
FuncStore: Resource Efficient Ephemeral Storage
for Serverless Data Sharing

Yijie Liu1, Zhuo Huang1, Jianhui Yue2, Hanxiang Huang1, Song Wu1, and Hai Jin1
1 National Engineering Research Center for Big Data Technology and System

Services Computing Technology and System Lab, Cluster and Grid Computing Lab
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

2 Department of Computer Science, Michigan Technological University, Houghton, Michigan, 49931, USA
{lyjhust, huangzhuo, handsonhuang, wusong, hjin}@hust.edu.cn, jyue@mtu.edu

Abstract—Serverless architecture decomposes applications into
numerous fine-grained functions, typically executed within indi-
vidual containers. These functions share data with remote storage
to achieve high flexibility. However, existing cloud storage services
adopt either application-level or function-level resource allocation
strategies. In the application-level approach, users request all
necessary resources at the start of application execution and
release them upon completion. On the contrary, in the function-
level approach, resources are allocated at the start of each
function and reclaimed if they remain idle for a specified
duration. Regrettably, both methods tend to yield suboptimal
utilization of storage resources, as data often lingers beyond its
relevant lifecycle.

To this end, we introduce FuncStore, an innovative server-
less ephemeral storage system designed to optimize resource
utilization. FuncStore adopts a resource allocation strategy that
provides resources precisely when data is generated and releases
those resources when the data reaches the end of its lifecycle.
Specifically, FuncStore determines the anticipated number of
reads for each data object based on the application’s execution
logic. During runtime, the read count is decreased with each
data access, deleting the data once the final read operation
is executed. This approach ensures that storage space is not
occupied unnecessarily. To reduce fragmentation of storage space,
FuncStore strategically groups data objects with similar expira-
tion times within the same storage unit, facilitating simultaneous
data deletion when the time comes. Compared to state-of-the-
art ephemeral systems, Pocket and Jiffy, FuncStore can reduce
the platform’s resource usage by 86.6% and 81.7% respectively,
while guaranteeing request latency and throughput.

I. INTRODUCTION

Traditional cloud computing abstracts computing resources
in data centers to users in the form of virtual servers, greatly
streamlining the resource management overhead for develop-
ers. However, when a business faces burst loads, the virtual
server-centric approach imposes a significant management
burden on developers. They must estimate the required number
of servers and configurations to handle the increased business
load. In contrast, serverless computing has emerged as a
novel cloud computing paradigm in recent years, offering a
Function as a Service (FaaS) abstraction that further simplifies
resource deployment and management for developers [1, 2]. In
serverless computing, developers only need to upload program
code as functions to the cloud platform and pre-define the
execution logic of these functions, creating serverless work-
flows. The cloud platform dynamically starts containers on

demand to execute the corresponding program code according
to defined function workflows, thus providing the required
services [3, 4]. Serverless workflows commonly incorporate
parallel branches and data dependencies, and they are typically
organized in a logical manner using a direct acyclic graph
(DAG) representation [5] containing multiple stages while
each stage consists of a set of functions with similar or
complementary purposes.

Serverless applications lack awareness of instance schedul-
ing and placement, making it challenging to facilitate di-
rect data sharing between functions. A common approach
to achieve data sharing is to store the data to be shared
in remote storage systems, such as Amazon Simple Storage
Service (S3) [6], Amazon DynamoDB (DynamoDB) [7], and
Amazon ElastiCache (ElastiCache) [8]. This enables data
sharing across various function instances deployed on different
nodes within the serverless environment. This separation of
storage and computation in serverless computing contributes
to exceptional application resilience. Prior research works have
focused primarily on aspects such as request latency, operation
throughput, storage access interfaces, and user costs associated
with storage systems, all from the user’s perspective [9–13].
For example, Pocket [11] can automatically configure multiple
storage media based on application characteristics such as
latency requirements, data volume, maximum concurrency,
and maximum bandwidth. The goal is to establish a highly
flexible serverless storage system that strikes a balance be-
tween I/O operation latency and storage expenses. Locus [14]
introduces a machine learning model designed to recommend
optimal storage configuration parameters for applications to
reduce storage costs while meeting application requirements.
Faa$T [15] concentrates on caching strategies for storage
systems to efficiently enhance data access speed.

In addition to the factors mentioned above, efficient uti-
lization of storage space is of paramount importance. From
the platform’s perspective, high utilization implies that valu-
able storage resources are maximally employed, enabling
the platform to accommodate more applications within the
same resource constraints. For users, increased utilization of
storage resources results in lower unit storage costs, ultimately
reducing the overall cost of storage. For this problem, the
current state-of-the-art solution is Jiffy [16]. Jiffy recognizes

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 00

2 0

4 0

6 0

8 0

1 0 0
All

oc
ate

d C
ap

ac
ity

(M
B)

T i m e (m s)

 P o c k e t J i f f y I d e a l

w a s t e d

Fig. 1: The size of required memory for compiling mosh

that the existing practice of allocating data at the granularity of
an entire application leads to significant resource waste. This
inefficiency arises because an application’s storage require-
ments can vary widely, sometimes spanning up to two orders
of magnitude. Allocating storage based on the average demand
adversely impacts application performance, while allocating
based on the highest demand leads to underutilization of
resources. To remedy this, Jiffy proposes a novel approach
to allocate data at the granularity of individual functions.
Specifically, allocation of the corresponding storage space
is completed when the function performs write operations.
Moreover, when writing data, Jiffy employs a time-lease mech-
anism. If data is accessed before the lease expires, the system
extends the lease; otherwise, if the data remains untouched
beyond the lease duration, Jiffy deletes the data and reclaims
the memory occupied by the data. This approach significantly
reduces storage resource idle time because storage space
allocation is deferred until the moment when data is produced,
and data removal occurs promptly after its utility expires.

Although Jiffy’s allocation strategy based on the granularity
of functions improves the resource utilization of the storage
system to some extent, there remains a notable gap between
Jiffy’s optimization and the ideal scenario. The ideal scenario
means that if the data is no longer being used, then it is
deleted immediately to release storage space. As shown in
Figure 1, a substantial amount of expired data still occupies
a significant portion of the storage capacity. To this end, we
introduce FuncStore, a data-centric serverless storage system
designed to achieve high resource utilization. The core concept
behind FuncStore is the timely deletion of data when its life-
cycle ends to prevent unnecessary storage space consumption.
Specifically, FuncStore incorporates a Consistent Monitoring
mechanism, which identifies the number of data accesses
based on workflow execution logic and accurately monitors
each access operation of the data to effectively be aware
of the data lifecycle. To mitigate the issue of fragmented
free storage space resulting from data deletions, FuncStore
proposes a Lifetime-aware Memory Management mechanism,
which groups data with similar lifetimes into the same block,
facilitating simultaneous reclamation of space within that
block.

Our contributions can be summarized as follows:

• We conduct a deep study highlighting the distinction
between data lifecycle and storage time. This analysis
reveals the suboptimal resource utilization observed in
existing serverless intermediate data storage systems.

• We propose FuncStore, a novel system that uses precise
data lifecycle monitoring and strategic data placement to
significantly improve storage resource utilization.

• We implement and evaluate FuncStore. Compared to
state-of-the-art works, FuncStore outperforms in terms of
storage resource utilization without increasing data access
latency, reducing memory resource usage by 86.6% and
81.7%, respectively. The code of FuncStore is available
at: https://github.com/CGCL-codes/FuncStore.

II. BACKGROUND AND MOTIVATION

A. Serverless Computing & Intermediate Data Sharing
Serverless computing has gradually become a new paradigm

for cloud computing development due to the ease of devel-
opment and deployment, extreme application elasticity, and
pay-as-you-go characteristics. In a serverless environment, the
application is split into multiple stateless functions that are
assembled in the form of a workflow to implement complex
application logic. During the development phase, developers
write function code and use the workflow description language
(WDL) provided by serverless platforms (e.g., AWS Step
Functions [17], Google Workflows [18]) to write the workflow
description script (WDS) to describe how to compose func-
tions into workflows. WDL supports sequential and parallel
execution logic to implement complex application services.
A simple WDS example using JSON-based WDL is shown in
Figure 2. When deploying an application, the user provides the
serverless platform with the written function code and WDS.

Data transfer between functions within a workflow is es-
sential for implementing the internal execution logic of a
serverless application. Unlike the input data and output results
of an application, this data is generated by specific functions
and used by others during the execution of the application.
Consequently, it is often referred to as “intermediate data”, and
the process of transferring data between functions is termed
“intermediate data sharing”. As shown in Figure 3, these
various patterns of data transfer, include the following:

• Pass: In this pattern, data objects are passed exclusively
between two functions.

• Broadcast: This pattern involves a function passing all
its data objects to multiple functions.

• Scatter: In this pattern, a function passes different data
objects to different functions.

• Aggregate: The pattern occurs when multiple functions
collectively pass data objects to a single function.

The current serverless research tends to represent the work-
flow described by WDS as a DAG to describe the relationship
between functions. In this case, the DAG representations
corresponding to the above data transfer modes are shown in
Figure 4.

Since serverless applications are not aware of function
scheduling and placement, it is difficult to address functions

1{
2 "app": "demo",
3 "workflow_id": 1704038400,
4 "category": "image-process",
5 "spec": {
6 "split_stage": {
7 "stage_id": 1,
8 "functions": [
9 {

10 "start": true,
11 "name": "split_function",
12 "input": ["raw_object"],
13 "output": ["intermediate_object_00", "

intermediate_object_01"],
14 "next": ["process_function_00", "

process_function_01"]
15 }
16]
17 },
18 "process_stage": {
19 "stage_id": 2,
20 "functions": [
21 {
22 "start": false,
23 "name": "process_function_00",
24 "input": ["intermediate_object_00"],
25 "output": ["result_object_00"],
26 "next": []
27 },
28 {
29 "start": false,
30 "name": "process_function_01",
31 "input": ["intermediate_object_01"],
32 "output": ["result_object_01"],
33 "next": []
34 }
35]
36 }
37 }
38}

Fig. 2: An example of JSON-based workflow description script

directly, which presents a significant challenge to transferring
data directly between functions. In addition, even if network
address translation (NAT) or other techniques can be used
to achieve direct data transfer between functions, the transfer
process requires that the lifecycle of the sending and receiving
functions overlap, thus bringing limitations to the flexibility
of function execution. Consequently, one way to accomplish
intermediate data transfer is by utilizing the remote storage
system. Specifically, the data-sending function writes the data
into the remote storage system, and the data-receiving function
reads the corresponding data from it. Note that the size
of intermediate data can vary widely, from a few bytes to
several hundred megabytes [11]. Moreover, Microsoft Azure’s
publicly available dataset reveals that a significant majority,
specifically 80%, of the data objects are smaller than 12KB
in size [15].

B. State-of-the-art Works

Traditional cloud storage services are widely employed in
today’s serverless environments to facilitate the sharing of
intermediate data among functions. Examples of such services
include S3 [6] and DynamoDB [7]. However, these services
have some notable limitations. In the case of S3, the read
latency for 1KB of data is approximately 12ms, posing a
substantial overhead for serverless applications. DynamoDB

f

f f f

Pass Broadcast Scatter Aggregate

f

f

f

f f f

f f f

f

Pass Broadcast Scatter Aggregate

Fig. 3: Data passing patterns in serverless workflow

f

f f f

Pass Broadcast Scatter Aggregate

f

f

f

f f f

f f f

f

Pass Broadcast Scatter Aggregate

Fig. 4: Data passing patterns represented by DAG

imposes a size limit of 400KB for a single item, while
the size of serverless intermediate data can reach several
hundred megabytes. This restriction significantly narrows the
applicability of DynamoDB in various scenarios. Another
category of commonly used ephemeral storage solutions is
in-memory storage service, exemplified by ElastiCache and
Redis [19]. These services harness the speed of memory to
store intermediate data, meeting the demanding read and write
performance requirements. However, this approach comes
with higher storage costs than the previous two options.
Furthermore, ElastiCache and Redis require users to explicitly
configure storage nodes and manually select resources when
scaling up, substantially increasing the operational cost for
users.

Various research efforts have focused on optimizing these
systems from different angles to tackle the challenges associ-
ated with existing cloud storage solutions in serverless com-
puting. Pocket [11] is a distributed storage system that takes
advantage of multiple storage media and can automatically
scale the cluster capacity up and down based on resource
usage. Pocket intelligently selects the appropriate storage
media, such as DRAM, Flash, or HDD, to store intermediate
data, aligning the storage system’s performance with the data
storage cost. For individual applications, Pocket incorporates a
hint mechanism for rightsizing resource allocation. This mech-
anism utilizes user-provided application information, including
latency requirements, data volume, maximum concurrency,
peak bandwidth, and more, to estimate the required storage
capacity across different storage media when the application
is submitted. During application execution, when a function
needs to write data, Pocket allocates storage space within
the reserved storage resources. At the end of the applica-
tion’s execution, Pocket releases the allocated storage space.
Furthermore, Pocket improves the put() and get() interfaces
by introducing a flag parameter. This parameter allows users
to specify the behavior of data read and write operations,
enabling actions such as deleting specific data at the end of
the function.

Although Pocket effectively combines multiple storage me-

dia to balance storage performance and cost, and implements
auto-scaling of storage resources, it employs application-level
resource requests, which can lead to reduced resource utiliza-
tion. Specifically, in this application-level resource allocation
method, if memory is allocated according to the average de-
mand of the application, data exceeding the allocated memory
amount will be spilled onto the SSD or HDD when the
application is running, resulting in higher latency and lower
bandwidth, adversely affecting application performance. In
contrast, if memory is allocated based on the peak demand of
the application, memory utilization may remain suboptimal.
To address this challenge, Jiffy introduces a function-level
resource allocation policy. In this approach, Jiffy organizes
the memory of storage nodes into fixed-size memory blocks
and dynamically establishes mapping relationships with differ-
ent functions to enable efficient reuse of memory resources.
Furthermore, Jiffy implements a lease mechanism to quickly
reclaim the storage space for data. In Jiffy, the system assigns a
lease to a data block when it establishes a mapping relationship
with a function, and then initiates a timer. If the data in the
block is accessed again before the lease expires, the system
updates the lease for that block. However, if the data remains
untouched beyond the duration of the lease, the system deletes
the data and reclaims the corresponding memory block. This
mechanism ensures the efficient utilization of storage resources
while accommodating varying data access patterns.

C. Motivation

The fundamental challenge facing current serverless
ephemeral storage systems lies in their low resource utiliza-
tion. This issue stems from the disparity between the expiration
time of intermediate data and the end time of the application.
Deleting data after the application is completed leads to a
situation where the storage duration of the data exceeds its
actual effective period. Existing cloud storage services (e.g.,
S3 [6], DynamoDB [7], ElastiCache [8], and Redis [19]) are
not explicitly tailored for serverless computing and do not
align with the serverless pay-as-you-go model. These services
necessitate users to pre-request all resources and incur charges
based on their initial requests rather than their actual usage.
This approach can significantly reduce the efficient utilization
of storage resources, particularly given the variable resource
consumption associated with serverless workloads.

In existing work, Pocket [11] not only handles the deletion
of intermediate data at the end of the application, but also
offers a get() interface that allows users to delete data after
it has been read, thereby freeing up storage space. However,
this “delete after read” approach is limited to data that
is read only once. For data that undergoes multiple reads
within the application, it becomes impractical for the user to
determine which function should implement the “delete after
read” operation, rendering it non-universal. This contradicts
the serverless paradigm, where users typically focus solely
on the code logic without delving into storage management
intricacies. In Jiffy [16], the responsibility of releasing ex-
pired data storage space is handled by the lease mechanism.

Although this mechanism autonomously reclaims resources for
all data without necessitating explicit user intervention, it may
not be pinpoint accurate in determining the exact expiration
time of data. Since Jiffy operates with a global lease time,
a trade-off arises. To support a diverse range of serverless
applications, the lease time must be set long enough to prevent
an application’s data from expiring prematurely before it can
be accessed. However, a longer lease time means that, for
short-lifecycle data, it may still occupy memory for a period
after it has expired.

To this end, a straightforward idea is to design a data-centric
serverless storage system, which should allocate storage space
when data is generated and reclaim the corresponding storage
resources at the end of data lifecycle, to achieve high storage
resource utilization. Additionally, from the perspective of
application performance, low-latency DRAM is suitable as the
medium for ephemeral storage systems, which can minimize
the data transfer overhead of serverless applications, and has
been selected by Jiffy.

Key challenges. Through an in-depth analysis of existing
storage systems, we identify two key challenges to the achieve-
ment of a highly resource-efficient serverless ephemeral stor-
age system:

• How to determine the expiration time of data objects
so that the storage system can reclaim them in time to
free up storage space? Existing storage systems usually
release data objects until applications are finished, which
fails to free unused data objects in time and wastes
storage space. As for indicating when the data object
should be deleted, it is difficult for users, which mainly
focus on the code logic.

• How to place data objects so that there are as few
idle fragment spaces as possible? If data objects with
different lifecycles are stored in the same block, there
will be free fragment spaces in the block when the data
objects are deleted one by one. These free fragments are
difficult to be reused due to their unmatched size.

III. DESIGN

FuncStore is designed as an ephemeral storage system with
high resource utilization for efficient sharing of intermediate
data in serverless applications. FuncStore improves resource
utilization by introducing two optimizations: 1) Firstly, Func-
Store accurately monitors the expiration time of data and
promptly releases the memory space of expired data; 2)
Secondly, it places small data objects with similar lifetimes in
the same memory block, reducing intra-block fragmentation.

A. System Architecture

We show the FuncStore system architecture in Figure 5.
FuncStore is divided into two parts: the front-end and the
back-end. The front-end includes workflow description script
parser (WDS Parser) and Client Library, and the back-end
includes Metadata Server, Model Server, and Storage Server.
When users deploy serverless applications, they provide WDS

Lifetime Manager

Storage Manager

Expiration Monitor

HDAG Analyzer

Lifetime Predictor

Block Allocator

Slice Allocator

Model-A

Model-B

Model-C

Model-D

Model NodeMetadata Node Storage Nodes
store and update

models

store objects

Node-A

Node-B

Node-C

Node-D

deallocate() lookup() allocate()

lifetime

WDS Parser
Client API

Function

Client API

Function

Client API

Function

Function Nodes

Client API

Function

WDS Parser
• Parse a WDS into HDAG

• Upload HDAG to Metadata Server

HDAG Analyzer
• Extract lifetime features and read count for data

objects and pass them to Lifetime Manager

Lifetime Manager

• Monitor data expirations based on read count

• Predict data objects’ lifetime by communicating with

Model Server and store them

• Collect data objects’ real lifetime and report to Model

Server for model tuning

Storage Manager • Manage memory registered from Storage Servers

Model Server

• Store models for different application categories and

provide lifetime prediction service

• Tune models continuously based on metrics from

Lifetime Manager

Storage Servers

• Register/deregister memory space to/from Storage

Manager

• Store data objects and serve read/write requests from

Client Library

Client Library
• Access Metadata Server and Storage Servers to

put/get data objects

Fig. 5: Architecture overview of FuncStore

to WDS Parser. WDS Parser parses WDS into a generic inter-
mediate representation named heterogeneous directed acyclic
graph (HDAG) and uploads HDAG to Metadata Server. Meta-
data Server internally implements HDAG Analyzer, Expiration
Monitor, Lifetime Predictor, and Storage Manager. Among
them, HDAG Analyzer analyzes each HDAG uploaded to
Metadata Server, extracts information on intermediate data
involved in HDAG, and provides the information to the Ex-
piration Monitor and Lifetime Predictor. The former monitors
the expiration time of intermediate data during application exe-
cution, the latter and Model Server work together to predict the
lifetime of intermediate data to optimize memory allocation.
The Model Server stores prediction models for various appli-
cation categories, receives running metrics from the Metadata
Server, and continuously adjusts the corresponding models.
The Storage Server stores the relevant data based on the
address provided by the Storage Manager. When the serverless
application is running, its functions access the Metadata Server
and Storage Server by using the API provided by the Client
Library, read and write intermediate data objects to achieve
data sharing.

B. Consistent Monitoring

We design a method that effectively tracks the expiration
time of the intermediate data, enabling the prompt release
of the memory occupied by the data objects. One possible
approach is to determine the access count of a data object
by analyzing the workflow, and then create a counter for the
object with an initial value equal to its access count. The
counter is decreased by one each time the data object is
accessed, until it reaches zero, indicating that the data object
has expired. However, the current widely used intermediate
representation of workflows, which is function DAG, fails to
clearly depict the data transfer patterns between functions,
leading to the storage system’s inability to accurately retrieve
the read times of data objects under different patterns. As illus-
trated in Figure 3, the Broadcast mode refers to an upstream
function passing a data object to three downstream functions,

resulting in a read count of 3 for the data object. On the other
hand, the Scatter mode involves an upstream function passing
three data objects to three downstream functions, resulting in
a read count of 1 for each data object. Both transfer patterns
have the same representation in the function DAG as shown
in Figure 4. Due to the limited expressiveness of the function
DAG in Figure 4, determining the read times of data objects
passed between functions is challenging. Furthermore, the
basic counting-based approach is susceptible to the impact of
function crashes and retries, potentially resulting in counting
errors. Detailed explanations regarding this matter will be
provided in the following sections.

To address the aforementioned issues, we propose a mech-
anism called Consistent Monitoring to accurately monitor
the expiration time of data objects. Consistent Monitoring
comprises a novel intermediate representation of the work-
flow named heterogeneous directed acyclic graph and a new
counter-update strategy named Deferred Commit. The former
effectively distinguishes between different data transfer pat-
terns, ensuring the correct capture of data object read times.
The latter ensures the correctness of counter updates.

1) Heterogeneous Directed Acyclic Graph: To effectively
express the differences between different modes, FuncStore
proposes a new workflow intermediate representation, het-
erogeneous directed acyclic graph (HDAG), which clearly
expresses the data transfer modes between functions. Specifi-
cally, in addition to function nodes, HDAG introduces a pipe
node that connects two function nodes to represent the data
transfer relationship between functions. As shown in Fig-
ure 6(a), each pipe node contains three parts: 1) the data object,
which represents the different data generated by the function
node; 2) the data send box (SendBox), which corresponds one-
to-one to the data objects; 3) the data receive box (RecvBox),
which corresponds one-to-one to the function nodes that need
to read data. SendBox and RecvBox are connected by arrows
to indicate the flow of data. Assume that a function node will
write M data, and there are N function nodes that will read these
data, then M SendBoxes and N RecvBoxes will appear in the

corresponding pipe node. Secondly, based on the description
of data transfer in the workflow, the mapping relationships
between SendBoxes and RecvBoxes are established. By adding
pipe nodes, HDAG can clearly express the data transfer
situations between different function nodes. The Broadcast
and Scatter modes are represented in HDAG as Figure 6(b)
and Figure 6(c), respectively. In the figure, the difference in
data transfer between the two modes is clearly distinguished.

f

…

…

SendBox

RecvBox

Data Objects

M

N

data flow

f f f

f

f f f

(a) Pipe node

f

配色

…

…

SendBox

RecvBox

Data Objects

M

N

data flow

f f f

f

f f f

(b) Broadcast in HDAG

f

配色

…

…

SendBox

RecvBox

Data Objects

M

N

data flow

f f f

f

f f f

(c) Scatter in HDAG

Fig. 6: Overview of HDAG

2) Deferred Commit: In the counting-based data expiration
time monitoring mechanism, counters of data objects are
stored on the metadata node. Each time a data object is read,
its count number is reduced by one. This is reasonable for
applications where every function executes normally. However,
the actual execution of serverless applications can be more
complex.

Serverless functions tend to run in separate containers and
may be scheduled on arbitrary compute nodes. Due to network
failure, memory overselling, system cleanup, and other factors
on the compute node where the function resides, there is a
risk that the function may crash during execution. To avoid
application execution failure caused by function crashes [20–
23], current serverless platforms often provide fault tolerance
against function execution crashes through the function re-
execute mechanism. Specifically, when a running function
crashes due to the above reasons, the workflow platform
restarts a new container and executes the function code. How-
ever, in this case, the crashed function may have read partially
dependent intermediate data, which causes the counters of
these data objects to be updated. At this point, re-executing the
function can lead to counting errors and premature deletion of
data objects, which in turn can cause the application to fail.
The root cause of these problems is that the storage system is
not aware of the execution state of the function and therefore

treats all read operations as valid. Thus, once the expected
number of reads is reached, the data is deleted.

To this end, FuncStore proposes a Deferred Commit mecha-
nism. Specifically, in this mechanism, the update of the count
value is divided into two phases: the update phase and the
commit phase. When a function reads intermediate data from
FuncStore, the count value of the data object is not updated
immediately, but enters the update phase. In the update phase,
FuncStore adds an operation record, which is in the format
<object name>, to the Commit Buffer allocated for each
function. When adding an operation record to the Commit
Buffer, FuncStore first determines whether the same operation
record already exists in the Commit Buffer, and adds it only if
the same operation record does not exist in the Commit Buffer,
otherwise it does nothing. Since the operation records in the
Commit Buffer of a function are not duplicated, it is guaranteed
that reads of data by repeatedly executed functions will only
be recorded once.

Since the function follows the execution logic of read depen-
dencies, data processing, and results writing back [10, 24–26],
when FuncStore receives a write request from the function, it
means that the function has been successfully executed, and
the update of the count value enters the commit phase. In the
commit phase, FuncStore traverses the operation records in
the Commit Buffer of the function, and decreases the count
value of involved data objects by one, to complete the update
of the count value corresponding to all read operations of the
function. When the function has more than one output result,
FuncStore gets the object name of the last data from the WDS,
and determines whether it is the last write by matching the
name of the object when function performs write operations,
and only the write request for the last result will cause the
count update commit.

get(A)

get(B)

get(C)

D process(A, B, C)

put(D)

get(A)

get(B)

get(C)

D process(A, B, C)

put(D)

count(A) 3→2

count(B) 1→0

count(C) 2→1

count(D) 2

… …

<A>

<>

<>

<C>

crash →

re-execute commit

Serverless Function

Commit

Buffer

Counters

Fig. 7: An example of deferred commit

For example, Figure 7 shows that the function first reads the
data objects A, B, and C, processes the data, and then writes
back the result D. The function first reads the dependent data
A and B, and while reading the data it successfully adds two
operation records to the Commit Buffer. If the function crashes
at this point, the workflow platform will restart a container and
execute the function again. In this run, the function tries to add
two operation records to the Commit Buffer while reading data
A and B. The addition fails because the operation records for

A and B already exist in the Commit Buffer. After that, the
function follows the above logic to read the data object C,
process data, and generate the result D. Finally, the function
writes D back to FuncStore, at which point it traverses the
operation records in the Commit Buffer and reduces the count
value of the data objects A, B, and C.

C. Lifetime-aware Memory Management

To address the problem of low resource utilization caused by
block-granular memory allocation in small data-intensive sce-
narios, our basic idea is to provide more fine-grained memory
management for small data based on block-granular memory
allocation. Considering that the lifetimes of intermediate data
generated by the applications vary greatly, FuncStore proposes
a Lifetime-aware Memory Management mechanism. The key
idea of this mechanism is to predict the lifetime of intermediate
data and store data with similar lifetimes in the same memory
block. The memory block can be released after all the data in
the block expires.

1) Lifetime-based Memory Allocator: As shown in Fig-
ure 8, we design a Lifetime-based Memory Allocator that
manages the storage of data objects. Initially, the allocator
partitions the memory across all storage nodes into fixed-
size memory blocks, such as 1MB, 16MB. When the size of
the data object is smaller than the size of a memory block,
the Slice Allocator selects a memory block and allocates a
continuous memory space with the requested size from the
memory block. This allocated continuous memory space for a
data object is a memory slice.

frozen

<100ms

100ms~1s

1s~10s

>10s

deallocate

Block

Pools

active frozen

allocate

Block Allocator

Slice Allocator

slices

Fig. 8: Lifetime-based memory allocator

In the Slice Allocator, a Block Pool is comprised of multiple
memory blocks, and different Block Pools serve data objects
with different lifetimes. To allocate memory for a data object,
the Slice Allocator allocates a slice from the Block Pool
that contains data objects with similar lifespans, which are
predicted by the Lifetime Predictor. A Block Pool includes an
active block, multiple frozen blocks, and some free blocks.
An active block is the memory block that Block Pool is
serving slice allocation requests. To allocate a slice, the system
allocates a continuous memory space from the active block.
When the remaining space in the active block can not meet

an allocation request, the system changes the active block to a
frozen block, adds the frozen block to the frozen block queue,
and changes a free block to the active block. When all data
objects in a frozen block expire, this frozen memory block is
changed to become a free block.

Specifically, each block has two attributes: offset and frag-
ment size. The offset refers to the currently assigned offset,
while the fragment size refers to the space in the block that
is taken up by expired data objects. When a slice is allocated,
the offset of the block is added by the size corresponding to
the slice. When the count of a data object is reduced to zero
through the Consistent Monitoring mechanism, it means that
the data object has expired and its corresponding slice can be
released. However, FuncStore does not immediately release
the slice, but only increases the fragment size of the block by
the slice size. When the fragment size and offset of the block
are equal, all data in the block have expired and FuncStore
releases the entire memory block.

When the size of the data object exceeds the size of the
memory block, FuncStore directly allocates an appropriate
number of free memory blocks from the registered memory
blocks through the Block Allocator. During allocation, it will
try to allocate memory blocks on different nodes to facilitate
the use of parallel acceleration.

2) Data Lifetime Prediction: To reduce the fragmentation
caused by the expiration of some data in the block and further
improve the resource utilization in the block, it is critical
to accurately predict the lifetime of the data and select the
appropriate block for the data. In traditional applications, it
is difficult to analyze the lifetime of the storage space re-
quested by the application due to the lack of understanding of
information related to the stored data. However, in serverless
applications, the dependencies between intermediate data and
functions are described in the workflow provided by the user,
allowing us to use this information to predict the lifetime of
the data. In addition, the feature of deploying once and calling
multiple times enables us to collect historical information
about data access and to apply data-driven methods to predict
data lifetime.

In a serverless workflow, many factors affect the lifetime of
intermediate data. Intuitively, the lifetime of a data object is
related to the stage in the workflow of its writing function, the
number of times the data object is read, and the total number
of data objects on which the data object reading functions
depend. We represent these factors with Fstage, Tread, and
Nfunctions, respectively. In addition, we also consider the
paths between the function to write a data object and the
function to read this data object, as these paths affect the
lifetime of the data object. Specifically, we use two indicators,
Dstage and Mpath, to describe the impact of these paths,
respectively. Dstage represents the maximum value of the stage
interval difference between the stage when the function writes
the data and the stages when the functions read the data, while
Mpath represents the maximum number of function nodes on
all potential impact paths. The potential impact paths refer to
paths from functions that are in the same stage as the data

F1 a

F2
b

F4

F3

F5

d

e

f

F6

c

stage M stage M+1 stage M+2

g

Fig. 9: HDAG example for feature extract

writing function to all functions that read the data object.
Figure 9 demonstrates the process of extracting features for

the data object a in the given HDAG. The feature Fstage of
a is M since the function F1 that writes a is at stage M . As
functions F3 and F6 read a, the feature Tread of a is two.
Function F3 depends on one data object, while function F6
depends on three data objects, resulting in a feature Nfunctions

of four for a. Function F1 writes a at stage M , while functions
F3 and F6 read a at stages M + 1 and M + 2, respectively.
Hence, the feature Dstage of a is two. The potential impact
paths for a include <F1, F3>, <F1, F6>, <F1, F3, F6>,
<F2, F5, F6>, and <F2, F4, F5, F6>, with a maximum
path length of four. Consequently, the feature Mpath of a is
four.

We employ the feature extraction algorithm, as delineated in
Algorithm 1, to extract features of data objects from the HDAG
associated with the serverless workflow. Algorithm 1 initially
traverses the linked list of pipe nodes in the HDAG, locates
the pipe node and SendBox where the data object of interest is
located (lines 1-3), and reads the stage Fstage and the number
of read functions Tread (lines 4-5). It then iterates through all

Algorithm 1: Extract Features
Input: fList - function node list in hdag ;
pList - pipe node list in hdag ;
current - object for extracting features ;
Output: features - extracted features of current ;

1 for pNode in pList do
2 for SendBox in pNode.SendBoxes do
3 if SendBox.object == current then
4 Fstage := pNode.parent fNode.stage
5 Tread := SendBox.RecvBoxes.size
6 Nfunctions := 0, Dstage := 0, Mpath := 0
7 for RecvBox in SendBox.RecvBoxes do
8 f := RecvBox.child fNode
9 Nfunctions+ = f.obj dependencies num

10 Dstage := max(Dstage, f.stage− Fstage)
11 paths := {}, cur path := {}
12 FindPath(Fstage, f, cur path, paths)
13 Mpath := max(Mpath, paths.longest.len)

14 return(Fstage, Tread, Nfunctions, Dstage,Mpath)

RecvBoxes and function nodes corresponding to the SendBox,
calculating features Nfunctions and Dstage (lines 7-10), and
utilizes Algorithm 2 to identify all potential impact paths and
obtain the maximum path length (lines 12-13). Algorithm 2
recursively searches for potential impact paths from the read
functions of the data object to the stage of the write function
in a depth-first manner. For each current node, the parent node
is initially added to the current path (lines 1-3). If the parent
node is in the same stage as the write function, the current path
is added to the potential impact paths (lines 4-5); otherwise,
the parent node is considered the new current node, and the
search continues (lines 6-7).

Algorithm 2: Find Path
Input: stage num - stage number of object writer function;
fNode - object reader function node;
currentPath - current searching path;
Paths - paths between stage stage num and fNode;
Output: currentPath - current searching path;
Paths - paths between stage stage num and fNode;

1 for pNode in fNode.parent pNodes do
2 parent := pNode.parent fNode
3 currentPath.add(parent)
4 if parent.stage == stage num then
5 Paths.add(currentPath)

6 else if parent.stage > stage num then
7 FindPath(stage num, parent, currentPath, Paths)

8 currentPath.remove(parent)

In each category of applications evaluated, we select 20
applications from the category and run them 50 times. The
recorded lifetimes of the generated intermediate data serve
as the lifetime ms of data objects. For each data object, we
generate 50 items in the format <Fstage, Tread, Nfunctions,
Dstage, Mpath, lifetime ms>, constituting the dataset for each
application category. We allocate 80%, 10%, and 10% of the
dataset for training, cross-validation, and testing, respectively.

We adopt a fully connected neural network as a proof-of-
concept. Note that the exact choice of method or model is not
our concern, we currently use neural network as a reference
solution because it is widely used in serverless environments
to optimize different system metrics [27–30]. Our model com-
prises three hidden layers, each with 64 neurons, using ReLU
as the activation function. The entire neural network outputs
an integer value representing the lifetime in milliseconds.
For each data object, we calculate the mean and standard
deviation of the actual lifetime more than 50 times. Using a
normal distribution, we calculate the 95% confidence interval,
considering predictions within this interval to be accurate. All
models for the evaluated application categories achieve an
accuracy greater than 90% in the test set. The trained models
are deployed on the Model Node for lifetime prediction.

IV. IMPLEMENTATION

We have implemented the FuncStore prototype, which com-
prises a total of 7006 lines of code. This includes 6399 lines of
C++ code dedicated to the implementation of key components

such as the WDS Parser, Client Library, Metadata Server,
and Storage Server. Additionally, we have incorporated 607
lines of Python code to construct the Model Server. Our
implementation is based on the Apache Thrift framework [31]
to facilitate communication between these aforementioned
modules. Within the Metadata Server, we employ in-memory
hash tables to store counters for data objects, utilize an in-
memory linked list as the Commit Buffer for each function, and
facilitate rapid communication between different components
through direct function calls. To ensure high performance and
concurrent operation support across different modules, we opt
to employ libcuckoo [32] as a concurrent hash table and lock-
free concurrent queue [33] as a concurrent queue. This deci-
sion is motivated by the inherent limitations of unordered map
and queue in the C++ Standard Template Library (STL),
which does not offer built-in support for thread-safe concurrent
operations. Furthermore, in pursuit of enhanced support for
concurrent client sessions, we use asynchronous framed I/O
techniques within the Storage Server. This approach enables
us to efficiently handle a larger number of concurrent clients,
enhancing the overall performance of the system.

V. EVALUATION

A. Experimental Setup

For the evaluation, all ephemeral storage systems are de-
ployed on Amazon Elastic Compute Cloud (Amazon EC2).
We utilize two types of virtual servers, namely c5.xlarge
and r5.xlarge, for the Metadata Node and Storage Node
of the storage system, respectively. Additionally, a c5.xlarge
machine is selected as the Model Node in FuncStore. Note
that all these machines are deployed within the same Virtual
Private Cloud (VPC) to enable seamless interconnection. AWS
Lambda serves as the FaaS platform for executing serverless
functions, which are also deployed within the same VPC.

Concerning the configuration of the storage system, the
block size plays a crucial role in systems like Pocket, Jiffy,
and FuncStore. In essence, the block size significantly impacts
storage efficiency. Larger block sizes result in increased space
wastage due to the block-based granularity memory manage-
ment policy, especially for data smaller than the block size.
This inefficiency arises because a block can store only one data
object, and larger blocks lead to more wasted space within the
block for smaller data. Conversely, smaller block sizes result
in greater metadata overhead, consuming more memory in
metadata nodes. Meanwhile, smaller block sizes also involve
more network transfer round trips. This, in turn, hampers the
performance of reading and writing data due to the increased
software stack processing overhead. To determine an optimal
block size, we conduct performance evaluations on ephemeral
storage systems using varying block sizes. Figure 10 illustrates
the read and write latency of data objects across different
block sizes. Notably, the access latency decreases as the block
size increases, with a minimal latency drop observed when
the block size surpasses 1MB. To strike a balance between
ensuring efficient read and write latency for large data objects
and minimizing intra-block space wastage, we select 1MB

as the default block size for subsequent experiments. This
choice guarantees optimal read and write performance while
mitigating space wastage associated with block granularity
allocation.

1 2 8
K B

2 5 6
K B

5 1 2
K B 1 M B 2 M B 4 M B 8 M B

1 6 M
B

3 2 M
B

6 4 M
B

1 2 8
M B

0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

1 2 0 0

La
ten

cy
(m

s)

B l o c k s i z e

 6 4 M B O b j e c t W r i t e
 6 4 M B O b j e c t R e a d

Fig. 10: Latency of read/write for 64MB object

Moreover, in the case of Jiffy, determining the appropriate
lease time is also important. A short lease time might result
in premature data deletion before it becomes invalid, while
an excessively long lease time can lead to extended storage
durations, reducing the storage system’s resource utilization.
To address this challenge, we set the lease time as the
maximum value derived from all data object lifecycles in
all experiments. To achieve this, we proactively run the
application and record all data lifecycles. Subsequently, the
longest recorded lifecycle among all data objects is selected
as the lease time. This approach ensures that none of the data
is evicted prematurely, guaranteeing optimal data retention
without unnecessary storage prolongation.

TABLE I: Applications from different categories as workloads

Category Job Passing Pattern

Video Encode

April 09 brush hair u nm
np1 ba goo 0 (bagoo)

Pass, Broadcast,
Scatter, Aggregate

Aussie Brunette Brushing Hair
II brush hair u nm

np1 ri med 3 (rimed)

Pass, Broadcast,
Scatter, Aggregate

Aussie Brunette Brushing Hair
II brush hair u nm

np2 le goo 1 (legoo)

Pass, Broadcast,
Scatter, Aggregate

Compile
mosh Pass, Aggregate

gg Pass, Aggregate
8cc Pass, Aggregate

Word Count
thewasteland (twl) Pass, Scatter,

Aggregate

whatisserverless (wis) Pass, Scatter,
Aggregate

As for workloads, we choose eight widely-used applications
from three distinct categories common to serverless applica-
tions [25, 34, 35], as outlined in Table I.

B. Benefits of FuncStore

In this section, we empirically demonstrate the advantages
of FuncStore in job execution performance, job throughput,
and storage cost when compared to Pocket and Jiffy.

1 0 0 % 8 0 % 6 0 % 4 0 % 2 0 % 01 . 0

1 . 5

2 . 0

2 . 5

3 . 0
Pe

rfo
rm

an
ce

 Sl
ow

do
wn

M e m o r y C a p a c i t y (% o f P e a k)

 P o c k e t J i f f y F u n c S t o r e

(a) Job Performance

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 02
4
8

1 6
3 2
6 4

1 2 8

Nu
mb

er
of

Jo
bs

M e m o r y c a p a c i t y (M B)

 P o c k e t J i f f y F u n c S t o r e

(b) Job Throughput

b a g o o r i m e d l e g o o m o s h g g 8 c c t w l w i s f i o0 . 0

0 . 2

0 . 4

1 . 0

Sto
rag

e C
os

t

J o b

 P o c k e t J i f f y F u n c S t o r e

(c) Job Storage Cost

Fig. 11: Benefits of FuncStore

Initially, we evaluate the runtime performance of the work-
load under varying memory capacities. Specifically, we con-
figure the available memory resources of the storage system to
various fractions of the peak memory requirement necessary
for executing all the jobs listed in Table I. Subsequently, we
measure the completion time of the workload. Note that if
there were no available memory resources during workload
execution, the storage system stored subsequent intermediate
data on the slower SSD. The experimental results are shown
in Figure 11(a).

As the available memory diminishes, the completion time
of the workload increases across all three storage systems.
However, when the available memory of the storage system de-
creases, FuncStore exhibits a lower growth in workload com-
pletion time compared to Pocket and Jiffy. For instance, when
the available memory is set to 60% of the workload’s peak
memory usage, the workload completion time with Pocket and
Jiffy increases to 1.85 and 1.54 times the completion time
under peak memory, respectively. In contrast, with FuncStore,
the workload completion time only reaches 1.12 times. If the
memory availability is further reduced, the performance gap
among the three storage systems becomes more evident. When
the memory availability is only 20% of the peak, FuncStore’s
workload completion time is only 1.23 times the peak, while
Pocket and Jiffy’s workload completion time is 1.97 and
1.87 times that of FuncStore, respectively. This highlights
FuncStore’s ability to promptly release memory occupied by
expired intermediate data, enabling more efficient reuse of
limited memory. In contrast, the other two storage systems are
compelled to store a substantial amount of data on the slower
SSD, consequently prolonging the workload completion time.

Additionally, we conduct tests to determine the maximum
number of jobs that can be executed concurrently on dif-
ferent storage systems given a specific amount of available
memory. We incrementally add jobs to the test workload in
the order that they are listed in Table I until the execution
of the test workload encounters a failure. Note that if the
cumulative memory usage of the test workload exceeds the
available memory, the workload execution is considered a
failure, signifying the need for more memory to support the
simultaneous execution of these jobs. The results of this test
are illustrated in Figure 11(b). When the available memory on

the system is 200MB, FuncStore can support the concurrent
execution of 4 jobs, whereas Pocket and Jiffy can only support
3 jobs concurrently. If the available memory is increased to
400MB, FuncStore can support the concurrent execution of
12 jobs, while Pocket and Jiffy can only support 4 jobs. In
essence, FuncStore, as an ephemeral storage solution, reduces
the memory usage of each job, enabling the support of more
jobs compared to Pocket and Jiffy when the same amount of
memory is utilized.

Lastly, we assess the storage cost of running the jobs
detailed in Table I. Specifically, we execute each job without
limiting memory availability and record the real-time memory
usage with a granularity of 1 ms. We additionally test an I/O-
intensive application, lambda-fio, to illustrate that FuncStore’s
optimization of intermediate data storage is not affected by
I/O during the function execution phase. Lambda-fio uses
fio to perform a large number of I/O operations to test the
performance of functions’ local storage, and processes the
test results. It includes two data transfer modes: Pass and
Aggregate. Since the application cost in absolute dollars is
affected by the amount of data in the application itself and
the frequency of application calls, which makes the benefits
expressed in dollars vary greatly between applications. At the
same time, current cloud storage does not support serverless’
pay-as-you-go billing philosophy very well. ElastiCache, for
example, either charges for resources on-premises or supports
coarse-grained billing on a per GB-hour basis. We compare the
relative costs of different storage systems using the product of
the amount of memory used by the application and the time
at millisecond granularity, which provides a more focused and
accurate representation of the differences between different
storage systems. The comparisons of storage costs for different
applications using the three storage systems are depicted in
Figure 11(c). Compared to Pocket, Jiffy significantly reduces
the storage cost for workload runs, with FuncStore further
reducing the storage cost. When using Jiffy and FuncStore as
ephemeral storage, the average storage cost is 29.7% and 9.1%
of using Pocket, respectively.

To give a sense of the magnitude of the benefits, we use
gg as an example to illustrate. The gg has a medium-sized
intermediate data volume, which is a few hundred megabytes.
We assume that the frequency of gg calls is 1000 times per day,

0 2 0 4 0 6 0 8 0 1 0 0
0

4 0 0

8 0 0

1 2 0 0

1 6 0 0
Sto

rag
e C

ap
ac

ity
(M

B)

J o b P r o g r e s s (%)

 P o c k e t J i f f y
 F u n c S t o r e - C M (C o n s i s t e n t M o n i t o r i n g o n l y)
 F u n c S t o r e (F u n c S t o r e - C M + L i f e t i m e - a w a r e M e m o r y M a n a g e m e n t)

(a) Systems comparison: Pocket, Jiffy, and FuncStore

0 1 0 2 0 3 0 4 0 5 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

Sto
rag

e C
ap

ac
ity

(M
B)

T i m e (s)

 l e a s e = 4 s
 l e a s e = 2 s
 l e a s e = 1 s
 l e a s e = 1 0 0 m s

(b) Jiffy with different leases

Fig. 12: Understanding FuncStore benefits

which happens moderately in cloud vendor workloads [36].
We opt for ElastiCache in the ap-east-1 region, priced at
$0.166 per GB-hour, which we convert to a per MB-second
rate. Utilizing the product of the capacity of intermediate data
generated during gg’s running and the execution time, coupled
with the per MB-second price and a daily invocation frequency
of 1000 times, we calculate the costs of employing Pocket,
Jiffy, and FuncStore for this application to be $2.06/day,
$0.76/day, and $0.29/day, respectively.

C. Understanding FuncStore Benefits

FuncStore enhances resource utilization through a Consis-
tent Monitoring mechanism and a Lifetime-aware Memory
Management policy. In this subsection, we will illustrate
resource changes during application execution through ex-
periments. We still choose the applications in Table I as
the test workload. Subsequently, we execute these applica-
tions concurrently, and record the storage system’s resource
consumption throughout the execution process. Pocket, Jiffy,
and FuncStore serve as the storage systems supporting data
storage during the execution of the workload. Note that the
amount of resources requested in advance by Pocket is the
peak value during the running process of the workload, and
Jiffy’s lease duration is configured to 4 seconds, aligning with
the maximum intermediate data lifecycle of the applications.

Figure 12(a) illustrates the variation in storage resources at
different stages of the workload when utilizing Pocket, Jiffy,
and FuncStore as storage systems. In the figure, both Jiffy and
FuncStore significantly optimize memory resource utilization

during runtime in comparison to Pocket, which pre-allocates
fixed storage resources. Precisely, Jiffy and FuncStore reduce
resource usage by 21.4% and 86.6%, respectively. Notably,
FuncStore demonstrates a more pronounced effect compared
to Jiffy. Through the implementation of the Consistent Moni-
toring mechanism alone, FuncStore reduces memory resource
usage by 67.3%, which is 3.14 times more efficient than Jiffy.
When incorporating the Lifetime-aware Memory Management
policy, FuncStore’s efficiency surpasses Jiffy’s by 4.04 times.

In the case of Jiffy, different lease durations influence how
frequently its data is reclaimed from memory. To investigate
this impact, we conduct tests with varying lease durations: 4s,
2s, 1s, and 100ms. The changes in storage space are shown
in Figure 12(b). Since Jiffy stores deleted data on SSD and
loads it back into memory upon reuse, the reduction of the
lease duration accelerates the release of memory resources.
However, this can also lead to a significant amount of data
being read from SSD, substantially prolonging the runtime of
the workload. Specifically, when the lease duration is reduced
from a 4s configuration to 2s, 1s, and 100ms, memory resource
usage declines by 21.9%, 34.0%, and 90.1%, respectively.
Concurrently, there is an increase in workload execution time
by factors of 1.2x, 1.6x, and 1.7x, respectively.

D. Performance Benchmarks

In addition to resource utilization, the performance of data
read and write operations is a fundamental metric for evalu-
ating a storage system. Hence, we conduct tests to assess the
data read/write performance of Pocket, Jiffy, and FuncStore.
Specifically, we execute 1000 read/write requests for data of
various sizes to calculate the average read/write latency and
throughput of the three storage systems. The test results are
displayed in Figure 13. For 4KB size data, FuncStore ex-
hibits read/write latencies of 1225us and 1126us, respectively.
Pocket’s read/write latencies are 846us and 865us, while Jiffy’s
read/write latencies measure 2107us and 3078us, respectively.

4 K B 1 6 K B 6 4 K B
2 5 6 K B 1 M B 4 M B 1 6 M B 6 4 M B

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

Wr
ite

 La
ten

cy
(us

)

O b j e c t S i z e

4 K B 1 6 K B 6 4 K B
2 5 6 K B 1 M B 4 M B 1 6 M B 6 4 M B

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7
 F u n c S t o r e
 P o c k e t
 J i f f y

Re
ad

 La
ten

cy
(us

)

(a) Latency

4 K B 1 6 K B 6 4 K B
2 5 6 K B 1 M B 4 M B 1 6 M B 6 4 M B

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0

Wr
ite

 Th
rou

gh
pu

t (M
B/s

)

O b j e c t S i z e

4 K B 1 6 K B 6 4 K B
2 5 6 K B 1 M B 4 M B 1 6 M B 6 4 M B

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0

 F u n c S t o r e
 P o c k e t
 J i f f y

Re
ad

 Th
rou

gh
pu

t (M
B/s

)

(b) Throughput

Fig. 13: Performance comparison with data object size from
4KB to 128MB

In summary, FuncStore attains superior resource utilization
without compromising on performance, making it comparable
to state-of-the-art ephemeral storage systems. Note that the
throughput of all three systems, Pocket, Jiffy, and FuncStore, is
capped at approximately 80MB/s. This limitation stems from
AWS Lambda, which restricts the network bandwidth available
to each function instance to a maximum of 640Mbps [2, 11].

E. Metadata Server Analysis
As a key component of the system, the performance of the

Metadata Server is also a point of interest. In this section, we
evaluate the performance of the Metadata Server. We first test
the throughput and latency of the Metadata Server on a single
CPU core, followed by testing its scalability on multiple cores.
Specifically, we choose a machine of type c5.9xlarge to run
the Metadata Server, using taskset to limit the number of CPU
cores that it can utilize. We use a client to continuously send
write requests to the Metadata Server, increasing the number
of concurrent clients to enhance throughput until it becomes
congested, with the test results shown in Figure 14(a). Initially,
as the number of concurrent clients increases, the throughput
of the Metadata Server also increases, with the latency of
each request remaining relatively stable. When the throughput
reaches about 95KOps, increasing the number of clients almost
does not increase the throughput of the Metadata Server,
while the processing latency of requests significantly increases,
meaning it has reached a point of congestion.

0 2 0 4 0 6 0 8 0 1 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

La
ten

cy
(us

)

T h r o u g h p u t (K O p s)
(a) Single core

1 2 4 8 1 6 3 20
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Th
rou

gh
pu

t (K
Op

s)

C o r e s
(b) Multiple cores

Fig. 14: Metadata server performance

Subsequently, we increase the number of CPU cores that the
Metadata Server can utilize, testing the maximum throughput
that can be achieved under different CPU core counts, with
the test results shown in Figure 14(b). When the CPU core
counts are 2, 4, 8, 16, and 32, the maximum throughputs
are respectively 182KOps, 343KOps, 456KOps, 529KOps,
and 543KOps. Notably, when the throughput demand for
the Metadata Server exceeds 543KOps, we can enhance the
throughput through horizontal scaling. Specifically, we can
increase the number of metadata nodes, while having each
metadata node manage some storage nodes and serve a portion
of workflow requests, to ensure that the Metadata Server does
not become a bottleneck in the system.

F. System Overhead
In this subsection, we discuss the additional overheads in the

design of FuncStore. These overheads encompass increased

TABLE II: Spatial overhead

counter lifetime op record offset size Total
1 byte 4 bytes several bytes 4 bytes 4 bytes ∼20 bytes

space occupancy, aiming at enhancing resource utilization, as
well as the time overhead associated with reading and writing
data.

1) Spatial Overhead: Unlike Pocket and Jiffy, FuncStore
introduces storage overhead for the initial count value and
predicted lifetime of each data object. The initial counter
and the predicted lifetime require one byte and four bytes,
respectively. The four bytes can represent lifetimes up to
232 ms, which significantly surpasses the lifetime of all the
intermediate data encountered.

During application execution, operation records in the Com-
mit Buffer also consume storage space. For each intermediate
data, the operation record size is determined by the data
object’s name, roughly amounting to a few bytes. Additionally,
while Pocket and Jiffy only need to record the mapping of the
data object to the storage block, FuncStore must also record
the data object’s start offset and size when allocating a slice,
requiring an additional 8 bytes.

In summary, each data object stored in FuncStore incurs
an additional metadata overhead of approximately 20 bytes,
compared with Pocket. The specific overhead items are de-
tailed in Table II. Besides the metadata storage overhead
mentioned above, the prediction models also consume storage
space. In our implementation, the size of each model is
approximately 34KB. However, the storage overhead of the
prediction models is negligible since one model can be shared
across all applications within the same category.

2) Temporal Overhead: For each read and write request,
FuncStore performs additional operations on the Metadata
Server to update the data object’s maintenance information.
These operations involve adding operation records to the
Commit Buffer every time the data is read, committing all
operation records in the Commit Buffer and updating the
count value when the function writes the last data object.
We separately measure the overhead of these operations.
Specifically, it takes approximately 1us to add an operation
record to the Commit Buffer and about 15us to commit a
Commit Buffer containing 10 operation records and update the
corresponding count values. These additional time overheads
are acceptable for individual read/write operations.

VI. RELATED WORK

Remote Storage. In addition to Pocket [11] and Jiffy [16],
there are several other storage systems employed to facilitate
the sharing of intermediate data in serverless computing.
For example, Crail [37] leverages diverse storage media and
RDMA, catering to the storage requirements of data in various
sizes. Another solution is Anna [38, 39], a high-performance,
auto-scaling, and multi-tier storage system designed for cloud
environments. It focuses on how to automatically scale nodes
and improve read/write performance. In contrast to these stor-
age systems, which primarily focus on data placement across

various storage media and the dynamic scaling of cluster size,
FuncStore allocates and releases storage space by monitoring
the lifecycle of the data to maximize the utilization of limited
storage resources. SDCM [40] proposes a mathematical model
to select the cost-optimal storage strategy by comparing the
cost of data storage with the re-create cost. It is orthogonal to
FuncStore. SDCM can use FuncStore’s techniques to reduce
storage costs regardless of the durability level of the storage. In
contrast, FuncStore currently chooses memory as the storage
medium and simply relies on re-creating data to cope with
storage failures. It can be further optimized through SDCM
to make a better choice between re-creating data and using
storage with higher durability.

Caching Strategies. To enhance data transfer performance,
some research works build a cache to accelerate the func-
tion’s access to intermediate data. OFC [26] constructs a
RAMCloud [41] cluster directly on the compute nodes. Using
machine learning techniques, it can predict the amount of idle
memory available for a given function. This idle memory is
then allocated to the RAMCloud cluster to serve as a cache
for the intermediate data accessed during the execution of the
function. Similarly, Faa$T [15] employs a cache layer located
between the function and remote storage. Unlike OFC, which
offers a shared cache cluster for all applications, Faa$T takes
a different approach. It provides a dedicated cache for each
serverless application and unloads cached data when the appli-
cation is inactive. This strategy helps minimize memory usage.
Duo [42] takes a unique approach by analyzing the access
patterns of the intermediate data. Based on these patterns,
it designs a cache algorithm that prioritizes data reads. This
strategy improves the overall performance of data access by
giving high priority to frequently read data. However, since
the cache is still built on top of the existing remote storage, it
does not improve the resource utilization of the storage system.
Furthermore, there remains a notable overhead when accessing
remote storage in the event of cache misses.

Alternative Data Sharing Methods. Apart from utilizing
remote storage for data transfer, various alternative methods
are available. Some research works [1, 5, 43–45] try to run
functions of the same application on the same physical node,
which in turn reduces network access overhead by sharing
memory on the host. This approach increases the scheduling
constraints of the functions. When the functions of a single
application cannot run on a node at the same time, it still
needs to pass the data through remote storage. Additionally,
approaches such as Boxer [46] and FMI [47] enable direct
communication between AWS Lambda functions through NAT
hole punching. However, implementing NAT hole punching
requires users to manually deploy a hole punching server,
which increases the cost of use.

Garbage Collection. A lot of high-level programming
languages (e.g., Java, Go, and Python) use garbage collection
(GC) mechanisms to implement automatic memory manage-
ment to reduce the user’s burden on memory management.
This is similar to our idea of releasing memory in a timely
manner without the user being aware of it. Tracing garbage

collection [48, 49] is a commonly used method. It maintains
the reference relationship between data objects, and determines
whether a data object can be recycled by analyzing the reacha-
bility of the reference relationship path from the data object to
some starting points (GC roots). Reference counting [50–52]
is another common garbage collection method. It determines
whether the object’s space can be reclaimed by recording the
number of times each data object is referenced. The method of
FuncStore’s Consistent Monitoring to determine the expiration
of intermediate data is similar to reference counting, while it
is used in distributed memory management. Furthermore, we
propose a fault-tolerant mechanism for function retry on this
basis.

VII. CONCLUSION

Existing serverless ephemeral storage systems suffer from
low storage resource utilization. The reason is that it is difficult
for the system to accurately sense the lifecycle of immediate
data, leading to a large amount of storage resources being
occupied and not released promptly. In response to this issue,
we introduce FuncStore, which accurately senses the lifecycle
of data according to the number of times it has been read, and
deletes the data at the end of the lifecycle instantly to avoid the
occupation of storage space. Furthermore, FuncStore places
data objects with similar expiration times in the same storage
unit to reduce storage space fragmentation. Compared to state-
of-the-art works, FuncStore reduces the storage resource usage
by 86.6% and 81.7% respectively, while guaranteeing request
latency and throughput.

VIII. ACKNOWLEDGEMENTS

We thank our shepherd, Jay Lofstead, and the anonymous
reviewers for their insightful feedback. This work was sup-
ported in part by the National Key Research and Develop-
ment Program of China under grant No.2022YFB4500704
and in part by the National Natural Science Founda-
tion of China under grant No.62032008. Zhuo Huang
(huangzhuo@hust.edu.cn) and Jianhui Yue (jyue@mtu.edu)
are the corresponding authors.

REFERENCES

[1] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke,
A. Beck, P. Aditya, and V. Hilt, “SAND: Towards
High-Performance Serverless Computing,” in Proceed-
ings of the 2018 USENIX Annual Technical Conference
(USENIX ATC), 2018, pp. 923–935.

[2] A. Klimovic, Y. Wang, C. E. Kozyrakis, P. Stuedi, J. Pf-
efferle, and A. K. Trivedi, “Understanding Ephemeral
Storage for Serverless Analytics,” in Proceedings of the
2018 USENIX Annual Technical Conference (USENIX
ATC), 2018, pp. 789–794.

[3] Z. Huang, S. Wu, S. Jiang, and H. Jin, “FastBuild: Accel-
erating Docker Image Building for Efficient Development
and Deployment of Container,” in Proceedings of the
35th IEEE International Conference on Massive Storage
Systems and Technology (MSST), 2019, pp. 28–37.

[4] Z. Huang, Q. Zhang, H. Fan, S. Wu, C. Yu, H. Jin,
J. Deng, J. Gu, and Z. Tang, “Multi-grained Trace Col-
lection, Analysis, and Management of Diverse Container
Images,” IEEE Transactions on Computers, pp. 1–12,
2024.

[5] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng,
and M. Guo, “FaaSFlow: Enable Efficient Workflow
Execution for Function-as-a-Service,” in Proceedings of
the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2022, pp. 782–796.

[6] Amazon Simple Storage Service. [Online]. Available:
https://aws.amazon.com/s3/

[7] Amazon DynamoDB. [Online]. Available: https://aws.
amazon.com/dynamodb/

[8] Amazon ElastiCache. [Online]. Available: https://aws.
amazon.com/elasticache/

[9] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht,
D. Skourtis, V. Tarasov, F. Yan, and Y. Cheng, “INFINI-
CACHE: Exploiting Ephemeral Serverless Functions to
Build a Cost-Effective Memory Cache,” in Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST), 2020, pp. 267–281.

[10] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubra-
maniam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter,
and K. Winstein, “Encoding, Fast and Slow: Low-latency
Video Processing Using Thousands of Tiny Threads,”
in Proceedings of the 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2017, pp. 363–376.

[11] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle,
and C. Kozyrakis, “Pocket: Elastic Ephemeral Storage
for Serverless Analytics,” in Proceedings of the 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018, pp. 427–444.

[12] A. Bhardwaj, C. Kulkarni, and R. Stutsman, “Adaptive
Placement for In-memory Storage Functions,” in Pro-
ceedings of the 2020 USENIX Annual Technical Con-
ference (USENIX ATC), 2020, pp. 127–141.

[13] A. Merenstein, V. Tarasov, A. Anwar, S. Guthridge, and
E. Zadok, “F3: Serving Files Efficiently in Serverless
Computing,” in Proceedings of the 16th ACM Interna-
tional Systems and Storage Conference (SYSTOR), 2023,
pp. 8–21.

[14] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, Fast
and Slow: Scalable Analytics on Serverless Infrastruc-
ture,” in Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2019, pp. 193–206.

[15] F. Romero, G. I. Chaudhry, I. Goiri, P. Gopa, P. Ba-
tum, N. J. Yadwadkar, R. Fonseca, C. Kozyrakis, and
R. Bianchini, “Faa$T: A Transparent Auto-Scaling Cache
for Serverless Applications,” in Proceedings of the 12th
ACM Symposium on Cloud Computing (SoCC), 2021, pp.
122–137.

[16] A. Khandelwal, Y. Tang, R. Agarwal, A. Akella, and

I. Stoica, “Jiffy: Elastic Far-Memory for Stateful Server-
less Analytics,” in Proceedings of the 17th ACM Euro-
pean Conference on Computer Systems (EuroSys), 2022,
pp. 697–713.

[17] AWS Step Functions. [Online]. Available: https://aws.
amazon.com/step-functions/

[18] Google Cloud Workflows. [Online]. Available: https:
//cloud.google.com/workflows/

[19] Redis. [Online]. Available: https://redis.io/
[20] V. Sreekanti, C. Wu, S. Chhatrapati, J. E. Gonzalez,

J. M. Hellerstein, and J. M. Faleiro, “A Fault-Tolerance
Shim for Serverless Computing,” in Proceedings of the
15th ACM European Conference on Computer Systems
(EuroSys), 2020, pp. 1–15.

[21] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and
V. Liu, “Fault-tolerant and Transactional Stateful Server-
less Workflows,” in Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2020, pp. 1187–1204.

[22] Z. Jia and E. Witchel, “Boki: Stateful Serverless Comput-
ing with Shared Logs,” in Proceedings of the 28th ACM
Symposium on Operating Systems Principles (SOSP),
2021, pp. 691–707.

[23] S. Qi, X. Liu, and X. Jin, “Halfmoon: Log-Optimal Fault-
Tolerant Stateful Serverless Computing,” in Proceedings
of the 29th ACM Symposium on Operating Systems
Principles (SOSP), 2023, pp. 314–330.

[24] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter,
“Sprocket: A Serverless Video Processing Framework,”
in Proceedings of the 9th ACM Symposium on Cloud
Computing (SoCC), 2018, pp. 263–274.

[25] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee,
C. Kozyrakis, M. Zaharia, and K. Winstein, “From
Laptop to Lambda: Outsourcing Everyday Jobs to Thou-
sands of Transient Functional Containers,” in Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC), 2019, pp. 475–488.

[26] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale,
S. Pouget, J. Kouam, R. Lachaize, J. Hwang, T. Wood,
D. Hagimont, N. D. Palma, B. Batchakui, and A. Tchana,
“OFC: An Opportunistic Caching System for FaaS Plat-
forms,” in Proceedings of the 16th ACM European Con-
ference on Computer Systems (EuroSys), 2021, pp. 228–
244.

[27] H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd,
“FaaSRank: Learning to Schedule Functions in Server-
less Platforms,” in Proceedings of the 2nd IEEE Inter-
national Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), 2021, pp. 31–40.

[28] A. Mampage, S. Karunasekera, and R. Buyya, “Deep
Reinforcement Learning for Application Scheduling in
Resource-constrained, Multi-tenant Serverless Comput-
ing Environments,” Future Generation Computer Sys-
tems, vol. 143, pp. 277–292, 2023.

[29] S. Eismann, J. Grohmann, E. Van Eyk, N. Herbst, and
S. Kounev, “Predicting the Costs of Serverless Work-

flows,” in Proceedings of the 11th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE),
2020, pp. 265–276.

[30] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst,
and S. Kounev, “Sizeless: Predicting the Optimal Size of
Serverless Functions,” in Proceedings of the 22nd ACM/I-
FIP International Middleware Conference (Middleware),
2021, pp. 248–259.

[31] Apache Thrift. [Online]. Available: https://thrift.apache.
org/

[32] Libcuckoo. [Online]. Available: https://github.com/
efficient/libcuckoo/

[33] ConcurrentQueue. [Online]. Available: https://github.
com/cameron314/concurrentqueue/

[34] The Mobile Shell. [Online]. Available: https://github.
com/mobile-shell/mosh/

[35] HMDB. [Online]. Available: https://serre-lab.clps.brown.
edu/resource/hmdb-a-large-human-motion-database/

[36] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and
R. Bianchini, “Serverless in the Wild: Characterizing and
Optimizing the Serverless Workload at a Large Cloud
Provider,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC), 2020, pp. 205–
218.

[37] P. Stuedi, A. Trivedi, J. Pfefferle, A. Klimovic,
A. Schuepbach, and B. Metzler, “Unification of Tem-
porary Storage in the NodeKernel Architecture,” in Pro-
ceedings of the 2019 USENIX Annual Technical Confer-
ence (USENIX ATC), 2019, pp. 767–781.

[38] C. Wu, J. M. Faleiro, Y. Lin, and J. M. Hellerstein,
“Anna: A KVS for Any Scale,” IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 2, pp.
344–358, 2019.

[39] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling
Tiered Cloud Storage in Anna,” Proceedings of the VLDB
Endowment, vol. 12, no. 6, pp. 624–638, 2019.

[40] A. Merenstein, X. Wang, V. Tarasov, P. Agarwal,
S. Guthridge, K. Thakkar, K. Wu, A. Anwar, and
E. Zadok, “Balancing Costs and Durability for Serverless
Data,” in Proceedings of the 38th IEEE International
Conference on Massive Storage Systems and Technology
(MSST), 2024.

[41] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang,
“The RAMCloud Storage System,” ACM Transactions
on Computer Systems, vol. 33, no. 3, pp. 1–55, 2015.

[42] Z. Huang, H. Fan, C. Cheng, S. Wu, and H. Jin,
“Duo: Improving Data Sharing of Stateful Serverless
Applications by Efficiently Caching Multi-Read Data,”
in Proceedings of the 37th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2023,
pp. 875–885.

[43] S. Shillaker and P. Pietzuch, “FAASM: Lightweight
Isolation for Efficient Stateful Serverless Computing,”

in Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC), 2020, pp. 419–433.

[44] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faast-
lane: Accelerating Function-as-a-Service Workflows,” in
Proceedings of the 2021 USENIX Annual Technical Con-
ference (USENIX ATC), 2021, pp. 957–971.

[45] Z. Jia and E. Witchel, “Nightcore: Efficient and Scalable
Serverless Computing for Latency-Sensitive, Interactive
Microservices,” in Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2021, pp. 152–166.

[46] M. Wawrzoniak, I. Müller, R. Bruno, and G. Alonso,
“Boxer: Data Analytics on Network-enabled Serverless
Platforms,” in Proceedings of the 11th International Con-
ference on Innovative Data Systems Research (CIDR),
2021, pp. 1–11.

[47] M. Copik, R. Böhringer, A. Calotoiu, and T. Hoefler,
“FMI: Fast and Cheap Message Passing for Serverless
Functions,” in Proceedings of the 37th ACM Interna-
tional Conference on Supercomputing (ICS), 2023, pp.
373–385.

[48] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens, “On-the-Fly Garbage Collection:
An Exercise in Cooperation,” Communications of the
ACM, vol. 21, no. 11, pp. 966–975, 1978.

[49] M. Maas, K. Asanović, and J. Kubiatowicz, “A Hardware
Accelerator for Tracing Garbage Collection,” in Proceed-
ings of the 45th ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2018, pp. 138–151.

[50] D. Anderson, G. E. Blelloch, and Y. Wei, “Concurrent
Deferred Reference Counting with Constant-Time Over-
head,” in Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design
and Implementation (PLDI), 2021, pp. 526–541.

[51] W. Zhao, S. M. Blackburn, and K. S. McKinley, “Low-
Latency, High-Throughput Garbage Collection,” in Pro-
ceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Imple-
mentation (PLDI), 2022, pp. 76–91.

[52] D. Anderson, G. E. Blelloch, and Y. Wei, “Turning
Manual Concurrent Memory Reclamation into Automatic
Reference Counting,” in Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI), 2022, pp.
61–75.

