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Abstract
To preserve durability guarantees, write-ahead logs (WAL)

must be written to stable storage before a client can receive a
response. Applications with write-ahead logs encourage the
use of a dedicated storage device to minimize latency and
throughput problems caused by write contention from other
processes. Unfortunately, many deployments of applications
with write-ahead logs have only a single storage device. It is
tempting to think that flash storage will make this problem go
away since flash does not have an arm to contend with, but
flash still has channel contention. We examine the problem of
write-ahead log contention in a replicated system, ZooKeeper.
We show how contention is a problem at both the macro-level
(for the entire replicated system) and the micro-level (on a sin-
gle replica). We also show techniques that take advantage of
distributed systems and I/O priorities to solve the problem at
both levels. While mixing small WAL writes with large writes
brought WAL writes latency up to 45 ms, we showed that us-
ing separate processes and priorities with mixed writes brings
the WAL writes down to 0.2 ms, similar to small WAL writes
running on their own. In this paper, we show that by using
the proper block scheduler along with dedicated high-priority
WAL processes, we can significantly improve performance
and achieve consistent WAL performance on a shared storage
device.

1 Introduction

Write-ahead logs (WAL) are the key to providing durability
guarantees while also achieving low latency. Any changes to
the system are first written to the WAL before they are applied
to data structures stored elsewhere. Because all changes are
written sequentially and batched together, the WAL can opti-
mize storage bandwidth and minimize latency. Once changes
to the WAL are synced to storage and made durable, changes
to the needed data structures stored elsewhere can be done
in the background. If a system failure happens, the WAL is
used to recover system state and carry out any data structure
changes that did not make it to the storage before the failure.

Most systems that use WALs recommend that they are
stored on a dedicated storage device [4, 5]. If both the WAL
and the application data is stored on the same device, the
background writes and the WAL writes will contend with each
other. This contention will increase the latency and throughput
of WAL writes and affect system performance.

Historically most of the storage contention overhead was
due to a single hard drive arm [29] that needed to seek to
locations on the hard drive. This arm contention was a me-
chanical limitation that was measured in milliseconds. Today,
solid state storage is becoming more prevalent and does not
have a mechanical arm. It is tempting to think that solid state
storage makes the problems of WAL on a non-dedicated stor-
age device a thing of the past, but we will show that there are
still other sources of contention in solid state storage that still
need to be dealt with to achieve low latency WAL writes.

From a purely academic point of view, requiring a dedi-
cated storage device does not seem onerous. Storage devices
are cheap, and system boards support multiple storage de-
vices. Unfortunately, it is a problem in practice. Most storage
devices have plenty of capacity, so for most requirements a
single storage devices satisfies the storage needs of systems.
That is why the volume purchases of most companies are for
devices with a single storage device. Of course, it is a small
modification to add another storage device for those appli-
cations that need it. While the initial modification is small,
the impacts on purchasing, setup, provisioning, management,
and application deployment are not. Due to these practical
limitations, applications that recommend a dedicated storage
device for a WAL are often deployed on systems with a single
storage device.

In this paper, we examine the problem of write-ahead
log contention on a shared device in a replicated system,
Zookeeper, by exploring the following research questions:

1. What is the problem of write-ahead log contention at the
macro-level in Zookeeper?

2. What is the problem of write-ahead log contention at the
micro-level in Zookeeper?



3. Can we reproduce the problem of write-ahead log con-
tention found in Zookeeper?

4. Can we use priorities to mitigate the problem of write-
ahead log contention found in Zookeeper?

5. How much performance improvement do we gain from
the use of priorities to mitigate the problem of write-
ahead log contention in Zookeeper? Can we achieve
consistent WAL performance on a shared storage device?

The work presented here reproduces the problems that re-
sult from using a WAL on a shared device. We show that the
problems happen at both the operating systems layer, using
micro-benchmarks, and the application layer, using bench-
marks on ZooKeeper, a distributed system running on five
machines. We explore various solutions to the resulting per-
formance problems, and show that simple application of tech-
niques such as IO priorities do not work, but we also show
solutions that work by taking advantage of distributed systems
as well as low-level solutions that achieve low latency and
priority bandwidth on a single system. In our experiments, we
consistently use machines with a single storage device. Some
of our experiments examine the WAL performance in isola-
tion, but we do not run experiments with multiple drives since
that doubles the I/O bandwidth as well as provides isolation,
which muddies the result.

To summarize, our main contributions in this paper are:

1. Reproducing contention. We run a benchmark that gen-
erates small durable WAL writes in the presence of large
background writes to reproduce contention at the local
level. We identify the latency spikes in this scenario.

2. Testing priorities to mitigate contention. We hypoth-
esize that using priorities will mitigate the problem of
contention at the local level. To validate our approach,
we run a benchmark using this technique. ioprio_set()
is used to boost the I/O priority of the thread or process
containing small durable WAL writes.

3. Discoveries about priorities. Experimentation showed
that although ioprio_set() has a thread parameter, we
need to use processes to set the priority correctly, as the
system call is likely running on a process level. Other
conditions were also discovered to ensure that priorities
are set correctly.

4. Successfully mitigating contention. Results show sig-
nificant performance improvement and consistent la-
tency after setting small durable WAL writes as high
priority in the presence of large background writes. Be-
cause of this, we developed a Java library for integrating
applications that use WALs.

Figure 1: ZooKeeper Architecture

2 Problem Background

Production performance problems of ZooKeeper motivated
this work. ZooKeeper is a popular open source distributed
coordination service. The coordination data is maintained
as an in-memory data tree that is replicated across a quo-
rum of replicas. It provides strong consistency and durability
guarantees that distributed applications build upon.

ZooKeeper achieves its durability guarantee with good per-
formance by using a WAL. When ZooKeeper processes a
change to the coordination state, the state change will be repli-
cated to a quorum of replicas and persisted on non-volatile
storage before the change is applied to the coordination state.

ZooKeeper replicates state to all the replicas of an ensem-
ble. As shown in figure 1, the replicas will elect a leader
to coordinate changes to the replicated data. The leader dis-
tributes the replica data and will let replicas know when they
can commit the data once a quorum has persisted a change.

In general, the latency of the small writes can be signifi-
cantly impacted when stuck behind a large, unimportant write
or snapshot activity. This is especially true with systems like
Zookeeper, where the writes being sent to nodes are FIFO
ordered [15]. ZooKeeper, like most other applications that
use a WAL, recommends that the WAL resides on a dedicated
storage devices so that other traffic will not affect its write
latency. Some of that other traffic will come from ZooKeeper
itself. In addition to the WAL writes, a ZooKeeper replica pe-
riodically writes a local snapshot of its current state to storage
to avoid replaying a long list of transactions from the WAL
during recovery. The snapshot also allows us to periodically
truncate WAL so that the WAL does not grow without bounds.
Because ZooKeeper state can get quite large, on the order of
gigabytes, the periodic snapshot can create a large write load
on the storage device. However, snapshots can happen in the
background and do not cause any delays in processing. If a
failure happens while writing a snapshot, a previously written
snapshot can be used. ZooKeeper makes sure to keep a few
older snapshots and enough WALs around to recover from
if the latest snapshot is not usable. While snapshots are not
latency sensitive and can happen in the background, the load
they create can affect the latency of WAL writes if both the
WAL and snapshots are written to the same storage device.

ZooKeeper tries to takes advantage of the distributed nature
of its replicas to mitigate the effects of snapshot and WAL



Figure 2: Write request flow

contention by randomly choosing when to take a snapshot.
Even if a snapshot does increase the latency of a WAL write
on the local replica, as long as a quorum of replicas is not
taking a snapshot at the same time, the latency to accept a
change should not be affected.

3 Snapshot scheduling to improve WAL la-
tency

We realized that the existing randomized snapshot scheduling
in ZooKeeper was insufficient to mitigate the problem of
contention between snapshot and WAL writes. We need to
develop something better. When we started deploying servers
with flash devices, we thought our storage latency problems
would be over. The latency of flash is so much lower than
spinning hard drives, and we do not have to deal with arm
contention. We knew that there could be some latency spikes
while snapshots were happening, but we also had randomized
snapshot scheduling helping us out.

Much to our dismay, and that of the applications using
ZooKeeper, even when we moved to flash our latency spikes
did not go away. In production, we noticed that write load of
snapshots caused a significant increase in write latency and
a corresponding drop in ZooKeeper performance. We were
getting channel contention on the flash. The snapshots were
large enough and thus lasted long enough that there was a
quorum of replicas taking a snapshot at the same time often
enough to affect the performance of our production systems.

3.1 Write request flows

To understand the problem and our solution, we will quickly
review the flow of a write request in ZooKeeper shown in
figure 2. When a client sends a write request, the replica
the client is connected to will forward the request to leader.
The leader will convert that request into an idempotent state
change, which we call a transaction, or txn in the figure. The
leader will send a PROPOSAL with txn to all replicas. When
the replica receives the PROPOSAL, it will persist txn to

Figure 3: Snapshot scheduler

the WAL and send an ACK to the leader. Once the leader
has received a quorum of ACKs, it will send a COMMIT to
all of the replicas. When the replicas receive the COMMIT,
they will apply txn to the in-memory data tree and the replica
connected to the client will send a response back to the client.
Since snapshot and txns are writing to the same storage device,
one disk IO will affect another. When a quorum of replicas
are taking snapshots at the same time, the quorum transaction
write latency will go up. As the snapshot size grows, it is more
likely that the majority of replicas will take a snapshot at the
same time even with random snapshot scheduling.

To stabilize the client write latency, we created the snapshot
scheduler to coordinate the snapshot and prevent the majority
from taking snapshot at the same time.

As shown in figure 3, rather than each replica independently
and randomly selecting when to schedule a snapshot, the
leader coordinates the scheduling of snapshots. The leader
will periodically ping its followers to tell them when to take
a snapshot. The followers provide information about any
ongoing snapshot they have, transactions they have processed
since the last snapshot, and metrics such as their average fsync
latency.

3.2 Resulting Improvements

We saw a big improvement in our production performance
due to the snapshot scheduler. To measure the change we
designed a benchmark that creates a steady stream of write
requests. We measured the resulting throughput and latency.
The benchmark is done on a cross data center ensemble with
five servers, each server having 18 Cores CPU, 64GB RAM
and 256GB SSD.

Figure 4 shows the throughput as the data tree size in-
creases. As the graph shows, this problem is real; at 3GB our
throughput is less than a quarter of what it was at 100MB. The
graph also shows that our scheduling made the throughput
decrease only slightly due to a larger snapshot.

Figure 5 shows the latency improvements with snapshot



Figure 4: Throughput with snapshot scheduler

scheduling. The y-axis shows the maximum latency of a
ZooKeeper write over 1 minute intervals. The spikes are quite
high, with some writes taking over 3 seconds to complete. At
time 14:45 we enable the snapshot scheduling. We see that
the write latency decreases dramatically. All writes are well
under 200ms.

This benchmark not only shows the problems that are
caused, but it also shows that the snapshot scheduler was
able to mitigate the problems. The benchmark also shows that
the writes generated by snapshots are clearly affecting the
performance of the WAL writes.

4 Mitigating Write-ahead Log Contention Lo-
cally

From our previous experiments, we know that WAL write
contention is a problem, and we know that we can mitigate it
in a distributed environment by scheduling snapshots. On the
replicas that are doing a snapshot, contention is still happen-
ing. Can we mitigate that contention?

We hypothesized that we could achieve the WAL write
performance close to that of a dedicated storage device if
we could set the write priorities correctly. The performance
of non-WAL writes would be affected by this approach, but
those writes are background writes, so it is okay if they are
delayed.

Our plan is conceptually simple, as shown in the left side of
figure 6. We use priorities to give preference to WAL writes.
Priorities allow us to get our important request quickly to the
front of the I/O queue, so that important requests do not get
delayed.

We are using NVMe flash; These flash devices have the
notion of multiple queues, as shown in the right side of fig-
ure 6. When the device queues are full, requests are queued
in the OS according using the I/O queue. Ideally, it would be
nice to have important requests jump to the start of the device
queues, but getting to the front of the operating system I/O

queue is sufficient since the latency of the device queues are
very low.

In theory, if WAL writes always have highest priority, they
should get close to the latency that they would receive on a
dedicated device. This is challenging because WAL writes
often come from the same application that is generating the
bulk background writes so it was not as simple as running
the application with a system call named ionice [20], which
sets the priority by application. So instead, we will be using
ioprio_set() [21], a system call which seems to set the priority
by threads or processes.

4.1 Measuring Latency

We started off by creating experiments that model WAL writes
as small synchronous writes (4KiB) and background writes
as large writes (536MiB) in C. We used an eight core AMD
Ryzen 7 CPU with 32G RAM running Linux 5.8. We used a
Samsung SSD 860 as our storage device.

In our first experiment, we ran continuous WAL writes by
themselves on the SSD for 60 seconds. From this experiment,
we see that small writes running on their own achieve very
low latency, for an average between 0.05 ms to 0.15 ms, as
shown in figure 7. This is expected because due to the nature
of its size, small writes won’t take up much time. Thus, no
write gets stuck behind, resulting in low latency.

However, if large background traffic is mixed in with small
writes, then the latency is likely to increase because large
writes on its own are expected to take a very long time, re-
sulting in the small writes getting stuck behind large writes,
creating contention that we typically see in production. To
confirm this, we ran the benchmark with the large background
writes. Large writes running on their own achieve high latency,
for an average of around 450 ms. The large writes are cached
for a while, causing them to spike quickly from around 250
ms to 450 ms.

We reproduced the contention behavior that we see in pro-
duction by running the large writes while concurrently doing
the small WAL writes for 60 seconds. In figure 8, we can see
the contention issue when small writes run with large back-
ground writes present. The orange line in our graph represents
the rolling mean. For the first 10 seconds of the experiment,
we only ran small writes. From the graph, we see that before
the large writes enter, small writes achieve low latency, sim-
ilar to small writes running on their own as seen in figure 7.
After the 10 seconds, we introduce large writes in with the
small writes. Immediately, we see that the latency of small
writes began to increase once the large writes started, result-
ing in a much higher average latency: around 45 ms. We
ended the large writes 10 seconds early in our program, and
we can see the small writes go back to a low latency. This
showed how drastic the contention problem is when small
writes are mixed in with large writes. (These were the results
using a NVMe storage device. Similar results with numbers



Figure 5: Latency improvement with snapshot scheduler. The verticle yellow light represents the moment that the snapshot
scheduler is turned on.

Figure 6: Priorities vs. Priorities with Multiple Queues

of different magnitudes were seen on SSDs that we tested on).

4.2 Using priorities to get deterministic la-
tency

We wanted to set our WAL writes as the highest priority so that
when the WAL (small writes) and background writes (large
writes) run together, the WAL writes achieve a consistent
latency, an average which is very close to or equivalent to
small writes running alone (0.05 to 0.15 ms). Our first attempt
used the system call ioprio_set() to boost the I/O priority
of the WAL thread. ioprio_set() and ioprio_get() are Linux
system calls that sets or gets the I/O scheduling class and
priority [21].

Since WAL writes often come from the same application
that is generating the bulk background writes, we did not
use the system call ionice, which sets priority by application.
ioprio_set() and ioprio_get() instead sets priority by threads
or processes, which is more ideal for our experiment with
WAL.

IOPRO_PRIO_CLASS(mask) is an ioprio macro where
given a mask (an ioprio value), it returns its I/O class compo-
nent, that is, one of the values IOPRIO_PRIO_RT (highest pri-
ority class), IOPRIO_CLASS_BE, or IOPRIO_CLASS_IDLE
(lowest priority class) [21]. For our experiment, the IO-
PRO_PRIO_CLASS was set to IOPRIO_PRIO_RT at 0 (also
referred to as RT/0), which is the highest priority class.

The priority being set was additionally verified using iotop,
a simple I/O monitor which watches I/O usage information



Figure 7: Small Writes Running Alone

Figure 8: Small Writes Contention with Large Writes



Figure 9: High Priority Experiment

output by the Linux kernel and displays a table of current I/O
usage by processes or threads on the system [22]. For each
process, its I/O priority (class/level) is shown and we were
able to successfully find I/O priority RT/0 when mixed writes
were ran.

Unfortunately, simply calling ioprio_set() on a WAL thread
did initially not change the latency results. In diagnosing the
absence of performance change, we made a few discover-
ies about priorities. First, although ioprio_set() has a thread
parameter, it is running at a process level, so any change to
I/O priority will affect the entire process. We need to use a
separate process to do WAL writes so that we can set its I/O
priority separately from the other writes of the application.
Second, we need to use direct I/O to make sure the writes
are done with the correct priority; this also meant that we
needed to use aligned memory for the writes. Third, not all
block schedulers honor priorities; we found that we needed
to use either the CFQ or BFQ scheduler which recognize I/O
priorities.

Currently, CFQ supports basic I/O priorities. We did not
have access to CFQ on our machine, however, we did have
BFQ. Although CFQ is the recommended scheduler [21] to
use when using ioprio_set(), BFQ also supports I/O priorities
and ended up yielding the expected results.

We are not sure what optimizations CFQ provides in com-
parison. CFQ places synchronous requests submitted by pro-
cesses into a number of per-process queues and then allocates
timeslices for each of the queues to access the disk. BFQ
grants exclusive access to the device, for a while, to one queue
(process) at a time, and implements this service model by as-
sociating every queue with a budget, measured in a number
of sectors. BFQ may idle the device for a short time interval,
giving the process the chance to go on being served if it issues
a new request in time. CFQ does not idle the device. If BFQ
is not yielding proper results on your machine, you can turn
off idling on your scheduler.

Schedulers have tunable parameters, and we saw that BFQ
and CFQ have almost the same tunable parameters. We can try

to get BFQ to run like CFQ by setting slice idle = 0 and then
rebooting the machine. When rebooting, it may be necessary
to switch the scheduler back to CFQ or BFQ. The tunable
parameters can be found in the /etc/sysctl.conf file. Latency
can also be adjusted. Whether this makes a difference depends
on the system. Since BFQ has low throughput, one should
see overall improved throughput on faster storage devices like
multiple SATA / SAS disks in hardware RAID config, as well
as flash based storage with internal command queueing (and
parallelism).

The O_DIRECT flag may impose alignment restrictions on
the length and address of user-space buffers and the file offset
of I/Os. To fix our alignment issues, allocating aligned mem-
ory was needed. This can be done using posix_memalign()
or aligned_malloc() instead of malloc(). For our experiment,
aligned_malloc() with a 4k offset was used. Any offset should
work. Data alignment will increase the system’s performance
due to the way the CPU handles memory.

We were able to pull all of these discoveries together by
creating a C program that does high priority writes to a file
using direct I/O and ioprio_set() before sending the writes to
storage, as we saw in figure 9. The application process that
needs to do WAL writes will fork() and exec() the WAL writer
and communicate data to be written through a pipe.

After these changes, we ran the WAL writes and large write
benchmark again. We were able to obtain the similar consis-
tent performance for WAL writes as we did when the WAL
writes were running on their own (around .2 ms average),
as shown in figure 10. The latency did increase slightly but
nothing like the increase without our change.

In figure 11, we combined all of our results into one to
show the latency improvement. The blue line on top are the
latency’s of small writes mixed with large background writes
without priority (and using threads). The red line is a rolling
mean of those latency’s, which is around 45 ms. Along the
bottom you can see our baseline, the small writes by them-
selves, along with another line showing the mixed writes using
separate processes and priorities. All of the metrics except
"Small Writes with Threads" and "Threads Rolling Mean"
are all clustered together in the horizontal line at the very bot-
tom of the graph. The two lines with their averages are there,
showing around 0.2 ms, but we got them so close together
the performance difference can’t be seen in this graph. From
the graph, we see that high priority small writes mixed with
large writes run just as fast as small writes running on their
own. Thus, creating separate processes and adding priorities
created a drastic performance improvement.

4.3 Solving the Local Write Latency Problem

After seeing latency improvement in our experiment, we
wanted to work on Java and C libraries for integrating ap-
plications that use WALs (key/value stores, databases, etc).
Our first target is Apache ZooKeeper, a Java coordination



Figure 10: Consistent WAL Writes Using High Priority. High priority small writes in a forked process and normal priority large
writes in the parent.

Figure 11: Latency Improvement with High Priority Small Writes. The metrics for the small writes with high-priority processes
and small writes alone are all clustered at the very bottom.



Figure 12: Zookeeper Performance Solution. The Zookeeper
Server is split into two processes: the Zookeeper Server and
the WAL Writer that runs with high priority.

service.
We developed a Java library that starts a WAL writer and

sends WAL writes of various sizes through a pipe, as shown
in figure 12. The WAL writer uses ioprio_set() to set its writes
as high priority. The WAL writer uses direct I/O to do the
high priority writes, so it ensures that writes are 4K aligned.
When the writer receives writes that are not multiples of 4K,
it will buffer old writes to always be able to write 4K aligned
data.

ZooKeeper sends the number of bytes to write followed
by the bytes through the pipe. the WAL writer sends back
the last position written once a write has completed. We
implemented a subclass of FileOutputStream that does the
exec and implements the protocol so that we only needed to
change a few lines of the ZooKeeper code. ZooKeeper still
reads old logs and writes snapshots using the normal Java I/O
classes. We only changed the code that implements the WAL.

After all of the high-priority WAL writes are written, they
are sent straight to the storage device. With this, we are able
to improve the performance of WAL writes in the presence of
snapshots.

Our main target are applications that use WALs (key/value
stores, databases, etc). However, our solution can be applied
to any application that does a mix of latency sensitive writes
and bulk writes.

5 Discussion

Although we show that high-priority writes done using a sep-
arate process can be used to lower latency, the approach is not
optimal or convenient. The extra memory copies the result
using a pipe between processes. This could be made more
efficient using shared memory, but that would require an even
more complicated implementation. Managing a separate pro-
cess requires dealing with corner error cases like the logging
program being in the correct location, the setuid bit and own-
ership setup correctly, abnormal process termination, etc. In

theory, these complications could be addressed by making
ioprio_set() work on the thread level rather than setting the
priority for the whole process. However, is a process or thread
the correct entity to attach the priority? For scheduling pri-
orities, attaching scheduling priority to a thread is natural:
the priority attaches to the thing being scheduled. We would
argue that the natural entity for attaching I/O priorities is file
descriptors. Our implementation would be much simpler and
efficient if there was an ioctl to set the I/O priority of just the
file descriptor of the transaction log.

ZooKeeper is an in-memory database, but the split between
latency sensitive writes and non-latency sensitive bulk writes
also happen in other database applications as well.

LSM trees, which we talked about in section 6.2, use a WAL
to record recent transactions. The periodic merges done in the
background can generate a large number of writes that do not
need low latency but can interfere with its own WAL writes.
We would like to apply these techniques to applications using
RocksDB [24].

Classic database applications also need low latency WAL
writes to maintain their durability guarantees with good per-
formance. The updates to their data storage structures, such as
B-trees, are generally written to storage buffers that are later
flushed to the storage. While these structures generally avoid
the large bursts of writes generated by ZooKeeper’s snapshots
and LSM’s compactions, they can cause short bursts of con-
tention on the storage device and adversely affect the latency
of the WAL write if the WAL is not on a dedicated device.

One big advantage of the techniques presented here is that
they work with mainstream Linux kernels and schedulers.
Applications can use these techniques now. This work shows
that there is a need for accommodating the different I/O la-
tency needs of applications. Enhancing the kernel file systems
interface to convey these needs to the kernel would make this
functionality much easier and more convenient to use.

6 Related Work

Improvements to CPUs, hardware, and I/O schedulers already
in place have all led to performance gains for logging. There
has been work done in refactoring databases like Scylla (a
rewrite of Cassandra) [3] or MongoDB [9], among many
others, and file systems like Ceph [1] to take advantage of the
existing logging improvements.

Recent improvements in the performance of storage devices
come from improvements to the kernel I/O subsystems, how
applications use I/O, and major improvements in the storage
hardware.

6.1 IO Schedulers
I/O scheduling has always been an exceedingly difficult prob-
lem to solve and has often required users to choose the al-
gorithm that best fits their needs and workloads. Originally,



gaining access into the block layer was the biggest bottleneck
of the system due to the single request queue. As the tech-
nology in block devices improved, so did the schedulers and
drivers that made use of them [8]. Currently, Linux has several
different algorithms for both multi-queue and single-queue
scheduling, depending on kernel version being used.

CFQ, deadline, and noop are single-core algorithms that
don’t scale well with multi-core applications. CFQ [19] is
"completely fair queuing" that provides predetermined queues
for synchronous and asynchronous requests while recogniz-
ing ionice and priority for processes. Deadline is used when
latency performance is favored over throughput, serving read
and write queues based on an algorithm that weights how
long a request waits in queue. Noop serves I/O in a simple
FIFO queue and is often used by SSDs that use their own
block layer or I/O frameworks [1, 3] that aim to control the
data path more fully [8]. CFQ was the default scheduler prior
to Linux 5 [2].

In multi-queue scheduling, the tasks are split among mul-
tiple software queues that are then merged into hardware
queues in order to take advantage of multiple CPU cores.
The three common algorithms are BFQ, mq-deadline, and
none. None is the multi-queue version of noop, providing a
simple FIFO queue for situations like NVMe devices or I/O
frameworks [7]. In addition to none, the mq-deadline sched-
uler is similar to deadline in functionality, but optimized for
write requests from multiple cores. Finally, budget-fair queu-
ing (BFQ) follows CFQ design and while BFQ is good for
slow devices, bad for fast devices, and has a higher overhead
than mq-deadline [31], it is the only modern scheduler that
recognizes ionice and has seen a fair amount of interest in
improving performance for this reason [30]. CFQ and BFQ
both support priorities, and due to this, we will be using BFQ
in our application because we did not have a machine with
CFQ available.

6.2 Log-Structured Merge-Trees

Atomicity, Consistency, Isolation, and Durability (ACID prop-
erties) are well-known to be fundamental to relational
database systems, with transaction logging serving the pur-
pose of protecting transaction integrity and accuracy. The
drawback to transaction logging is bigger performance limita-
tions when scaling for larger workloads and their associated
traffic [25].

NoSQL database systems have been developed to scale hor-
izontally and still maintain performance; these key properties
have come to be known as BASE (Basically Available, Soft
State, Eventual consistency). However, the logging methods
used in NoSQL systems still come with throughput limita-
tions from maintaining their durability guarantees [10]. Log-
Structured Merge-Trees (LSM-trees) are one such method.

LSM-trees are data structures that keep recent changes in-
memory but writes them to a WAL for recoverability. They

were introduced to reduce the load on in-memory data struc-
tures to keep transaction logs, although they do not keep
time-series data like traditional transaction logs [26]. While
valuable, LSM-trees suffer from significant write-throughput
performance reduction due to compaction activity and hot
zones that trickle down to the commit log devices [6, 33].
Periodically, LSM-trees write sorted changes from memory
into sorted key/value files, while also periodically merging
those files. The merging creates a large amount of background
traffic that contends with the WAL writes which need low la-
tency performance [6, 33]. Since this behavior matches the
applications we are targeting, LSM-trees should also benefit
from our application.

6.3 General Computational Improvements
Concurrency has enabled databases to improve performance
by interleaving transaction executions and reduce the over-
all idle time. Multi-core processors give the ability to lever-
age parallelism - running multiple concurrent processes at
once with asynchronous writes seeing the most benefit. Log-
ging relies on synchronization to ensure that the important
writes get written to disk as quickly as possible to guaran-
tee durability [10]. An increase in parallelism has a negative
impact on the ability to control synchronization due to the
lack of control over write ordering [27]. Some system frame-
works like Seastar [3], BlueStore [1] and storage engines
like WiredTiger [9] have focused on multi-core scaling and
optimizations for concurrency while enabling durability at
scale; these optimizations can require significant refactoring
to existing code bases.

At some point, the amount of writes being sent to storage
will introduce a bottleneck. Ideally, the bottleneck created by
processing transactions on the CPU gets shifted to somewhere
else in the system - typically to the disk - to allow the CPU to
continue to do more work. Many implementations have been
successful in improving concurrency, but generally require
sacrificing some aspect of latency or durability to gain higher
parallelism [10, 23, 25].

6.4 Hardware Improvements
Improvements in block devices, including lower latency and
higher overall performance, have led to the general recom-
mendation that logs be placed on a separate device, or at
least one that can leverage parallel write technology [1, 17].
By creating a dedicated device, the mixed write traffic prob-
lem is resolved since both log and data writes will have their
own distinct queues to work with; neither stream/write queue
will mix. This dedicated device is now possible because of
improvements to storage and server capacities. Larger capac-
ity drives, where the physical storage itself is able to store
more data, extends the life of existing server solutions. Larger
capacity servers can refer to the actual storage itself, up to



petabytes in size, or the ability to house more drives. While in-
creasing the storage capacity of a server does not always lead
to performance improvement, the ability to increase either the
number of drives or their capacities increases the likelihood
that one drive can be set aside as a log device.

There have also been improvements to how drives perform
I/O by leveraging parallelism. HDDs are being developed
to have multiple actuators, allowing for separate I/O oper-
ations to be performed in parallel, effectively splitting the
drive into n chunks, where n is the number of actuators avail-
able [12]. Recent improvements to SSDs include capacity
increases as mentioned above, but also include implement-
ing new protocols to speed up drive access times [14]. In
particular, NVMe (Non-Volatile Memory Express) has been
built from the ground up to improve device performance,
taking advantage of the faster PCIe bus available. NVMe
achieves increased throughput performance, reduced latency,
and, in certain cases, enables threads or processes to have
their own I/O queue [11]. Recently introduced multiple write-
streams, allowing a host to specify a stream for every write,
have also given users more control over the write path. Mul-
tiple write-streams allow for better data placement, more ef-
ficient garbage collection, and splits the drive into n chunks,
where n is the number of streams that are supported [16, 18].
With good partitioning and detail to where a write operation
is being sent, a single physical drive can be treated as two
logical ones.

Creating a dedicated logging device, either physically or
logically, solves the initial problem of mixed writes by split-
ting traffic. However, it introduces another complexity to man-
aging new hardware for data centers that may already strug-
gle to manage what they have. A specific example of this is
Zookeeper, which specifically recommends a dedicated de-
vice for its logs in any production environment [13]. However,
users will still choose to run production environments where
the log is on a shared device. The reasoning for ignoring
recommended setups has many factors including cost, main-
tainability, and performance benefits. Additionally, choosing
the right scheduler for a system depends heavily on workload
and available resources.

Unfortunately, even with high performance flash, we still
channel contention [28, 32]. This flash channel contention
leads us to our production problems.

7 Conclusion

Write-ahead log contention is a real problem even with high
performance flash devices. We have seen problem in produc-
tion due to contention when we deploy equipment with a
single flash storage device. Our distributed benchmark with
ZooKeeper shows at a distributed systems level the problem
of contention. We were also able to mitigate the problem
of contention in a distributed environment using snapshot
scheduling. Snapshot scheduling is already running in produc-

tion with hundreds of ensembles supporting large data size
and high write traffic, which scales the total data sizes that
ZooKeeper can support without latency spikes.

We also examined the problem at the local level by repro-
ducing contention with a benchmark program that generated
both small durable writes and large background writes. We
then used the benchmark to validate our approach to mitigat-
ing contention using priorities. Unfortunately, using priorities
was much more difficult than invoking a single system call,
but using the techniques developed in the paper we were
able to mitigate the contention problem locally even when
using Java. With the proper block scheduler and dedicated
high-priority WAL processes, we can achieve consistent WAL
performance on a shared drive.
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