file number of invalid
SST files. This significantly reduces the number of records
that need to be stored in memory. Given that the default block
size is 4 KB, while the typical size of SST files is several
dozens to hundreds of megabytes (e.g., typically 64 MB in
RocksDB), the difference is on the order of tens of thousands.

Although recording invalid file numbers can significantly
reduce memory consumption, another problem needs to be
addressed: we need to track the invalid SST file numbers in
a certain data structure until their corresponding blocks are
fully evicted from the block cache. However, since SST files
are randomly invalidated by compaction, it is challenging to
determine precisely if the blocks belonging to a certain invalid
SST file are entirely evicted from the block cache unless we
incur additional efforts to scan the block cache. To address
this problem, we propose to use a FIFO queue to track the file
number of invalid SST files, and the queue is updated during
each compaction and snapshot update. The main observation
behind this idea is as follows: although it is challenging to
determine when blocks belonging to certain invalid SST files
are entirely evicted from the block cache, all associated invalid
blocks are evicted when the cache iterates through one round
because these invalid blocks are no longer accessed. When
the cache iterates one round, they will be evicted. Therefore,
we can keep the file number in the queue until the cache
completes one round of iteration. Additionally, for those SST
files invalidated by the same compaction, they are inserted into
the FIFO queue at the same time. Thus, we can batch them
and evict them all together as the cache iterates through one
round.



The size of the queue is pivotal to the effectiveness of the In-
sertion Control. Two key parameters are involved: the time that
invalid file numbers from each compaction stay in the queue
(denoted as Tc), and the average stay time of items in the block
cache (denoted as Tb). To ensure the Insertion Control works
effectively, the following formula needs to hold: Tc > Tb. The
value of Tb is influenced by the workload and block cache
size, while Tc is affected by the frequency of compaction and
the queue size. Out of these four parameters, we can only
determine the size of the queue. A larger queue size enhances
the effectiveness of the Insertion Control, preventing more
invalid blocks from entering the secondary cache. Conversely,
a smaller queue size may allow some invalid blocks into the
secondary cache. In our experiments, when the queue size is
set to 10, its effectiveness is significant. More analysis and
experiment results of the impact of the queue size are shown
in Section V-E2.

File 

num

File 

num

File 

num

File 

num1 
…

File 

num 
…

Secondary Cache

DRAM

SSD

Block Cache

Insert Evict

Compactions

Invalidate SST files

Evict blocks and check in the queue

Insert valid blocks

File 

num

Compaction N

File 

num3 
…

Compaction 1

File 

num2 

Fig. 9. Workflow of Insertion Control.
E. Compaction-Aware Cache Replacement

In SAS-Cache, we introduce Compaction-Aware Replace-
ment to aggressively remove invalid blocks with low overhead
and asynchronously prefetch newly generated blocks to main-
tain a high LHR. The frequency of the compaction replacement
is related to the compaction. In our setting, we employ com-
paction replacement when each compaction happens. Instead
of tracking all block cache-keys, SAS-Cache collects the file
numbers of SST files being deleted by compaction and no
longer referenced by snapshots, which reduces the influence
on the compaction process and also lowers memory usage. The
secondary cache is scanned by applying a 10-bit prefix match
of cache-keys (hash value of the SST file number) to quickly
identify and evict the data blocks belonging to the deleted and
non-referenced SST files. Note that this eviction operation is
applied asynchronously as a background job to minimize the
performance impact. Considering the key-range hotness and
KV-pair access localities [7], the KV-pairs in the deleted SST
files are reorganized in the blocks of newly generated SST files
during compaction and those newly generated blocks might be
accessed shortly. It can easily cause a high number of cache
misses shortly after compaction. To maintain a high LHR,
we propose the multi-level hints-based replacement scheme to
identify and prefetch blocks to the secondary cache to mitigate
the cache warm-up issues.

Specifically, we utilize the secondary instance of RocksDB
[30] to concurrently prefetch the target blocks. Due to the
latency of opening a secondary instance and fetching the
blocks from storage [31], the prefetch process is usually slower
than the eviction process. Moreover, we introduce four levels
of hints for prefetching: 1) block type (i.e., data blocks,

metadata blocks, and filter blocks), 2) key-range, 3) SST file
levels, and 4) SST files. SAS-Cache can use one or combine
multiple levels of hints together to precisely identify the blocks
to be prefetched. For example, LSM-KV store can specify a
key-range with data block type in the first 3 levels (L0 to
L2), SAS-Cache prefetches data blocks that overlap with the
specified key-range from the corresponding levels. By default,
our primary prefetching approach is to prefetch all the blocks
of the newly generated files, which is also used in Incremental
Warmup Algorithm [32].

F. Discussion
One big limitation of SAS-Cache is: it may perform poorly

when LSM-KV stores use a lot of snapshots during reads,
which will force most of the blocks belonging to the com-
pacted SST files to be cached. It will explicitly lower the
cache efficiency. There are also several limitations that should
be considered in the three main optimizations of SAS-Cache.
First, The Cache Filter’s effectiveness is closely related to
the secondary cache hit ratio. Cache Filter is introduced to
improve the secondary cache hit ratio by reducing unused
secondary cache lookups. However, it still introduces a slight
overhead. If the secondary cache hit ratio is already high
(e.g., higher than 95% before using the filter), checking the
Cache Filter will lead to extra latency. Therefore, the Cache
Filter plays a more significant role when the secondary cache
hit ratio is relatively low (e.g., lower than 80%). Second,
Insertion Control prevents invalid blocks from entering the
secondary cache, which brings two improvements: It reduces
the insertion overhead and it frees up cache space that was
previously occupied by invalid blocks, which can increase the
hit ratio of the secondary cache. The effectiveness of the hit
ratio improvement is more pronounced when the capacity of
the secondary cache is relatively smaller. Third, Compaction
Replacement evicts invalid blocks in the secondary cache and
also prefetches useful blocks. During the block prefetching,
some of the valid blocks might be evicted. Therefore, its
effectiveness is related to how useful the prefetched blocks
are and the free space of the cache after aggressive evictions.
As described in Section IV-E, we prefetch the new-generated
blocks. If the cache space is more ample, the negative impact
of the evicted blocks will be small and will not influence
performance.

V. IMPLEMENTATION AND EVALUATIONS

A. Implementation
We implement the SAS-Cache prototype based on RocksDB

[6] version 7.7.3 and CacheLib v2022.10.17.00 [19]. For
Cuckoo Filter implementation, we use the open-source code
available on Github [33]. The source code of SAS-Cache is
available in a Github repository [20].

B. Experimental Setup
We conducted all experiments on Dell EdgePower 650

servers equipped with an Intel(R) Xeon(R) Silver 4,310
CPU, 64 GB of memory, and 480 GB of SSD storage,
running Ubuntu Linux release 20.04 LTS. We use both HDD



128 256
Block Cache Size(MB)

0

200

400

600

800
O

pe
ra

tio
ns

 p
er

 S
ec

on
d

W/O-SCache
De-SCache1
SAS-Cache1
De-SCache5
SAS-Cache5

(a) Overall Throughput on HDD

128 256
Block Cache Size(MB)

0

500

1000

1500

2000

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

W/O-SCache
De-SCache1
SAS-Cache1
De-SCache5
SAS-Cache5

(b) Overall Throughput on HDFS

128 256
Block Cache Size(MB)

0

10000

20000

30000

40000

P9
9 

R
es

po
ns

e 
Ti

m
e(

us
)

W/O-SCache
De-SCache1
SAS-Cache1
De-SCache5
SAS-Cache5

(c) Read Latency(P99) on HDD

128 256
Block Cache Size(MB)

0

1000

2000

3000

4000

5000

P9
9 

R
es

po
ns

e 
Ti

m
e(

us
)

W/O-SCache
De-SCache1
SAS-Cache1
De-SCache5
SAS-Cache5

(d) Read Latency(P99) on HDFS

Fig. 10. Write-Intensive Workload Overall Throughput and Read Latency Comparison.

(TOSHIBA MG06ACA8 [34]) and HDFS as the storage back-
end for RocksDB. For HDFS deployment, we used a cluster
with three machines in the same rack, connected to a 10 Gbps
network switch. Each machine was equipped with an Intel(R)
Xeon(R) Silver 4,310 CPU, 256 GB of memory, and 7 TB of
HDD storage. We configured HDFS with a local cache (each
node accessing HDFS will use the local page cache), which
is a common configuration [35]. We use Samsung 980 PRO
(7,000 MB/s read, 5,100 MB/s write) [36] as the backend for
the secondary cache, which has explicitly higher performance
than either HDD or HDFS storage backend.

Without explicit explanation, We conducted the na-
tive RocksDB benchmark, db bench, with a ReadRan-
domWriteRandom workload, which has read operations and
write operations that trigger compaction when reading. We
used the default setting of ReadRandomWriteRandom, with a
read-to-write ratio of 90%. The block cache size used in our
experiments is set to 256 MB, with the index blocks caching
enabled in the block cache. We set block size as the default
4KB and key size as 48 bytes, value size as 10240 bytes.
We also utilize direct I/O for read, flush, and compaction
operations. For other RocksDB configurations, we follow the
default settings. The backend of SAS-Cache is CacheLib and
is configured with 8 MB DRAM and 5 GB flash storage by
default. We run the workload under different storage backends
(HDD and HDFS). Here, different storage backends are used to
verify how the secondary cache works when its overhead can
cause varying levels of performance degradation to LSM-KV
stores. For HDD, the overhead brought by the secondary cache
is relatively smaller due to the large latency gap between the
secondary cache and HDD. However, for HDFS, the overhead
brought by the secondary cache is relatively larger due to the
small latency gap between the secondary cache and HDFS.
We compare SAS-Cache to De-SCache and W/O-SCache. For
Cache Filter, we set the fingerprint size to 16 bits by default
and the estimated false positive ratio is about 10%. The total
item number is the same as the block item number in the
secondary cache. For the Insertion Control queue size, we set
the number to 10, which matches with workloads and cache
size settings.

C. Overall Performance Comparison
1) Write-Intensive Workload.

For the write-intensive workload, we use the default settings
as detailed in Section V-B. To show that SAS-Cache can
perform well under different cache settings, We adjusted the

block cache size to 128 MB and 256 MB, while the secondary
cache size was set to 5 GB and 1 GB. We compared five
configurations: W/O-SCache, De-SCache1 (De-SCache with
1 GB SSD), De-SCache5 (De-SCache with 5GB SSD), SAS-
Cache1 (SAS-Cache with 1 GB SSD space), and SAS-Cache5
(SAS-Cache with 5 GB SSD space).

Overall Throughput Analysis. The overall throughput
comparison is shown in Figure 10(a) and 10(b). With HDD
storage backend, De-SCache1 and De-SCache5 outperform
W/O-SCache, achieving up to 3 times of throughput improve-
ment when the block cache size is set to 128 MB and 256
MB. The working set size (WSS) is much larger than the
block cache capacity and thus secondary cache avoids most
of the storage HDD reads, leading to a significant through-
put improvement. SAS-Cache1 and SAS-Cache5 exhibit even
higher throughput compared to De-SCache1 and De-SCache5,
with around 34% improvement compared to De-SCache and
approximately a 3.6 times throughput improvement compared
with W/O-SCache. This demonstrates the effectiveness of the
optimizations we proposed in SAS-Cache. When using HDFS
(HDFS has higher throughput and lower latency than HDD due
to the in-parallel access and page cache at data nodes), De-
SCache1 and De-SCache5 have even lower throughput than
W/O-SCache when the block cache size is set to 256 MB
(e.g., secondary cache cause performance regression). In this
scenario, due to the relatively large block cache, fewer blocks
belonging to the working set are in the secondary cache. The
secondary cache miss ratio is explicitly higher, which causes
extra read overhead as explained in Section III-A. However,
when the block cache size is set to 128 MB, De-SCache
outperforms W/O-SCache by approximately 7%. With SAS-
Cache, we can achieve about 36% throughput improvement
compared to De-SCache and 41% improvement compared to
W/O-SCache, indicating the success of secondary cache hit
ratio improvement.

Read Latency Analysis. The tail latency of RocksDB read
queries is shown in Figure 10(c) and 10(d). When using HDD,
the secondary cache significantly reduces latency by more
than 50%, primarily due to the substantial performance gap
between HDD and NVMe SSD. Compared to De-SCache,
SAS-Cache further reduces read latency by about 20%. When
using HDFS, the read latency of De-SCache is slightly lower
than that of W/O-SCache. Even when the block cache size
is set to 256 MB, the read latency of W/O-SCache and
De-SCache is nearly identical. Compared with De-SCache,



128 256
Block Cache Size(MB)

0.5

0.6

0.7

0.8

0.9

1.0
O

ve
ra

ll 
C

ac
he

 H
it 

R
at

io
W/O-SCache
De-SCache1
SAS-Cache1
De-SCache5
SAS-Cache5

Fig. 11. Overall Cache Hit Ratio

128 256
Block Cache Size(MB)

0.0

0.2

0.4

0.6

0.8

B
lo

ck
 C

ac
he

 H
it 

R
at

io

W/O-SCache
De-SCache1
SAS-Cache1
De-SCache5
SAS-Cache5

Fig. 12. Block Cache Hit Ratio

256/5120 256/1024 256/512 128/5120 128/1024 128/512
Block Cache Size/Secondary Cache Hit Ratio(MB)

0.0

0.2

0.4

0.6

0.8

1.0

Se
co

nd
ar

y 
C

ac
he

 H
it 

R
at

io

De-SCache
SAS-Cache

Fig. 13. Secondary Cache Hit Ratio

De-SCache De-S+CF De-S-IC De-S+CR SAS-Cache
Schemes

0

100

200

300

400

500

600

A
cc

es
s a

nd
 H

it 
N

um
be

rs
(k

)

Access Numbers
Hit Numbers

Fig. 14. Secondary Cache Hit and
Access Numbers

SAS-Cache reduces read latency, yielding an improvement of
approximately 14% when the block cache size is set to 128
MB.

Cache Hit Ratio Analysis. We implemented the cache
statistics in RocksDB and SAS-Cache, and collected three
types of cache hit ratios: overall, block cache, and secondary
cache. The overall cache hit ratio accounts for both the block
cache and secondary cache hits and directly affects throughput
and read latency. The results of the overall cache hit ratio
are shown in Figure 11. RocksDB with De-SCache1 and De-
SCache5 show a higher overall cache hit ratio than RocksDB
with W/O-SCache, with a more significant improvement when
the block cache size is set to 128 MB. Additionally, the
overall hit ratio of RocksDB with SAS-Cache1 and SAS-
Cache5 is higher than that of RocksDB with De-SCache1
and De-SCache5, with an improvement of approximately 5%.
The Block Cache Hit Ratio statistics are shown in Figure 12.
The block cache hit ratio remains nearly the same among
the five setups, indicating that the three designs of SAS-
Cache do not impact the block cache effectiveness. The major
performance improvement is the result of avoiding the storage
I/Os. Finally, the secondary cache hit ratio is shown in Figure
13. SAS-Cache can always achieve up to 40% of the hit
ratio improvement compared with that of De-SCache in all
scenarios.

Cost Analysis. The memory cost of SAS-Cache primarily
comprises two perspectives: 1) maintaining the cache filter,
and 2) the queue of Insertion Control. For Cache Filter, we
define its fingerprint size as F bits and its total count as N .
Consequently, the total number of blocks in the secondary
cache is also denoted as N and the block cache size as B.
The ratio of the total cache filter size to the secondary cache
size, denoted as σ, is calculated as the formula 6:

σ = N ∗ F/N ∗B = F/B (6)

In our specific setup, the block cache size is 4K bits, and we
have set the fingerprint size to 16 bits, resulting in N = 257.5.
For instance, when the cache size is 1 GB, the Cache Filter
occupies 3.95 MB, and for a cache size of 5 GB, the Cache
Filter’s size increases to 19.85 MB. Regarding the queue size
of Insertion Control, it comprises two member variables: one
to record the maximum queue size and the other to maintain
the queue itself. In our evaluation, we’ve configured the queue
size to be 10, resulting in a total size of 80 Bytes. Therefore,
the memory overhead of the queue for SST file numbers can
be ignored.

TABLE II
PERFORMANCE OF READ-ONLY WORKLOAD ON HDFS. ER STANDS FOR
READ RANDOM EXP RANGE. THE LARGER THE ER, THE MORE SKEWED

THE DATA IS. OHR STANDS FOR OVERALL HIT RATIO. LHR STANDS FOR
(SECONDARY CACHE) LOOKUP HIT RATIO.

Scheme ER OPS P99 Latency OHR LHR
W/O-SCache 311 9536.66 0.399 -
De-SCache 5 365 8847.31 0.790 0.546
SAS-Cache 421 8049.36 0.790 0.993

W/O-SCache 517 6420.61 0.732 -
De-SCache 15 536 6204.96 0.896 0.718
SAS-Cache 643 5637.44 0.896 0.997

W/O-SCache 860 5917.22 0.794 -
De-SCache 25 801 6079.45 0.906 0.759
SAS-Cache 965 5446.95 0.906 0.998

2) Read-Only Workload.

For Read-Only workload, we selected the ReadRandom
workload from db bench [25] and use ReadRandom Exp
Range (abbreviated as ER) to control the data skewness.
For cache and RocksDB settings, we followed the default
configurations described in Section V-B choosing HDFS as the
storage backend. Initially, we used the fillrandom workload
to insert 10 million key-value pairs, and subsequently, we
employed the readrandom workload to retrieve 1 million keys.
The result is shown in Table II.

Throughput and Read Latency Analysis. In Table II,
as the ER value increases (i.e., the workload becomes more
skewed), the performance gap between De-SCache and W/O-
SCache decreases. Furthermore, due to the limited latency
gap between the secondary cache and HDFS, when the Exp
Range is set to 25, the throughput of De-SCache is even lower
than that of W/O-SCache, and the latency of De-SCache is
higher than that of W/O-SCache. What’s more, SAS-Cache
shows higher throughput and lower latency under all ER values
compared with W/O-SCache and De-SCache. When the ER
value is set to 5, the improvement is maximized, with a
throughput increase of about 35% and a latency reduction of
about 15%.

Cache Hit Ratio Analysis. We primarily record the overall
hit ratio and LHR to reflect the improvement of SAS-Cache
under a read-only workload. In a read-only workload, there
is no compaction, only the Adaptive Bypass design influences
the performance. As show in Table II, the overall hit ratio
of De-SCache and SAS-Cache is much higher than that of
W/O-SCache, and the overall hit ratio of De-SCache and SAS-
Cache is almost the same. This is because Adaptive Bypass
only improves the LHR and doesn’t contribute to the overall
hit ratio. Moreover, the LHR of SAS-Cache is much higher



than that of De-SCache, with an improvement of up to 45%.

All_random All_dist
Workload Type

0

2

4

6

8

10

O
pe

ra
tio

ns
 P

er
 S

ec
on

d 
(k

)

W/O-SCache
De-SCache
SAS-Cache

(a) Overall Throughput

All_random All_dist
Workload Type

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll 

C
ac

he
 H

it 
R

at
io

W/O-SCache
De-SCache
SAS-Cache

(b) Overall Cache Hit Ratio

All_random All_dist
Workload Type

0

1

2

3

4

5

6

P5
0 

R
es

po
ns

e 
Ti

m
e(

m
s)

W/O-SCache
De-SCache
SAS-Cache

(c) Average Read Latency (P50)

All_random All_dist
Workload Type

0

5

10

15

20

25

P9
9 

R
es

po
ns

e 
Ti

m
e(

m
s)

W/O-SCache
De-SCache
SAS-Cache

(d) Tail Read Latency (P99)

Fig. 15. Real world Workload (Mixgraph Workload) Overall Throughput,
Cache Hit Ratio and Read Latency Comparison.

3) Real-World Workload.

For the real-world workload, we utilize the mix-graph work-
load [7]. More specifically, we utilize two types of workloads:
the all random and all dist workloads. The all dist workload
has a more skewed data distribution than the all random
workload. In order to be closer to the real workload, we
set the key size to 48 bytes and the value size to 72 bytes,
and set the number of threads to 32 [7]. For W/O-Cache,
we choose the default block cache size; for De-SCache and
SAS-Cache, we set the block cache size to 8 MB and set the
flash-based secondary cache to 10 GB. For other settings, we
followed the default configurations described in Section V-B
choosing HDFS as the storage backend. Initially, we used the
fillrandom workload to insert 300 million key-value pairs, and
subsequently, we employed the mixgraph workload to operate
on 5 million keys (a mix of get, put, and seek operations). The
result is shown in Figure 15.

Throughput and Read Latency Analysis. In Figure 15(a),
De-SCache has higher throughput than W/O-SCache no matter
whether under All random or All dist workload. This is
because of the significant hit ratio improvement as shown
in Figure 15(b). Moreover, with SAS-Cache, we can achieve
about up to 29% throughput improvement compared to De-
SCache and 74% improvement compared to W/O-SCache. The
average latency of RocksDB read queries is shown in Figure
15(c). The average read latency of De-SCache is much lower
than that of W/O-SCache and its up to 34%. This is also
because of the significant hit ratio improvement. Compared
with De-SCache, SAS-Cache reduces average read latency,
yielding an improvement of approximately 10% under the
All random workload. The tail latency results are shown in
Figure 15(d). The result is similar to the average latency; the
tail latency of De-SCache is much lower than W/O-SCache,
and SAS-Cache has even lower tail latency than De-SCache.

Cache Hit Ratio Analysis. The result of the overall cache
hit ratio is shown in Figure 15(b). De-SCache shows a much
higher hit ratio compared to W/O-SCache with an up to 45%
improvement. This is because of the larger cache capacity
using SSDs. Additionally, the overall hit ratio of SAS-Cache
is higher than that of De-SCache, with an improvement of
approximately 5%.

D. Performance Breakdown Analysis

In this section, we conducted a breakdown evaluation to
demonstrate the effectiveness of three major optimizations of
SAS-Cache and their impact on overall performance metrics
including throughput, latency, and cache hit ratio. We config-
ured the secondary cache size to be either 1 GB or 5 GB,
while the block cache size remained the default 256 MB. We
use 5 different setups: De-SCache, De-S+CF (De-SCache with
cache filter), De-S+IC (De-SCache with insertion control), De-
S+CR (De-SCache with compaction replacement), and SAS-
Cache (De-SCache with all three optimizations). The results
are presented in Figure 14 and 16. The results in Figure 14
pertain to a secondary cache size of 1 GB capacity.

Impact of Cache Filter. Cache Filter is primarily used to
reduce unnecessary secondary cache lookups. Therefore, it has
an explicit influence on the secondary cache hit ratio, which
can significantly improve the LSM-KV store performance.
Figure 14 shows that De-S+CF has significantly decreased
secondary cache access numbers compared to De-SCache.
Also, the number of secondary cache accesses in De-S+CF
is nearly equivalent to the number of cache hits, indicating
that the cache filter effectively filters out the secondary cache
lookups that have a high probability to be cache misses. Figure
16(a) indicates that De-S+CF achieves about 15% higher
throughput than that of De-SCache, which is the result of the
secondary cache hit ratio improvement. Figure 16(b) shows
that with the cache filter, latency decreases by about 8%. The
overall hit ratio, as shown in Figure 16(c), remains unaffected
by the cache filter, and De-SCache and De-S+CF exhibit
almost identical overall hit ratios. Figure 16(d) demonstrates
that the cache filter substantially improves the secondary cache
hit ratio up to 37%.

Impact of Insertion Control. The Insertion Control is
designed to prevent invalid blocks from being inserted into
the secondary cache. This can improve the secondary cache
effectiveness, SSD lifetime and the cache hit ratio while re-
ducing insertion overhead. In Figure 14, with the same number
of secondary cache lookup, De-S+IC has a higher number of
secondary cache hits than De-SCache. This effectiveness is
further highlighted in Figures 16(d) and 16(c), De-S+IC can
achieve about 5% of cache hit ratio improvement than De-
SCache. In terms of performance, Figure 16(a) demonstrates
that De-S+IC achieves about 8% of throughput than improve-
ment. In addition, Insertion Control slightly reduces the overall
latency (about 2.5%) as shown in Figure 16(b). In Figure
19(b), it is shown that the insertion control can efficiently
reduce unnecessary SSD writes by up to 24%, significantly
prolonging the SSD lifetime.



De-SCache De-S+CF De-S-IC De-S+CR SAS-Cache
Schemes

0

500

1000

1500

2000
O

pe
ra

tio
ns

 p
er

 S
ec

on
d

5GB
1GB

(a) Throughput

De-SCache De-S+CF De-S-IC De-S+CR SAS-Cache
Schemes

0

1000

2000

3000

4000

P9
9 

R
es

po
ns

e 
Ti

m
e(

us
)

(b) P99 Response Time(us))

De-SCache De-S+CF De-S-IC De-S+CR SAS-Cache
Schemes

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

O
ve

ra
ll 

C
ac

he
 H

it 
R

at
io

(c) Overall Cache Hit Ratio

De-SCache De-S+CF De-S-IC De-S+CR SAS-Cache
Schemes

0.0

0.2

0.4

0.6

0.8

1.0

Se
co

nd
ar

y 
C

ac
he

 H
it 

R
at

io

(d) Secondary Cache Hit Ratio

Fig. 16. Impact of Each Design on Performance (Throughput, Latency and Cache Hit Ratio).

Impact of Compaction Replacement. Compaction Re-
placement is designed to aggressively remove the invalid
blocks caused by compaction and replace them with blocks
from the newly generated SST files, which aims to improve
the secondary cache and overall hit ratios. As shown in Figure
14, De-S+CR improves the total secondary cache hits by
about 17% compared with that of De-SCache. Figures 16(c)
and 16(d) show that with Compaction Replacement, we can
achieve 14% of secondary cache hit ratio improvement and
3% of overall cache hit ratio improvement, compared with
De-SCache. The performance comparison is shown in Figure
16(a) and Figure 16(b). De-S+CR can achieve about 21% of
throughput improvement and 5% of latency reduction than that
of De-SCache.

E. Sensitivity and Characteristic of Three Optimizations
1) Cache Filter Analysis.

As discussed in Section IV-F, the effectiveness of the Cache
Filter is closely tied to the secondary cache hit ratio and its
impact becomes more pronounced when the cache hit ratio
is relatively low. Furthermore, the size of the cache filter
directly affects the false positive ratio, thereby influencing the
filter’s overall effectiveness. We use ReadRandom workload in
the benchmarking with the same configurations described in
Section V-B. Additionally, we varied the fingerprint size from
2 to 16 and compared De-SCache with De-S+CF(n), where n
indicates the fingerprint size. The results are shown in Figure
17. When Exp Range is equal to 25 (the workload is highly
skewed), we can achieve the best cache hit ratio and through-
put improvement. De-S+CF(16) can achieve about hit ratio
50% improvements and 17% of throughput improvement. As
the fingerprint size increases from 2 to 16 bits, the secondary
cache hit ratio and throughput improvements increase.

5 15 25
Read Random Exp Range

0

500

1000

1500

2000

2500

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

De-SCache
De-S+CF(2)
De-S+CF(4)
De-S+CF(8)
De-S+CF(16)

(a) Throughput(ops)

5 15 25
Read Random Exp Range

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
co

nd
ar

y 
C

ac
he

 H
it 

R
at

io

De-SCache
De-S+CF(2)
De-S+CF(4)
De-S+CF(8)
De-S+CF(16)

(b) Secondary Hit Ratio

Fig. 17. Cache Filter Analysis

To further verify the effectiveness of our cache filter designs,
we conduct comprehensive experiments comparing our cache
filter with the bloom filter, which is used in Kangaroo [27].

50 70 90
Read-to-write Ratio

0

5000

10000

15000

20000

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

De-SCache
De-S+BF
De-S+CF

(a) Throughput(ops)

50 70 90
Read-to-write Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Se
co

nd
ar

y 
C

ac
he

 H
it 

R
at

io

De-SCache
De-S+BF
De-S+CF

(b) Secondary Hit Ratio

Fig. 18. Comparison between Our Cache Filter and Bloom Filter.

In this experiment, we set the key size to 48 bytes and the
value size to 72 bytes, and set the number of threads to 32. For
cache size settings, we set the flash-based secondary cache size
to 256MB. Moreover, we change the read-to-write ratio from
90% to 50% for more write-intensive workload evaluations.
For other settings, we followed the default configurations
described in Section V-B, choosing HDFS as the storage
backend. For bloom filter settings, we set its capacity to the
same as cache filter and false positive to 95%. The result is
shown in Figure 18. For a bloom filter, it works well when
the read-to-write ratio equals 90%, which largely improves the
secondary cache hit ratio and also improves the throughput.
However, as the read-to-write ratio decreases (more write-
intensive), its effectiveness decreases and can even bring
performance degradation when the ratio equals 50%. This is
mainly because the bloom filter cannot update with the cache
content instantly and causes false judgments. Compared with
the bloom filter, the cache filter can work well regardless of the
read-to-write ratio, and the maximum throughput improvement
is about 14%.

512 1024 5120
Secondary Cache Size(MB)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Se
co

nd
ar

y 
C

ac
he

 H
it 

R
at

io

De-SCache
De-S+IC(2)
De-S+IC(4)
De-S+IC(6)
De-S+IC(10)

(a) Secondary Cache Hit Ratio

512 1024 5120
Secondary Cache Size(MB)

0.0

0.1

0.2

0.3

0.4

R
ed

uc
ed

 B
lo

ck
 In

se
rt

io
n 

R
at

io

De-S+IC(2)
De-S+IC(4)
De-S+IC(6)
De-S+IC(10)

(b) Reduced Block Insertion Ratio

Fig. 19. Insertion Control Analysis

2) Insertion Control Analysis.
As described in Section IV-F, The improvement of the

Insertion Control is more pronounced when the cache is
relatively smaller. What’s more, the size of the queue largely
influences its effectiveness. We run the default workload with



default configurations as described in Section V-B. We change
the queue size from 2 to 10 and compare De-SCache with
De-S+IC(n), where n indicates the queue size. The results are
shown in Figure 19. Figure 19(a) that with a smaller secondary
cache size, Insertion Control can achieve higher cache hit
ratio improvement. With a larger queue size, the cache hit
ratio will also be explicitly improved, When the queue size is
configured as 10, we can achieve about 5% of cache hit ratio
improvement. Also, with a larger queue size, more invalid data
blocks can be identified. We reject about 24% of the total
secondary cache insertions when the queue size is 10, shown
in Figure 19(b).

512 1024 5120 10240
Secondary Cache Size(MB)

0

250

500

750

1000

1250

1500

1750

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

De-SCache
De-S+CR

(a) Throughput(ops)

512 1024 5120 10240
Secondary Cache Size(MB)

0.0

0.2

0.4

0.6

0.8

1.0

Se
co

nd
ar

y 
C

ac
he

 H
it 

R
at

io

De-SCache
De-S+CR

(b) Secondary Hit Ratio

Fig. 20. Compaction Replacement Analysis

3) Compaction Replacement Analysis.
As discussed in Section IV-F, the improvement of Com-

paction Replacement is more pronounced when the available
cache space is substantial. We use default workload with
default setting as described in Section V-B. We changed
the secondary cache size from 512 MB to 5,120 MB. We
compared De-SCache with De-S+CR, and the results are
shown in Figure 20. Figure 20(b) shows that as the secondary
cache size increases, De-S+CR can achieve higher secondary
cache hit ratio improvement compared with De-SCache. When
the secondary cache size is set to 10,240 MB, De-S+CR can
improve about 15% of the secondary cache hit ratio. Figure
20(a) shows that as the secondary cache size increases, the
throughput improvement of De-S+CR over De-SCache also
increases. When the secondary cache size is 10,240 MB, De-
S+CR can achieve 22% higher throughput than De-SCache.

VI. RELATED WORK

Cache optimizations for LSM-KV Stores. There are
several works related to the cache optimizations for LSM-
KV Stores [32], [37]–[41]. These papers [32], [37]–[39] try
to solve the problem of compaction-caused invalid blocks
retained in the DRAM-based block cache. For example,
LSbM-tree [38] combines the SM-tree [39] and bLSM [42]
to maintain the connection between cache and disk during
compaction. Unlike those previous works, the aim of this paper
is to provide thorough guidelines on optimizing the flash-
based secondary cache for LSM-KV stores. AC-Key [40] aims
at LSM cache mechanisms in the memory, hybrids different
kinds of cache objects(key-value pair, key-pointer pair, and
block), and dynamically adjusts their sizes to improve cache
efficiency.

Optimizations of LSM-KV Stores on Different Storage
Backends. Recently, some of the studies optimized LSM-tree

on different storage types: like cloud storage [15], [43], hybrid
storage [44], [45] and ZNS SSDs [46], [47]. Calcspar [43] is
designed to reduce latency spikes, adapt to changing work-
loads, and efficiently manage internal operation contentions
when LSM-KV stores interact with Amazon’s Elastic Block
Store (EBS), which is a type of cloud storage [48] offered
by Amazon Web Services (AWS). The proposed solution
combines fluctuation-aware caching, congestion-aware IOPS
allocation, and opportunistic compaction to improve the per-
formance of LSM-KV stores specifically on EBS volumes.
RocksDB for disaggregated infrastructure [15] tries to opti-
mize LSM-KV stores on disaggregated storage (Tectonic File
System [14] from Meta) involving latency issues, managing
fault tolerance, ensuring data integrity during failovers, and
adapting the RocksDB [6] to remote I/O behaviors. It proposes
Metadata Cache, Local Flash Cache (Secondary Cache), Par-
allel IO, and Compaction Tuning to solve performance issues.

Flash-based Cache Optimizations. Recently, due to the
higher cost-effectiveness and explicitly larger capacity of
Flash-based SSD compared with DRAM, there are several
studies designed and optimized Flash-based Cache [19], [27],
[28], [49], [50]. CacheLib [19] uses a Large Object Cache
(LOC) and Small Object Cache (SOC) to optimize flash
caching for different object sizes. The LOC indexes large ob-
jects using efficient data structures with low DRAM overhead
and the SOC uses approximate indexing with Bloom filters to
cache small objects on flash. Flashield [28] uses DRAM as a
filter to avoid writing non-flash-worthy objects to flash, based
on predicting ”flashiness” with lightweight machine learning
classifiers. It writes predicted flash-worthy objects to flash
sequentially in large chunks to minimize device-level write
amplification and features a highly efficient in-memory index
for variable-sized flash objects using less than 4 bytes per
object. Kangaroo [27] combines a small log-structured cache
(KLog) to reduce flash writes with a large set-associative cache
(KSet) to minimize DRAM overhead. It introduces threshold
admission and RRIParoo eviction to further reduce flash writes
and improve hit ratio.

VII. CONCLUSION

In this paper, we first conduct a comprehensive analysis of
the existing secondary cache designs and explore their limita-
tions. Then, we propose SAS-cache for LSM-KV stores, which
improves the existing secondary cache designs with three ma-
jor optimizations. LSM-Managed Cache Filter is proposed to
effectively reduce the number of unnecessary secondary cache
lookups. Additionally, Valid SST-aware insertion control is
proposed to prevent the blocks belonging to the obsoleted SST
files from being inserted into the secondary cache. Moreover,
compaction-aware cache replacement actively removes the
cache items invalidated by compactions. Our evaluation shows
that SAS-Cache can achieve about 40% of the secondary cache
hit ratio improvement, 36% of the throughput improvement,
and 20% of latency reduction compared with the state-of-the-
art secondary cache. In our future work, we will explore the
multi-tenancy and workload adaptiveness of SAS-Cache.



ACKNOWLEDGEMENTS

We would like to thank our shepherd, Xiaodong Zhang, and
all the anonymous reviewers for their valuable feedback. We
thank all the members of ASU-IDI Lab for providing useful
comments. This work was partially funded by the Arizona
State University startup fund.

REFERENCES

[1] Google, “Leveldb. https://github.com/google/leveldb,” 2023. Accessed
March 25, 2023.

[2] Apache, “Hbase. https://hbase.apache.org/,” 2023. Accessed 10 Jan,
2023.

[3] Z. Cao, H. Dong, Y. Wei, S. Liu, and D. H. Du, “Is-hbase: An in-storage
computing optimized hbase with i/o offloading and self-adaptive caching
in compute-storage disaggregated infrastructure,” ACM Transactions on
Storage (TOS), vol. 18, no. 2, pp. 1–42, 2022.

[4] Meta, “Zippydb. https://www.zippydb.com/,” 2023. Accessed 10 Jan,
2023.

[5] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang, F. Li, S. Wang,
W. Cao, and Q. Li, “X-engine: An optimized storage engine for large-
scale e-commerce transaction processing,” in Proceedings of the 2019
International Conference on Management of Data, pp. 651–665, 2019.

[6] FaceBook, “Rocksdb. https://github.com/facebook/rocksdb,” 2023. Ac-
cessed March 25, 2023.

[7] Z. Cao and S. Dong, “Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook,” in 18th USENIX Conference
on File and Storage Technologies (FAST’20), 2020.

[8] H. T. Kassa, J. Akers, M. Ghosh, Z. Cao, V. Gogte, and R. Dreslinski,
“Power-optimized deployment of key-value stores using storage class
memory,” ACM Transactions on Storage (TOS), vol. 18, no. 2, pp. 1–
26, 2022.

[9] H. T. Kassa, J. Akers, M. Ghosh, Z. Cao, V. Gogte, and R. G. Dreslinski,
“Improving performance of flash based key-value stores using storage
class memory as a volatile memory extension.,” in USENIX Annual
Technical Conference, pp. 821–837, 2021.

[10] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb.,” in CIDR, vol. 3,
p. 3, 2017.

[11] F. Wu, B. Li, Z. Cao, B. Zhang, M.-H. Yang, H. Wen, and D. H. Du,
“Zonealloy: Elastic data and space management for hybrid smr drives,”
in 11th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), 2019.

[12] F. Wu, B. Li, B. Zhang, Z. Cao, J. Diehl, H. Wen, and D. H. Du,
“Tracklace: Data management for interlaced magnetic recording,” IEEE
Transactions on Computers, vol. 70, no. 3, pp. 347–358, 2020.

[13] Z. Cao, H. Wen, F. Wu, and D. H. Du, “Smrts: A performance and
cost-effectiveness optimized ssd-smr tiered file system with data dedu-
plication,” in 2023 IEEE 41st International Conference on Computer
Design (ICCD), pp. 275–282, IEEE, 2023.

[14] S. Pan, T. Stavrinos, Y. Zhang, A. Sikaria, P. Zakharov, A. Sharma,
M. Shuey, R. Wareing, M. Gangapuram, G. Cao, et al., “Facebook’s
tectonic filesystem: Efficiency from exascale,” in 19th USENIX Confer-
ence on File and Storage Technologies (FAST 21), pp. 217–231, 2021.

[15] S. Dong, S. S. P, S. Pan, A. Ananthabhotla, D. Ekambaram, A. Sharma,
S. Dayal, N. V. Parikh, Y. Jin, A. Kim, et al., “Disaggregating rocksdb:
A production experience,” Proceedings of the ACM on Management of
Data, vol. 1, no. 2, pp. 1–24, 2023.

[16] P. Xu, N. Zhao, J. Wan, W. Liu, S. Chen, Y. Zhou, H. Albahar, H. Liu,
L. Tang, and Z. Tan, “Building a fast and efficient lsm-tree store by
integrating local storage with cloud storage,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 19, no. 3, pp. 1–26,
2022.

[17] RockSet, “Rocksdb-cloud. https://github.com/rockset/rocksdb-cloud,”
2023. Accessed March 25, 2023.

[18] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “Evolution of develop-
ment priorities in key-value stores serving large-scale applications: The
rocksdb experience.,” in FAST, pp. 33–49, 2021.

[19] B. Berg, D. Berger, S. McAllister, I. Grosof, S. Gunasekar, J. Lu,
M. Uhlar, J. Carrig, N. Beckmann, M. Harchol-Balter, et al., “The
cachelib caching engine: Design and experiences at scale,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2020), 2020.

[20] Github, “Sas-cache. https://github.com/asu-idi/SAS-Cache,” 2023. Ac-
cessed March 25, 2023.

[21] Amazon, “Amazon s3. https://aws.amazon.com/s3/,” 2023. Accessed
March 25, 2023.

[22] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al., “Windows azure storage:
a highly available cloud storage service with strong consistency,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 143–157, 2011.

[23] Z. Chen, X. Yang, F. Li, X. Cheng, Q. Hu, Z. Miao, R. Xie, X. Wu,
K. Wang, Z. Song, et al., “Cloudjump: optimizing cloud databases for
cloud storages,” Proceedings of the VLDB Endowment, vol. 15, no. 12,
pp. 3432–3444, 2022.

[24] T. Estro, P. Bhandari, A. Wildani, and E. Zadok, “Desperately seeking...
optimal {Multi-Tier} cache configurations,” in 12th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 20), 2020.

[25] FaceBook, “dbbench. https://github.com/facebook/rocksdb/wiki/Benchmarking-
tools/,” 2023. Accessed March 25, 2023.

[26] N. Beckmann, H. Chen, and A. Cidon, “{LHD}: Improving cache
hit rate by maximizing hit density,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), pp. 389–
403, 2018.

[27] S. McAllister, B. Berg, J. Tutuncu-Macias, J. Yang, S. Gunasekar, J. Lu,
D. S. Berger, N. Beckmann, and G. R. Ganger, “Kangaroo: Caching
billions of tiny objects on flash,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pp. 243–262, 2021.

[28] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich, R. Stutsman,
M. Alizadeh, and S. Katti, “Flashield: a hybrid key-value cache that
controls flash write amplification,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pp. 65–78,
2019.

[29] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, pp. 75–88, 2014.

[30] Facebook, “Rocksdb secondary instance.
https://github.com/facebook/rocksdb/wiki/Read-only-and-Secondary-
instances,” 2023. Accessed March 25, 2023.

[31] J. Z. V. T. J. W. Qiaolin Yu, Chang Guo and Z. Cao, “Caas-lsm:
Compaction-as-a-service for lsm-based key-value stores in storage dis-
aggregated infrastructure.,” Proceedings of the ACM on Management of
Data, vol. 2, no. 3, pp. 1–26, 2024.

[32] M. Y. Ahmad and B. Kemme, “Compaction management in distributed
key-value datastores,” Proceedings of the VLDB Endowment, vol. 8,
no. 8, pp. 850–861, 2015.

[33] Github, “Cuckoofilter. https://github.com/efficient/cuckoofilter,” 2023.
Accessed March 25, 2023.

[34] TOSHIBA, “Toshiba mg06aca8. https://storage.toshiba.com/enterprise-
hdd/enterprise-capacity/mg06-series,” 2023. Accessed March 25, 2023.

[35] HDFS, “Centralized cache management in hdfs.
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/CentralizedCacheManagement.html,” 2023. Accessed March 25,
2023.

[36] Samsung, “Samsung 980pro. https://semiconductor.samsung.com/consumer-
storage/internal-ssd/980pro/,” 2023. Accessed March 25, 2023.

[37] L. Yang, H. Wu, T. Zhang, X. Cheng, F. Li, L. Zou, Y. Wang, R. Chen,
J. Wang, and G. Huang, “Leaper: A learned prefetcher for cache
invalidation in lsm-tree based storage engines,” Proceedings of the VLDB
Endowment, vol. 13, no. 12, pp. 1976–1989, 2020.

[38] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang,
“Lsbm-tree: Re-enabling buffer caching in data management for mixed
reads and writes,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 68–79, IEEE, 2017.

[39] H. Jagadish, P. Narayan, S. Seshadri, S. Sudarshan, and R. Kanneganti,
“Incremental organization for data recording and warehousing,” in
VLDB, pp. 16–25, 1997.

[40] F. Wu, M.-H. Yang, B. Zhang, and D. H. Du, “{AC-Key}: Adaptive
caching for {LSM-based}{Key-Value} stores,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pp. 603–615, 2020.

[41] X. Wu, L. Zhang, Y. Wang, Y. Ren, M. Hack, and S. Jiang, “zexpander:
A key-value cache with both high performance and fewer misses,” in
Proceedings of the Eleventh European Conference on Computer Systems,
pp. 1–15, 2016.



[42] R. Sears and R. Ramakrishnan, “blsm: a general purpose log structured
merge tree,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 217–228, 2012.

[43] Y. Zhou, J. Zhou, S. Chen, P. Xu, P. Wu, Y. Wang, X. Liu, L. Zhan, and
J. Wan, “Calcspar: A {Contract-Aware}{LSM} store for cloud storage
with low latency spikes,” in 2023 USENIX Annual Technical Conference
(USENIX ATC 23), pp. 451–465, 2023.

[44] H. Chen, C. Ruan, C. Li, X. Ma, and Y. Xu, “{SpanDB}: A fast,{Cost-
Effective}{LSM-tree} based {KV} store on hybrid storage,” in 19th
USENIX Conference on File and Storage Technologies (FAST 21),
pp. 17–32, 2021.

[45] J. Li, Q. Wang, and P. P. Lee, “Efficient lsm-tree key-value
data management on hybrid ssd/hdd zoned storage,” arXiv preprint
arXiv:2205.11753, 2022.

[46] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong, “An
efficient design and implementation of lsm-tree based key-value store
on open-channel ssd,” in Proceedings of the Ninth European Conference
on Computer Systems, pp. 1–14, 2014.

[47] J. Lee, D. Kim, and J. W. Lee, “Waltz: Leveraging zone append to
tighten the tail latency of lsm tree on zns ssd,” Proceedings of the VLDB
Endowment, vol. 16, no. 11, pp. 2884–2896, 2023.

[48] Amazon, “Cloud storage from aws. https://aws.amazon.com/what-is-
cloud-storage/,” 2023. Accessed March 25, 2023.

[49] Netflix, “Netflix technology blog. application data caching using
ssds. https://netflixtechblog.com/application-data-caching-using-ssds-
5bf25df851ef,” 2023. Accessed March 25, 2023.

[50] Netflix, “Netflix technology blog. evolution of application data caching
: From ram to ssd https://netflixtechblog.com/evolution-of-application-
data-caching-from-ram-to-ssd-a33d6fa7a690,” 2023. Accessed March
25, 2023.


