FastStore: Optimization of Distributed Block
Storage Services for Cloud Computing

1*' Xiao Zhang
School of Computer Science
Northwestern Polytechnical University
Xi’an, China
zhangxiao@nwpu.edu.cn

4™ Shujie Han
School of Computer Science
Peking University
Beijing, China
shujiehan@pku.edu.cn

5™ Leijie Zeng

Xi’an, China

Abstract—Block service is an essential storage component in
cloud computing systems, widely utilized for virtual machine
disks and snapshots. Most block service virtualizations, including
Ceph and Cinder, typically partition physical storage media
into small units. Through dynamic allocation and mapping
of these resource units, they are combined to form a virtual
hard disk. Ceph abstracts the underlying storage into objects,
performing space allocation and address mapping to deliver
a highly scalable, unified storage service. However, the multi-
layer mapping from blocks to objects and back to blocks
imposes significant performance penalties. Additionally, Ceph
employs several mechanisms to ensure object atomicity, which is
unnecessary for block services, leading to writing amplification
and decreased performance. In this paper, we present FastStore,
a novel storage backend optimized for block services. FastStore
eliminates unnecessary mechanisms and optimizes the allocation
method for objects used in block services. We implement Fast-
Store within Ceph, achieving a sequential reading performance 10
times faster than the current state-of-the-art Bluestore. Further-
more, it doubles sequential writing performance and enhances
random writing performance by 40%. Additionally, FastStore
reduces performance fluctuations and latency by 70%-80%.

Index Terms—block storage service, object atomicity, storage
backend, distributed system

I. INTRODUCTION

The performance of virtual disks in cloud computing has
a significant impact on the overall latency, throughput, and
scalability of cloud-based applications and services. I/O virtu-
alization technology divides physical disks into smaller units,
combining them into virtual disks through address mapping.
This process involves multiple rounds of address mapping
and conversion, resulting in lower access efficiency. Early
studies indicate that limitations in commodity I/O virtualiza-
tion technology restrict the out-of-the-box storage bandwidth
to 51% and 77% of a non-virtualized disk for writes and
reads, respectively [1]. Even with the use of the latest storage

Xiao Zhang and Leijie Zeng are the corresponding authors. zhangxiao,
zenglj@nwpu.edu.cn

2" Huiru Xie
School of Computer Science
Northwestern Polytechnical University
Xi’an, China
xiefyy9911 @mail.nwpu.edu.cn

School of Computer Science
Northwestern Polytechnical University

zenglj@nwpu.edu.cn

37 Zhe Wang
School of Computer Science
Northwestern Polytechnical University
Xi’an, China
1226327496 @qq.com

6" Wendi Cheng
School of Computer Science
Northwestern Polytechnical University
Xi’an, China
347895316@qq.com

media, such as NVMe SSDs, the original performance of
the distributed storage system is only 30% compared to the
raw disk’s performance [2]. Applying faster storage media
in a distributed storage system can yield better performance.
However, it will result in a greater performance loss than the
raw device since the inefficient software stack. The I/O stack of
a distributed storage system is redundant and complex, shifting
the performance bottleneck from storage devices to software
[3-L5].

Many unified distributed systems, such as Luster, Swift and
Ceph, use objects to manage the underlying space, which sim-
plifies metadata management compared to traditional local file
systems, thus reducing metadata overhead. They encapsulate
storage media as objects and then implement the virtualization
of files and blocks based on these objects. Finally, they provide
various services to upper-level applications. Ceph, developed
in 2003 by Sage Weil at the University of California, Santa
Cruz, creatively proposes the Controlled Replication Under
Scalable Hashing (CRUSH) algorithm for data placement,
as outlined in [6]. In comparison with traditional central-
ized architectures, Ceph offers high performance, scalability,
and availability in dynamically changing and heterogeneous
clusters. As shown in Fig. 1, Ceph supports block storage
(RADOS Block Device, RBD), file storage (Ceph File System,
CephFS), and object storage (Rados Gateway, RGW). RBD is
a commonly used storage type in Ceph and is widely employed
in open-source cloud computing platforms to provide virtual
machine storage and object access capabilities [7]. After more
than a decade of development and performance optimization,
Ceph has designed various storage backends to continually
enhance performance [8]. However, due to multiple layers
of abstraction and redundancy mechanisms, different storage
backends still exhibit significant write amplification [9], result-
ing in a substantial performance loss compared to raw disks.

To meet the modularity requirements of clusters and pro-
vide scalability and consistency, distributed systems typically

APP I | HOST/VM| | CLIENT |
| ! |
! RGW H RBD H CephFS

LIBRADOS
A bucket-based
REST gateway.
compatible with
S3 and Swift.

A POSXI-compliant
distributed file
system.

A reliable and
fully-distributed

A librar:
g block device.

allowing apps
to directly
access RADOS.

RADOS

A reliable, autonomous, distributed object store.
Comprised of self-healing, self-managing, intelligent storage nodes.

Fig. 1. The architecture of Ceph.

incorporate multiple layers of internal abstraction. While the
hierarchical design of software can shield the heterogeneity
of clusters, it also introduces unnecessary transformations.
Consequently, Ceph RBD degrades performance significantly
compared to the raw block device. The main issues are:

« The object storage system needs to ensure the integrity
and atomicity of the data within a single object. However,
block storage stores data in multiple objects, making it
unnecessary to ensure integrity within individual objects.
As a result, the system cannot fully exploit the perfor-
mance advantages of underlying block devices due to
object atomicity.

« In block mapping virtualization based on object storage,
the underlying block device is encapsulated into objects,
and these objects are then mapped to virtual blocks. The
double process of encapsulation and mapping generates
additional metadata, leading to redundancy in space man-
agement, data mapping, and garbage collection.

o The continuous logical space in the virtual disks is
mapped onto discontinuous physical disks. Due to redi-
rected writes, the more times users write, the more
fragmented the data distribution becomes. Therefore, the
sequential access performance of virtual disks is much
lower than that of physical disks.

In light of these issues, we analyze the write mechanism for
block virtualization based on object storage. We also discuss
the performance overhead and fluctuation in different write
mechanisms. Finally, we propose a new distributed storage
backend, FastStore, for block storage services. Our main
contributions are as follows:

« Abandoning redundant object atomicity for block storage
and flexibly controlling data placement and I/O opera-
tions.

o Utilizing In-Place updating to reduce unnecessary
read/write operations. Rebuilding the storage backend to
eliminate isolation between different write schemes.

o Optimizing space allocation and recycling mechanisms
and enabling the preallocation of fixed-size space.

The experimental results show that FastStore doubles se-
quential writing performance, and its random write perfor-
mance is 40% higher than that of BlueStore. The performance
of sequential reads is up to 10 times that of BlueStore.

Furthermore, the tail latency is reduced by 70%-80%, resulting
in decreased performance fluctuation.

The rest of the paper is organized as follows:

Section II introduces the background of Ceph and the
implmentation of its block service. Section III identifies the
performance overhead of the object storage, and the problem
of performance fluctuation caused by different write schemes.
Section IV introduces our optimization and the implementation
of FastStore. Section V tests and analyzes the performance
of the block device and our storage backends. Section VI
describes research related to Ceph optimization. Section VII
summarizes our work and makes prospects for future opti-
mizations.

II. BACKGROUND

In this paper, our aim is to build a high performance
distibuted storage service by redesigning the backend of the
Ceph [6]. This section provides a brief introduction to Ceph
and the I/O path of current storage backend, introducing terms
that will be used in the rest of the paper.

A. Block Service of Ceph

Ceph is a robust and highly scalable open-source distributed
file system designed for efficient storage and retrieval of large
volumes of data. It provides a unified solution for object stor-
age, block storage, and file storage within a single, cohesive
system. Ceph’s architecture is organized into multiple com-
ponents, including Object Storage Daemons (OSDs), Monitor
nodes, and Metadata Servers (MDS). OSDs manage the actual
data storage, while Monitor nodes oversee the cluster’s state
and health. MDS facilitates file system operations, enabling
Ceph to offer distributed file storage capabilities.

Ceph implements the block service (RBD, RADOS Block
Device) based on the distributed object store named RADOS
(Reliable Autonomic Distributed Object Store). RBD devices
are used as virtual disks for virtual machines or snapshots
of virtual disks. An RBD image is split into objects with
the same size, with the default object size set to 4MB. For
a 4GB block image, Ceph will create 1024 objects named
rbd_{name}_{indexno}, while the indexno ranges from 0000
to 1024. The object will not be created before a write operation
on the corresponding range occurs. RADOS manages the
position of objects using the CRUSH (Controlled Replication
Under Scalable Hashing) algorithm [10]. I/O operations on
RBD devices are transformed into operations on objects on the
client side. The client uses CRUSH to determine the primary
OSD that contains the given object and sends the object I/O
request to the OSD. The primary OSD handles the object
operations and stores the data on underlying storage devices
such as HDDs and SSDs.

B. Ceph storage backend

An OSD server processes incoming object I/O requests
and performs I/O on the storage backend. The performance
of ObjectStore plays an important role in overall system
performance. The first implementation of the ObjectStore

interface was, in fact, a user-space file system called Extent
and a B-Tree-based Object File System (EBOFS) [8]. FileStore
saves objects in a local file system such as Btrfs and XFS,
which was the default production backend from 2009 to 2017.
The current default storage backend of Ceph is BlueStore. It
saves metadata in RocksDB and stores data on raw disks. The
overhead of running an object store workload on a journaling
file system is evident. Object creation throughput is 80%
higher on a raw HDD and 70% higher on a raw NVMe SSD
[8]. Crimson is the next-generation object store optimized for
fast NVMe storage [11].

Ceph provides block service, file service, and object services
based on the object store, with objects stored on block devices
such as HDDs and SSDs. The conversion between block
service and objects is not free. The write amplification by
Ceph storage backends is more than 13x [9].

C. Two-layer mapping of object storage system

Ceph’s architecture completely separates storage and ap-
plication services. As shown in Fig. 2, RADOS and its
derived librados provide a unified object storage service to the
upper layer by encapsulating the operations of the underlying
storage. It is possible to develop any storage application based
on object storage theoretically. At the same time, although
upper-layer applications can use the RBD interface to access
data on the devices, they still need to encapsulate data as
objects inside.

[RBD | [RGW | [CephFS | [RBD | [RGW | [CephFS |
| Object | | Object I
[BlueStore | Metadata [FileStore [guu11 Data and Metadata
Data & Big Data g
| ﬂ | i
™ Biuars_ 1)
__O__ File System
Block Storage Block Storage
wp | [sso | [wm | [(mo][sso][]

Fig. 2. The architecture of the storage backend.

Large and complex software systems often adopt a hierar-
chical architecture, providing different levels of data abstrac-
tion at each layer to achieve high cohesion. Each layer is
assigned specific responsibilities, promoting reasonable divi-
sion of labor and maintaining low coupling between layers.
Ceph’s various levels of implementation may have certain
performance bottlenecks. However, this section primarily fo-
cuses on the macro architecture level, addressing redundant
mapping relationships between different levels. Ceph relies on
ObjectStore to manage different types of storage media and
provide storage services that conform to the object transaction.
The ObjectStore encapsulates the underlying I/O processing
and sets up a set of operations with a strong consistency of
objects. Currently, the main ObjectStores in the production
environments are FileStore and BlueStore. Instead of directly
accessing the storage device, FileStore manages it through the
file system of the operating system. As a result, it can utilize

the natural mapping between files and objects. However, this
architecture has drawbacks, such as unguaranteed transaction
consistency, inefficient metadata management, and difficulty
supporting the new hardware. Given this, Ceph introduced
BlueStore as the storage backend in the Jewel version. Unlike
FileStore, BlueStore abandons the traditional local file system
and accesses data directly from the device at the specified
position. At the same time, BlueStore strictly separates meta-
data from user data, introducing RocksDB to store metadata,
attribute information, and small data. As a result, it improves
the efficiency of metadata operation and solves the transaction
consistency problem by RocksDB.

BlueStore simplifies the I/O path and significantly improves
performance by eliminating transformations between objects
and files. However, as shown in Fig. 2, Ceph still needs to map
the block storage service from the block device to the object
storage system and from the objects to the RBD interface.
This two-layer mapping not only increases the overhead of
metadata management, leading to functional redundancy, but
also makes it difficult to fully leverage the device’s advantages.
According to the experiment in III-A, block storage based on
the Ceph cluster has severe performance degradation due to
the multi-layer abstraction between software and hardware.

In summary, the dual mapping architecture of the Ceph RBD
interface, while providing a more convenient data management
approach for block storage in a distributed environment, also
presents new challenges for system performance and optimiza-
tion. Addressing the performance degradation and fluctuations
caused by dual mapping, this paper analyzes and resolves
these issues while maintaining system flexibility and feature
completeness to fully leverage the performance potential of
underlying storage media.

D. Mechanism to Ensure Object Atomicity

As a distributed object storage system, Ceph needs to
ensure object atomicity. Because the local file system cannot
support atomicity transactions, Filestore uses Write-Ahead
Logging(WAL). We can use the journal to recover unpersisted
data and accelerate writing operations without compromising
reliability. However, it causes severe write amplification and
sacrifices half of the throughput of the disk. At the same
time, the local file system also uses the WAL and causes the
“Journaling of Journal” problems [12]. With the redundant
writes due to multiple copies, FileStore produces up to 14.
588 times write magnification [9].

As a transactional storage system designed for all-flash
arrays, BlueStore needs to minimize the negative impact of
journals while ensuring reliability and atomicity [8]. To do
this, in the process of persisting the user data to the device,
BlueStore creatively combines Read Modify Write (RMW)
and Copy on Write (COW) and proposes the “incremental
journal” strategy.

If no data exists in the writing range, this write operation
is called the new write (NEW); otherwise, it is called the
overwrite (OW). When writing to a newly allocated space,

BlueStore can persist data directly and update the correspond-
ing metadata through RocksDB. NEW will not overwrite the
existing data on the disk and guarantee metadata consistency
through RocksDB. Therefore, we are not concerned about the
failed write and missing data of NEW. Below we focus on the
reliability of OW.

The block size (BS) refers to the atomic granularity when
performing operations at the storage device. For HDD, this is
typically 512 bytes; SSD uses larger BS, such as 4KB. For
any write operation, BlueStore splits its range into three parts
based on the BS: the non-aligned part in the front (Front), the
non-aligned part in the tail (Tail), and the aligned part in the
middle (Mid). Fig. 3 shows some specific examples.

‘E)us ng ata Ex sting

Write to
Updaté\ggiﬂfff new place
R 3 2 O O 7 B

To be deleted
Fig. 3. Splitting write operations based on the BS.

BlueStore adopts RMW in the Front and Tail when OW
occurs. First, read the block of existing data. Then merge the
modified content with the original block. Lastly, write back
the updated block to the original position. Considering the
potential risk of power failure during the OW, it introduces
WAL for this process. In WAL, the updated block is writ-
ten into RocksDB in the form of journal, which will then
be updated In-Place asynchronously. The whole process is
completed through the “simple write” method.

BlueStore adopts the COW in the Mid when OW occurs.
Instead of In-Place updating the existing data, it allocates a
new space to store the data to write. First, complete the NEW,
then update the corresponding address pointer. Last but not
least, the original space is released. In BlueStore, implement
this writing through the “deferred write” method.

BlueStore uses different write modes due to data range and
times to balance atomicity with system performance. As the
experiment shown in III-B, the complex processing of the
storage backend also brings severe performance fluctuations
to the upper block storage service.

III. MOTIVATION

The block service is a core offering in cloud computing
platforms, providing virtual disks for each virtual machine and
storage space for snapshots. Ceph offers three types of storage
services, making it a crucial cloud storage platform. Ceph
has replaced Swift as the default storage backend for Open-
Stack, holding a 57% share in the OpenStack storage field,
significantly surpassing other storage solutions. Subsequently,

it adapted to the public cloud interface represented by Amazon
S3 and entered the next frontier of virtualization technology
- Docker [13]. In this section, we identify the performance
overhead caused by virtualization and the performance fluctu-
ations resulting from the complex I/O stack. Given that HDDs
remain the dominant storage medium in cloud computing and
big data applications [14], our proposed solution can provide
better performance in many scenarios.

A. The performance penalty of virtualization

Virtualization requires additional metadata, and the adoption
of multiple replicas in distributed file systems can lead to write
amplification. These instances of write amplification can result
in significant degradation of write performance. We compare
and test the I/O performance of the underlying block device
and Ceph block storage. We use 1O testing tool FIO on the
Linux system for experimental verification. The data block size
is set to 512K. Experimental environment and configurations
are detailed in section V. The test results are shown in Fig. 4.

4 - SISI Block Device 4 - IISI Block Device
EZZ1 Geph RBD Ceph RBD

10PS (K)

1R BN IR KN

NVM HDD $SD NVM

(a) Sequential reading (b) Random reading

4 { X1 Block Device 4 | S Block Device
EZZ1 Ceph RBD EZZ]1 Ceph RBD

< <
2 2 224
=} =)
11 14
ol N S”' , ol = Sﬂ .
HDD SSD NVM SSD NVM

(c) Sequential writing

HDD
(d) Random writing

Fig. 4. The performance comparison of Ceph RBD and block storage device.

Firstly, although the selection of the storage hardware has
an essential impact on the performance of the storage system,
the full performance of block storage still cannot be unleashed
by merely replacing underlying devices. With the continu-
ous performance improvement of hardware, the performance
deterioration caused by software accounts for an increasing
proportion.

Secondly, the write performance of Ceph is generally lower
than the read performance under the same condition. To
ensure data reliability, Ceph adopts the strong-consistent copy
strategy, which requires storing redundant data on multiple
nodes. For reading, data can be obtained by communicating
with a single node. For writing, data first needs to be written
to the main node, with the calculation of the location of the
other copies by Crush Map. The client will not receive the
response until multiple copies of data are successfully written
to their corresponding nodes [15].

Finally, the performance provided by Ceph RBD is far
worse than raw block storage. In sequential reading, the IOPS
of disks are 3.56, 4.19, and 14.83 times that of Ceph RBD
under HDD, SSD, and NVM, respectively. In random reading,
the IOPS performance difference between NVM and Ceph
RBD is up to 15 times. Under the 3-copy mechanism, the
write performance of block storage cannot reach 1/3 of the
performance of the raw device. With the performance improve-
ment of the underlying hardware, the performance difference
between Ceph RBD and underlying devices becomes more
significant. In the process of I/O, compared to the difference
caused by hardware, the latency caused by software occupies
a larger proportion. The block storage service generated by
Ceph cannot extensively leverage raw devices’ performance.
Hence, there is still a performance bottleneck in it.

B. The performance fluctuations of different writing schemes

In addition to benchmarks such as IOPS and BW, perfor-
mance fluctuations of storage systems will also have a signif-
icant impact on the performance of upper-layer applications
[16]. To verify the I/O stability of the Ceph RBD interface,
FIO is used for the I/O tests of the Ceph cluster and underlying
devices. Tests are only carried out for HDD, and the other
software and hardware conditions are the same as in III-A.

In order to verify the impact of different writing schemes on
the performance of RBD, we design different writing scenarios
with varying offsets and lengths for testing. As shown in
Tab. I, we design three groups of writing schemes and test each
scheme five times. For all schemes, Offset_1 is used for the
first write, and Offset_2 is used for the next four writes. The
five writes of scheme one and scheme two are all performed
with the same offset, while in scheme three, there is a 1K
difference in offset between the first write and the following
four writes. Since the default size of Ceph objects is 4M, to
avoid the additional overhead caused by cross-object access,
the length of data is 64k each time. One hundred objects are
written for each test, each with the same writing scheme inside.

TABLE I
OFFSETS AND LENGTHS
Scheme | Offset_1 | Offset_2 | Length
1 0 0 64K
2 32K 32K 64K
3 32K 31K 64K

As shown in Fig. 5, the IOPS performance of the first writes
for the three groups of writing schemes is basically the same.
However, the differences mainly occur in the following four
writes. For schemes one and two, the IOPS of the following
four writes are higher than the first. For scheme one, the
IOPS of the second write is 186% of the first. However, in
scheme three, the IOPS of the following write is lower than
the first write, and the IOPS of the second write is only 1/3
of the first. Though writing the same amount of data, the
performance fluctuation caused by different writing schemes
can vary between 33%-66%.

3 scheme 1
[scheme 2
3 scheme 3

10PS

Fig. 5. The performance fluctuation in BlueStore.

The results show significant performance differences con-
tributed by different offsets and write times. The complex
writing schemes inevitably influence the block storage ser-
vice’s stability. Therefore, it is reflected from the performance
fluctuations that there is still a very large improvement space
for Ceph RBD.

IV. DESIGN AND IMPLEMENT OF FASTSTORE

In this section, we present the design and implementation of
a new storage backend, FastStore. It was developed based on
Bluestore, the following design choices are made: 1) In-place
update to reduce metadata update. 2) Preallocate to make more
logically adjacent data save nearby. 3) Remove redundancy
atomicity writing mechanism for RBD.

A. In-place update

BlueStore defines min_alloc_size (MAS) as the minimum
allocable space to reduce space fragmentation and improve
data index efficiency. As shown in Fig. 6, according to the
logical range in the object, data can be divided into non-
MAS aligned parts on both sides and MAS-aligned parts in the
middle, respectively executing Small Write (do_write_small)
and Big Write (do_write_big) processes in BlueStore.

offset jon

@ | 1 | |
min_alloc_size
offset len
® | | [|
do_write_small Offsetl,—IL
@ | | | I |
D min_alloc_size’
offset len
do_write_big ‘L_f%
@ |]] [|
offset‘L—1/L
e | [1 1 |
K T aTTos size”

min_alloc_size

Fig. 6. The division of the Small Write and Big Write.

In general, MAS is equal to BS. However, it can be set
as an integer multiple of BS for efficiency. In this case, an
Extent may have some “holes” at the granularity of the block.
For example, if BS is 4KB, MAS is 16KB, and the user writes
1KB of data, 16KB of disk space must be allocated. However,
only 4KB of block space is used, and the system will mark
the other three blocks unused.

Since MAS is an integer multiple of BS, the range of
Big Write must align MAS and BS. Therefore, the execution
process of Big Write is relatively simple: First, release the
Extent that conflicts with the existing data and corresponding
Pextent, and determine the data length in each write loop.
Second, try to find an existing reusable Blob for each write
loop and create a new Blob if it does not exist. Finally, store
the critical information for each write loop in the queue of
writing items. Following processing for the write items in
the queue is performed by _do_alloc_write (DOW), which
includes assigning and associating the Pextent, setting and
marking the Extent, and performing asynchronous data writing
on the device.

On the one hand, considering the data may not align
with the BS, two types of BS alignment paddings are added
before writing. If the padding part does not have existing data
(unused), fill it with zeros. If it has existing data (used), RMW
is inevitable. In this case, this part needs to be read, merged,
and filled in with data to obtain new content and write it to
the original position.

On the other hand, considering the data may not meet the
MAS, adding two writing methods without queuing. Because
BS is the atomic unit of disk operations and the contents of
the “hole” are invalid. Writing on the unused “hole” does not
affect the rest of the Extent, even though a power failure occurs
or writing some incorrect data. Therefore, the unused part of
the allocated space can perform “simple write” directly, and
the used part can perform “deferred write” directly.

The strategies implemented by different write schemes in
III-B are shown in Tab. II. For the first time, three write
schemes perform NEW. Because RBD uses thin-provisioned
configurations, it does not allocate the space until writing data.
Therefore, the IOPS of NEW is lower than OW. For the other
times, three schemes perform COW once, COW twice, and
RMW twice, respectively. Because RMW needs to process
read, merge, and fill in sequence and the content of the padding
part needs WAL. Therefore, the OW performance of scheme
3 is much lower than other schemes.

The writing strategies to ensure atomicity of objects compli-
cate the I/O process, and as mentioned in IV-C, we found this
strategy needs to be revised for block storage. When executing
WAL, data needs to be written to logs, while for COW, data is
written elsewhere, requiring metadata updates. Both strategies
result in write amplification. Adopting In-Place updates can
significantly reduce the amount of data written. Therefore, we
propose an optimization storage backend that uses In-Place
OW to solve the problems of frequent unnecessary read/write,
the isolation between Small Write and Big Write, and the
latency in the distributed storage systems. Fig. 7 shows the

TABLE II
PROCESSING STRATEGIES FOR DIFFERENT WRITING SCHEMES

No Range | BS | MAS | OW Processing Strategies
1] 064K | v | ¢ x | 0-64K | Big | NEW
12 [064K | v | 7 | 064K | Big | COW
32-64K | Small | NEW
21| 3296K | v X X [764-96K | Small | NEW
32:64K | Small | COW
22| 296K | | X Y 06K T Small | COW
32-64K | Small | NEW
31| 32:96K | v X X 6496K | Small | NEW
31-32K | Small | RMW
32| 32:96K | x x Y [32:95K | Small | RMW

writing strategy of FastStore.

E)lls’tmg Data | l::xgsting

Jata

* EW NEW R!

Wrfite to original plage

| | | m{Prace pdhte | | | InfPlace Updhte | |

Fig. 7. Writing strategies of FastStore.

Like BlueStore, FastStore divides the data into Front, Tail,
and Mid, based on MAS. Then execute the Small Write and
Big Write, respectively. However, compared with BlueStore,
FastStore eliminates almost all redundant atomicity protection
for RBD.

The data range is still divided based on BS. On the one
hand, for the aligned parts in the middle, FastStore will not
perform COW but directly update the data in the original place,
just like NEW. On the other hand, for the non-aligned parts
in the head and tail, FastStore still performs RMW. However,
when this content is written to the block device, FastStore no
longer executes WAL.

In a word, FastStore allows block storage service to update
data at the original position directly while removing the WAL
mechanism. Compared with the original scheme, FastStore
could avoid the write amplification and “double write” prob-
lems caused by WAL and optimize a series of redundant
metadata modification operations caused by COW.

B. Re-design physical space management

Multi-layer abstraction also leads to the redundancy of space
management, data mapping, and garbage collection. Ceph uses
an allocator module to allocate available space and a garbage
collection module to recycle invalid space. In IV-A, the RBD
writing in FastStore will directly overwrite the original place
of the block device. Therefore, optimizing the mechanism of
space allocation and recycling involved in the I/O process is
necessary.

The Ceph community hoped BlueStore to double the write
performance while avoiding FlieStore’s flaws. This goal has

been partially achieved based on NVMe SSD [17], but the
performance of BlueStore in traditional storage devices like
HDD is still not good. Compared with FileStore, its small-
sized random I/O performance is limited. Compared with In-
Place updates, COW can effectively avoid additional read
operations and the potential risk of data corruption, but it also
has drawbacks.

First, COW breaks the physical continuity of data distribu-
tion on the disks. After multiple COW, a long sequential read
will likely become multiple short random reads. Read perfor-
mance is critical, and it indirectly affects the performance of
RMW. Therefore, storage systems that use COW are prone to
performance bottlenecks. In addition, because COW requires
frequent space reallocation and address pointer redirection,
it will change more metadata [18]. The performance will be
compromised if metadata cannot reside in the cache. On this
basis, we improve the space allocation and recycling for block
storage as follows:

o We fix the space mapping relationship and pre-allocate
the fixed-size space before writing. As shown in Fig. 8,
Ceph calculates and allocates the Extent strictly based
on the offset and length of data and then maps it to the
corresponding Pextent. FastStore allows RBD to allocate
a fixed size of physical space to a new Blob as soon
as it is created and associates the new Blob with the
whole Pextent. The size of Pextent is set by the value of
parameter target_blob_size, of which the default value is
512K. Thus, the total size of space allocation in DAW
will no longer be the sum of the data lengths of all write
items in the queue but the product of the number of write
items that use a new Blob and 512K.

« The space management overhead is reduced by reusing
the original Pextent of the Blob instead of reallocating the
physical space when OW. Thus, there is one and only one
Pextent of constant size and position for each Blob, no
matter how often OW is performed.

o The garbage collection mechanism is improved to elim-
inate the need for redundancy determination and space
release in advance for the Pextent that conflicts with
existing data.

1 3 Disk 2 4[] |

(a) BlueStore (b) FastStore

Fig. 8. Comparison of space allocation between BlueStore and FastStore.

C. Atomic Redundancy of Objects

Ceph stores data as objects on the underlying device. For the
convenience of the discussion below, let’s briefly introduce the

metadata management and storage process of objects. Each ob-
ject consists of data (stored as Bufferlist) and metadata (stored
as Onode). As illustrated in Fig. 9, a logically contiguous data
segment (Extent) serves as the basic data management unit. An
Extent may correspond to multiple non-contiguous physical
data segments (Pextent). The Onode contains the object id
and an ExtentMap structure. The ExtentMap contains several
Extents and identifies the mapping relationship between ob-
jects and Extents. The Blob serves as an intermediate structure
for managing the mapping relationship between physical and
logical data segments. Ultimately, the data is mapped to the
underlying disk by Pextents. In the original COW mechanism
of Ceph, data is not directly updated to the Pextent in the
original location of the disk, but is reallocated to a free Pextent
for writing. After data is written, the corresponding address
pointer is updated and the old Pextent is released for data
recycling.

Onode

l

Extent

l

Blob Blob I

l

Pextent

l

Disk |

Onode Extent-Map

Extent Extent | | Extent

Pextent

Pextent b I

Disk / |

Fig. 9. Object storage structure of BlueStore.

The atomicity of transactions requires comprehensive con-
sideration of data modification operations, ensuring either
complete execution or no change at all, adhering to the
principle of “All or Nothing” [19]. Ceph stores all data in
the form of objects in a distributed cluster. Upper-level clients
partition block data into fixed-sized objects, which are then
mapped to underlying OSDs through the CRUSH algorithm.
To ensure the accessibility and consistency of data updates,
Ceph relies on the underlying RADOS for data replication,
recovery, and dynamic scaling.

Ceph’s data recovery involves two phases: replica negoti-
ation consensus and data consistency. The first phase is the
peering of placement groups (pg), bringing them to a peered
state, focusing on replica consistency coordination within pg.
The second phase involves pg recovery and backfill, aiming
for a clean state and performing actual data recovery within
pg. Ceph utilizes logs for data recovery, including two types:
Pg log records all update operations on objects within the pg,
capturing only the metadata information without the specific
data. Simultaneously, the log of the underlying object storage
backend ensures the atomicity of object writes, recording both
metadata and data information. Ceph’s data recovery relies on
coarse-grained metadata log records based on pg.

In Ceph, objects are the basic unit of data, and block and
file storage are built on top of objects. Ceph ensures data
consistency by providing atomic operations at the object level.
For RBD and CephFS, they are both built on Ceph Object
Storage and therefore inherit the atomicity guarantee of Ceph
Object Storage. Analyzing Ceph’s dual mapping and atomicity
write mechanism reveals that object atomicity assurance has no
practical significance for block interfaces in distributed storage
systems. This is due to the following reasons:

o During the mapping of block interfaces to object storage,
Ceph’s internal transaction atomicity requires read and
write operations to be completed within the same object.
Thus, it cannot support transactions involving cross-
object reads and writes, contradicting the original intent
of Ceph’s block storage design. The goal of Ceph block
storage is to provide a top-level interface consistent with
traditional disks, allowing upper-layer applications to be
unaware of the restrictions between IO scope and object
scope.

« In the stage where object storage is mapped to a block
device, the underlying hardware itself does not guarantee
atomicity. Since the underlying storage backend needs
to provide independent transaction atomicity for each
object, the lower-level block device passively inherits the
data protection mechanism and atomicity strategy of the
upper-layer RADOS objects, which is redundant for block
devices.

o In cases of data anomalies such as inconsistent replicas,
Rados does not use object storage backend logs for data
recovery but relies on pg logs. Changes to object storage
logs do not affect the existing data recovery process in
Ceph.

In summary, the object atomicity guarantee mentioned
above is redundant for the Ceph RBD interface. Due to Ceph’s
internal multi-layer abstraction and dual mapping mechanism,
its object-based transaction mechanism struggles to fully lever-
age the performance advantages of underlying block storage
devices. To address this issue, this article proposes a new Ceph
storage backend called FastStore by eliminating the redundant
atomicity guarantee for data writes. The main challenge of
this solution lies in handling object atomicity while ensuring
transaction support and better adapting to the requirements of
the Ceph block interface to enhance overall performance.

Ceph block devices are called images in the storage pool. An
image consists of several objects, including metadata objects
and data objects. The metadata object is similar to the file
system’s root directory. If it is corrupted, the corresponding
data object cannot be accessible. Because metadata objects
occupy tiny space, their writing processes have little impact
on performance. Therefore, we only identify and optimize the
writing of data objects. FastStore identifies the object type by
decoding the information received from OSD. If the keyword
“rbd_data” is contained, the written object is RBD interface
data. Thus, the process can be optimized without affecting
the writing of CephFS and RGW interfaces. Compared to

BlueStore, FastStore can accurately identify the RBD write
in all operations and flexibly control data persistence.

V. EVALUATION

We assess the performance of FastStore on various hardware
configurations and validate its effectiveness through measure-
ments of IOPS, latency, and stability.

A. Environmental setup

We implement the proposed design in Ceph 15.2.4. We
modify around 1,700 lines of code to prototype our proposal.
To ensure the 3-copy mechanism, we use five physical ma-
chines to build a cluster. One machine is set as both the
Monitor node and Object-based Storage Device (OSD) node,
with the other four machines as merely OSD nodes. All nodes
are interconnected with each other by Gigabit Ethernet. The
detailed configuration is shown in Tab. III.

TABLE III
CONFIGURATION OF TESTBED

Component Configuration
CPU Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
Memory Samsung M393A2K43BB1-CTD 32GB
Ethernet Intel Corporation Ethernet Connection X722 for 1GbE
HDD ST1000LM049-2GH172 1TB
SSD Samsung SSD 860 250GB
NVM Intel Optane DC persistent memory

OS Ubuntu 20.04.1 LTS

Kernel GNU/Linux 5.4.0-91-generic x86_64
Ceph 15.2.4 Octopus (stable)
FIO 3.16
Local Filesystem ext4

This article employs the widely used IO testing tool FIO
on the Linux system for experimental verification. FIO is a
workload generation and performance testing tool Jens Axboe
developed for simulating block reads and writes. The tool can
generate different types of test pressures based on various test
engines and provide detailed performance data results. Ceph
block storage, also known as RADOS block device, is typically
directly mounted on the operating system as a raw disk for
testing. This approach is closer to the client, and it allows the
use of benchmarking tools in the operating system, providing
more accurate performance characterization data.

Because FIO has multiple configurable parameters and high
flexibility, its usage is relatively complex. Here’s a brief intro-
duction to the configuration parameters used in this article:
the total data written in a single test is 100G. IO modes
are configured as sequential read, sequential write, random
read, and random write. The test engine selected is libaio.
As a commonly used test engine for operating system block
devices, libaio generates high parallel workloads on kernel
block devices with relatively small overhead by invoking
Linux kernel’s asynchronous read/write interface. The queue
depth is set to 32. To avoid the influence of the operating
system cache, Direct IO mode is used, and the kernel’s Buffer
Cache is cleared during initialization.

B. IOPS and Throughput

In order to confirm the performance difference caused
by our optimization, this section verifies the performance
of FastStore in the distributed cluster. We compare it with
BlueStore, a widely used storage backend. The experiment
tests the performance under different data sizes, covering four
scenarios: sequential read, sequential write, random read, and
random write. Since the default size of the Ceph object in
Ceph is 4M, the data size is less than 4M.

Fig. 10 shows the IOPS results on HDD. Fig. 16 shows the
throughput and 99.99th latency results. FastStore outperforms
BlueStore in almost all cases. As the I/O size decreases, the
IOPS improves, and optimization becomes more and more
significant.

600 | == BlueStore
—e— FastStore

3000 - ~*= BlueStore

—e— FastStore

500
400

’d
& 300
200 H
100 H
M M 512K256K 64K 32K 4K MM 51K 256K 6K 3K 4K
(a) Sequential reading (b) Random reading
ueStore ~d= BlueStore
200 { 28 Rovisre 75 { —e= Faststore
60 -
2
S
30
15 4
T —————————
AN 2M 512K256K 64K 32K 4K am M 512K 256K 64K 32K 4K

(c) Sequential writing (d) Random writing

Fig. 10. Comparison of IOPS between BlueStore and FastStore (HDD).

Compared with the BlueStore, FastStore pre-allocates space
in advance, and In-Place updates data to avoid complex
metadata processing and redundant journals. As a result, it
reduces the time required for allocating space and indexing
addresses and eliminates the write amplification caused by
WAL, thus effectively improving the write performance. In the
case of random write, the IOPS increase is about 40%. In the
case of sequential write, FastStore doubles the performance.

Moreover, BlueStore changes the sequential access into
random by performing multiple COW. FastStore eliminates the
data location redirection when OW. It ensures data continuity
in the physical space, improving reading performance, espe-
cially sequential reading. FastStore’s random read performance
is 2.7 times better than BlueStore’s. When the data size is 32K,
the sequential read IOPS of FastStore is up to 10 times that
of BlueStore.

Unlike HDD, SSD must erase the existing data before OW.
Frequent erasures generate many additional I/O, causing write
amplification and shortening SSD’s lifetime. To solve the
problem of performance loss and device wear, SSD generally
internally converts and processes SATA commands by the
Flash Translation Layer (FTL). When OW occurs, read the

B BlueStore Throughput
W FastStore Throughput

—— BlueStore 99.99th Latency
—— FastStore 99.99th Latency

140

©
-
N
=)
w

120

=
)
o

IS

o
o
=3

Throughput (MiB/s)
IS
99.99th Latency(sec)

S 100
80

@
o
w

60

I3
=)

o
99.99th Latency(sec)

40

IS
S

Throughput (MiB/s)

o

=)
N

o ©
[

NEER S
ESRRE R o A

(a) Sequential reading (b) Random reading

70 _ 70 _
] ‘; — ‘;
250 129 =30 129
5 g 540 I
340 9% 32 9 ®
< - < 30 -~
530 < =) <
3 6 B > =
g 20 2 E 20 69
F10 33 F10 33
07 & & & S T N & & SR
PO @"’b ‘7\,’\4 » N AT ,f,,b 6;;1/ DR

(c) Sequential writing (d) Random writing

Fig. 11. Comparison of Throughput and 99.99th Latency between BlueStore
and FastStore (HDD).

existing data and update it to the internal DRAM. Then, set
the original place to invalid and update new data in the new
position [20]. Unlike SSDs, HDDs require many mechanical
processes during random I/O operations [21].

BlueStore cannot guarantee the continuity of continuous
data when it is persistent. FastStore produces a lot of per-
formance improvement on HDD by changing the COW to the
In-Place update. However, as shown in Fig. 12 and Fig. 13,
because the FTL redirects the write range to a new place, the
optimization of our method is insignificant on SSD. Because
sequential and random access do not significantly impact
NVM’s performance, the same as SSD, FastStore only slightly
improves on NVM.

2500 7 - Biuestore
=—— FastStore

=~ BlueStore
25000 =—o— FastStore

2000
20000

1500
& 15000

10PS

o
1000 1 = 10000

500 5000 -

0
T T T T T T T T
am M 512K 256K 64K 32K 4K an

T T T T T T
M 512K 256K 64K 32K 4K

(a) Sequential reading (b) Random reading

=&~ BlueStore
=8~ FastStore

=% BlueStore
—e— FastStore

10PS
o
8

L

N 2N 512K256K 64K 32K 4K MM SIK /K 6K K 4K

(c) Sequential writing (d) Random writing

Fig. 12. Comparison of IOPS between BlueStore and FastStore (SSD).

B BlueStore Throughput
W FastStore Throughput

—+— BlueStore 99.99th Latency
—— FastStore 99.99th Latency

140

]]
£ 120 il 4y 3un
3 32 3 120 2
S 100 = S 100 =
5 80 25 S 80 25
3 © 3 ®
5, 60 4 5, 60 4
3 s 3 15
g & 2 8
F 20 o F 20 o

0 0 0 0%
RO S R gt gt gt
P4 P4
(a) Sequential reading (b) Random reading
90 55 20 S
— Q — Q
v) v 40
a7 4€ @75 £
260 S Ze0 38
= 3¢ = c
2as & 3 2
© ©
£ 22 % 2
3 30 = 330 =
£ 1§ £ 13
=15 o F 15 b
0 o 0 o
a6 & v a5 o & Ak
O L N DA R A

(c) Sequential writing (d) Random writing

Fig. 13. Comparison of Throughput and 99.99th Latency between BlueStore
and FastStore (SSD).

However, the significant demand for storage capacity leads
to HDD’s irreplaceable position. It is still the mainstream
storage device in cloud computing [14]. FastStore ensures data
reliability and simplifies the redundancy atomicity between
objects and blocks, effectively improving the I/O performance
of block storage service in large-scale distributed clusters.

C. Latency and fluctuation

In the experiment described in V-B, we also test the latency
of two storage backends. Fig. 14 shows our results, and its
abscissa represents the latency percentiles.

== BlueStore = FastStore

w
w

N
~

clat (sec)

clat (sec)

0
qs“qqf\"qgf"qq?’qq RSO
o

latency quantile (%)

0
D PO OB D PSP P
IR

latency quantile (%)

(a) Sequential reading (b) Random reading

w
w

clat (sec)

/

clat (sec)

0
QP A 9D O P P D AN}
qagqqq. PPy PRSP ®

latency quantile (%)

qq_qq&g"’qq?‘qqf” LRSS

latency quantile (%)

(c) Sequential writing (d) Random writing

Fig. 14. Comparison of latency between BlueStore and FastStore (HDD).

10

Compared to BlueStore, FastStore can reduce sequential
write latency by 73% and random write latency by 71%.
Additionally, FastStore markedly alleviates tail latency in
reading, decreasing the 99th percentile latency for sequential
and random reads by 11% and 19%, respectively.

In order to verify the performance fluctuations caused by
different write schemes, we conducted a repeat of the second
experiment presented in Section III-B using the RBD images
provided by FastStore and BlueStore, respectively. The results
are depicted in Fig. 15. Each time a write operation is
performed, the standard deviation of IOPS values for different
schemes is presented in Tab. IV. Since FastStore undergoes the
same NEW process as BlueStore initially, the first write closely
resembles the experiment in Section III-B. However, in the
subsequent four iterations, the optimized backend simplifies
the process of OW. Consequently, different write schemes
implement similar In-Place update processes, and the values
of IOPS remain stable. This indicates that FastStore not only
brings about significant performance improvements but also
effectively mitigates the performance fluctuations caused by
multi-layer abstraction.

350

[scheme 1
[scheme 2

300 1 3 scheme 3

250 A

200 A

10PS

150

100

50 1

Fig. 15. The performance fluctuation in FastStore.

TABLE IV
STANDARD DEVIATION OF PERFORMANCE FLUCTUATIONS
Test Time 1 2 3 4 5
BlueStore 142 | 123.06 | 122.67 | 122.79 | 122.92
FastStore 1.42 7.09 2.65 7.57 7.00

D. Real workload

To evaluate the proposed design under the real workload, we
run YCSB on the client nodes using block device. Each client
uses increased record count (10000) and thread number (10
threads) as a YCSB configuration parameter. Fig. 16 shows
the result of YCSB.

Workload a is a mixed workload with an even distribution
between read and write operations (50:50 ratio). Workload
b, also a mixed workload, leans heavily towards reading,
with a ratio of 95:5 (write once, read many). Workload ¢
is designed as a read-only workload, exclusively involving

read operations. Workload d shares similarities with Workload
b, but it specifically concentrates on accessing recent data.
Additionally, Workload e involves short-range queries, simu-
lating scenarios where data retrieval within specific ranges is
crucial. Finally, Workload f revolves around the read-modify-
write paradigm, combining read, modify, and write operations.

When examining the results in Fig. 16, under the six afore-
mentioned workloads, FastStore exhibits a 99.99th percentile
latency significantly lower than BlueStore. This indicates
that the In-Place update strategy proposed in this paper can
enhance system performance in various application scenarios.
However, the achieved latency by FastStore is not as optimal
as depicted in V-B. This discrepancy can be attributed to two
main factors.

YCSB issues small I/O update to the cluster. In BlueStore,
it needs to write the data besides original place and update
the metadata, the amplification is high. While in FastStore,
it uses pre-allocate and In-Place update to accelerate small
I/O updates. Consequently, FastStore necessitates overwriting
data before writing it to conform to the block size, leading
to the occurrence of RMW in the object store. Notably,
FastStore’s primary optimization focus does not encompass
RMW scenarios. Secondly, the discrepancy is attributed to
read/write control issues. YCSB tests primarily involve mixed
workloads. A write operation in FastStore must wait for the
completion of numerous read requests.

I BlueStore I FastStore

%4
o

g 900 E 700 g

z Z 600 =40
£ 600 g2 230
g0 £ 300 =20
Q [J] [}

£ 300 £ 200 g

o o

£ 150 £ 100 & 10
[« ()] a
e e « 0

N S »)
& 0?0P* & \)QQP* ?&po

(a) Update Heavy (b) Read Mostly (c) Read Only

m
v
=3
(]
©
=]
o

N

o

o
)
u
o

w

o

o
o
=3
o

SN
a
o

N
o
o

w
o
o

—
o
o

—
u
o

99thPercentileLatency (ms)
99thPercentileLatency (ms)

99thPercentileLatency (ms)

o

o
o

&

O N <<
P P
RS L o

O <
& &

(d) Read Latest (e) Short Ranges (f) Read Modify Write

Fig. 16. Comparison of YCSB between BlueStore and FastStore (HDD).

VI. RELATED WORK

Ceph provides block service, file service, and object stor-
age service, meeting all storage requirements of the cloud
computing platform. It is widely used in cloud computing

11

platforms [13]. Performance optimization is a crucial consid-
eration for applications running on cloud computing systems.
Most related works focus on improving its data concurrency
capability, reducing the overall access latency of the system,
and ensuring the scalability and high availability of the system
[22]. The community keeps optimizing by developing more
efficient storage backends in the last decade [8]. The perfor-
mance of virtualized storage services is much slower than that
of physical devices. Optimization methods can be divided into
four categories: 1) reduce write amplification. 2) optimize for
new devices. 3) optimize for special workloads. 4) schedule
architecture.

Reduce write amplification: Write amplification is a com-
mon issue in distributed storage systems, caused by replicas,
metadata, and Write-Ahead Logging (WAL). Lee investigated
the write amplification of several Ceph storage backends,
including FileStore and Bluestore; the write amplification of
all storage backends was more than 13x [9]. To alleviate the
write dependency overhead for high-performance drives, [23]
introduced a new IO stack called HORAE, which improved
performance by 2.1 times compared to BlueStore. However,
HORAE primarily focuses on optimizing SSDs and does not
involve the optimization of HDDs. [24] enhanced FileStore
by disabling WAL in the RBD, reducing write amplification
by half and bringing 3-5 times improvement in IOPS and 4
times in bandwidth. However, this method was implemented
for FileStore and had limitations. [25] reduced access latency
of metadata in MDS by using cache. Although it improved
the write performance of metadata, the backup strategy led to
additional write amplification, and it could cause consistency
problems between different MDSs.

Optimize for new device: Focusing on the insufficient
utilization of persistent memory (PMEM) caused by aligned
and non-aligned writes in BlueStore, MixStore stored small
non-aligned data in PMEM and large aligned data on SSD,
eliminating write amplification caused by the Write-Ahead
Log (WAL) [26]. However, for large data reads, more data
was read from SSD than PMEM, and hence, the throughput
was not significantly improved. OCStore was a storage back-
end designed for Open-channel SSD [27]. By reducing the
redundancy mechanism of RGW and Ceph FS, it could reduce
70% redundant writes in high-workload situations. However,
since it was designed based on special hardware, only a few
commercial products could be supported, making this solution
not universal. [2] optimized thread control and proposed a
CPU-efficient storage backend. Through efficient utilization of
NVMe SSD, it provided more than three times performance
improvement for small random writes.

Optimize for sepical workloads: Tirthak Patel clarified
the proportion of three types of intensive files through data
collection and analysis, optimizing the data placement strategy
[28]. [29] optimized the writing of large files by splitting and
using multiple threads. However, this modification affected
the original data organization of Ceph. Sapphire found the
best parameter configuration for specific applications through
machine learning and black-box techniques, improving Ceph’s

performance up to 2.2 times [30]. [31] collected various
metric information in the Ceph FS, used as a standard to
adjust the workload of each active thread, thereby improving
system performance. To solve the concurrent access of threads,
[32] designed a lock contention messenger (Async-LCAM),
which prevents message corruption, connection interruption,
and thread deadlock in scenarios of multi-thread sharing. Kisik
Jeong found and analyzed the problems of running HPC
workloads in Ceph and solved them based on F2FS and some
other file systems [33]. However, Ceph uses BlueStore by
default now, which no longer relies on the local file system to
manage data.

Schedule architecture: To solve the unbalanced reading
problem under replica mode, [34] designed a new selection
strategy that effectively reduces the response time for se-
quential reads. However, performance bottlenecks occurred
in large-scale clusters due to network limitations. The MapX
algorithm [35] addressed the problem of cluster expansion by
marking timestamps for each node and virtualizing different
node subsets. Although MapX could reduce the performance
penalty of data migration when adding a large number of
nodes, for multiple additions of a small number of nodes,
it caused cluster segmentation, reducing the performance and
availability of the entire system. Crimson is a new generation
OSD backend storage designed for fast storage media such
as SSDs and NVMe [11]. It rewrites the IO path using
SeaStar to decrease the overhead of traditional multi-threaded
programming models. Since the optimization environments
and methods are different, FastStore can achieve better perfor-
mance on HDDs than Crimson. However, Crimson can achieve
better performance on SSDs/NVMs than FastStore.

VII. CONCLUSION

In this paper, we have analyzed the performance overhead
and fluctuation of distributed block storage systems in Ceph.
Based on our observations, we present a new storage backend,
FastStore. It is realized by preallocating sequential space,
reducing redundant I/O operations and metadata operations.
Extensive evaluation results show that our solution signif-
icantly improves I/O performance compared to Ceph. The
sequential reading performance of FastStore is up to 10 times
faster than Ceph. The sequential writing performance is twice
as fast as before. The random writing performance increases by
40%. Furthermore, latency and fluctuation are also effectively
reduced with FastStore.

ACKNOWLEDGMENT

We sincerely thank our shepherd Qirui Yang and the anony-
mous reviewers for their valuable feedback. We also thank
Simeng Zhang for the discussion on this work. This work is
supported by National Key Research & Development Program
of China (Grant No. 2022YFB2702101), Shaanxi Key Indus-
trial Province Projects (2021ZDLGY03-02, 2021ZDLGY03-
08),the National Natural Science Foundation of China (Grant
No0.92152301,62272394).

12

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

J. Shafer, “T/o virtualization bottlenecks in cloud computing today,” in
Proceedings of the 2nd conference on /O virtualization. ~ USENIX
Association, 2010, pp. 5-5.

M. Oh, J. Park, S. K. Park, A. Choi, J. Lee, J.-H. Choi, and H. Y.
Yeom, “Re-architecting distributed block storage system for improving
random write performance,” in 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2021, pp. 104—-114.
M. Oh, S. Park, J. Eom, S. Kim, S. Kim, K.-w. Lee, and H. Y. Yeom,
“Lalca: Locality-aware lock contention avoidance for nvme-based scale-
out storage system,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1EEE, 2018, pp. 1143-1152.

J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed file system
for {Non-Volatile} main memory and {RDMA-Capable} networks,” in
17th USENIX Conference on File and Storage Technologies (FAST 19),
2019, pp. 221-234.

J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M. T.
Kandemir, N. S. Kim, J. Kim et al., “{FlashShare}: Punching through
server storage stack from kernel to firmware for {Ultra-Low} latency
{SSDs},” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 477-492.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307-320.

OpenStack Survey Report. https://www.openstack.org/analytics.

A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “File systems unfit as distributed storage backends:
lessons from 10 years of ceph evolution,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019, pp. 353-369.
D.-Y. Lee, K. Jeong, S.-H. Han, J.-S. Kim, J.-Y. Hwang, and S. Cho,
“Understanding write behaviors of storage backends in ceph object
store,” in Proceedings of the 2017 IEEE International Conference on
Massive Storage Systems and Technology, vol. 10, 2017.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush: Con-
trolled, scalable, decentralized placement of replicated data,” in SC’06:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.
IEEE, 2006, pp. 31-31.

S. Just, “Crimson: A new ceph OSD for the age of persistent memory
and fast NVMe storage.” Santa Clara, CA: USENIX Association, Feb.
2020.

S. Kai, S. Park, and Z. Meng, “Journaling of journal is (almost) free,”
in Proceedings of the 12th USENIX conference on File and Storage
Technologies, 2014.

S. Wu, S. Tao, X. Ling, H. Fan, H. Jin, and S. Ibrahim, “ishare:
Balancing i/o performance isolation and disk i/o efficiency in virtualized
environments,” Concurrency and Computation: Practice and Experi-
ence, vol. 28, no. 2, pp. 386-399, 2016.

D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: the evolution of
data to life-critical,” International Data Corporation (IDC) White Paper,
vol. 1, no. 1, pp. 1-25, 2017.

A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “The case for custom storage backends in distributed
storage systems,” ACM Transactions on Storage (TOS), vol. 16, no. 2,
pp. 1-31, 2020.

W. Li and B. Tremblay, “Storage benchmarking for workload aware
storage platform,” in 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). IEEE, 2016, pp. 835-838.

E. Lee, Y. Han, S. Yang, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “How to teach an old file system dog new object store tricks,”
in 10th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 18), 2018.

W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and Y. Won, “{WALDIO}:
Eliminating the filesystem journaling in resolving the journaling of jour-
nal anomaly,” in 2015 USENIX Annual Technical Conference (USENIX
ATC 15), 2015, pp. 235-247.

D. B. Terry, V. Prabhakaran, R. R. Kotla, M. Balakrishnan, M. K. Aguil-
era, and H. Abu-Libdeh, “Consistency-based service level agreements
for cloud storage,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013.

S. Maneas, K. Mahdaviani, T. Emami, and B. Schroeder, “A study of
{SSD} reliability in large scale enterprise storage deployments,” in 18th

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

USENIX Conference on File and Storage Technologies (FAST 20), 2020,
pp. 137-149.

H. H. Huang, S. Li, A. Szalay, and A. Terzis, “Performance modeling
and analysis of flash-based storage devices,” in 2011 IEEE 27th Sym-
posium on Mass Storage Systems and Technologies (MSST), 2011, pp.
1-11.

X. Zhang, S. Zhang, J. Shi, C. Dong, and Z. Li, “Ceph distributed
storage system performance optimization review,” Computer Science,
vol. 48, no. 2, pp. 1-12, 2021.

X. Liao, Y. Lu, E. Xu, and J. Shu, “Write dependency disentanglement
with {HORAE},” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 549-565.

X. Zhang, Y. Wang, Q. Wang, and X. Zhao, “A new approach to double
i/o performance for ceph distributed file system in cloud computing,” in
2019 2nd International Conference on Data Intelligence and Security
(ICDIS). 1IEEE, 2019, pp. 68-75.

Z. Ling, X. Fang, and D. Li, “The research and implementation of
metadata cache backup technology based on ceph file system,” in /[EEE
International Conference on Cloud Computing & Big Data Analysis,
2016.

Y. Tu, Z. Chen, Y. Han, B. Chen, and d. Guan, “Mixstore: persistent
memory and ssd-based backend storage,” Computer Research and De-
velopment, 2021.

Y. Lu, J. Zhang, Z. Yang, L. Pan, and J. Shu, “Ocstore: Accelerating
distributed object storage with open-channel ssds,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2019, pp. 271-281.

T. Patel, S. Byna, G. K. Lockwood, N. J. Wright, P. Carns, R. Ross,
and D. Tiwari, “Uncovering access, reuse, and sharing characteristics of
{I/O-Intensive} files on {Large-Scale} production {HPC} systems,” in
18th USENIX Conference on File and Storage Technologies (FAST 20),
2020, pp. 91-101.

K. Zhan, L. Xu, Z. Yuan, and W. Zhang, “Performance optimization
of large files writes to ceph based on multiple pipelines algorithm,” in
2018 IEEE Intl Conf on Parallel & Distributed Processing with Appli-
cations, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Comput-
ing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
IEEE, 2018, pp. 525-532.

W. Lyu, Y. Lu, J. Shu, and W. Zhao, “Sapphire: Automatic configu-
ration recommendation for distributed storage systems,” arXiv preprint
arXiv:2007.03220, 2020.

Y. Han, K. Lee, and S. Park, “A dynamic message-aware communication
scheduler for ceph storage system,” in Foundations & Applications of
Self Systems, IEEE International Workshops on, 2016.

B. Jeong, A. Khan, and S. Park, “Async-Icam: a lock contention aware
messenger for ceph distributed storage system,” Cluster Computing,
vol. 22, no. 2, pp. 1-12, 2019.

K. Jeong, C. Duffy, J.-S. Kim, and J. Lee, “Optimizing the ceph
distributed file system for high performance computing,” in 2079
27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). 1EEE, 2019, pp. 446-451.

Y. Wang, M. Ye, Q. He, Y. M. Huan, and W. J. Kang, “A new node
selecting approach in ceph storage system based on software defined
network and multi-attributes decision-making model,” Chinese Journal
of Computers, 2019.

L. Wang, Y. Zhang, J. Xu, and G. Xue, “{MAPX}: Controlled data
migration in the expansion of decentralized {Object-Based} storage
systems,” in 18th USENIX Conference on File and Storage Technologies
(FAST 20), 2020, pp. 1-11.

13

