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Abstract—Caching is one of the most effective methods to
optimizing SSD performance. This work finds that the existing
cache management policies are inefficiently used due to two issues.
First, since most SSD caches are designed as write caches, and
do not account for reads I/O accesses that are critical to SSD
performance. Second, lack of effective coordination between read
and write caching policies leads to the inefficient utilization of
cache and flash memory bandwidth. This leaves us room to
significantly improve SSD performance. To this end, we present
a Learning-based Coordinated Read-Write policy (L-CoRW) for
SSD cache management. First, L-CoRW adaptively controls read
caches based on observed access patterns and SSD internal state
to efficiently utilize and optimize SSD cache and bandwidth
resources. Second, L-CoRW, adopts the active write-through policy,
creates a sufficient amount of clean data during low-intensity and
poor data locality to mitigate the SSD performance cliff caused
by burst I/O. Experimental results on the latest block-level I/O
traces show that L-CoRW significantly reduces the response time
and tail latency by up to 48.6% and 33.7%, respectively, over the
previous schemes with negligible cost. Meanwhile, L-CoRW can
reduce write amplification factor (WAF) by 9.6% to 24.7%.

Index Terms—Cache Management, Solid State Disks, Block-
level I/O

I. INTRODUCTION

Currently, solid-state drives (SSDs) have been widely de-
ployed in modern storage systems. Modern SSDs are usually
configured with an on-board cache which plays a crucial role
in improving SSD throughput and lifetime. Some SSD caches
apply the write cache mode due to flash read/write asymmetry.

Many existing approaches propose cache management meth-
ods for write optimization [1]–[8]. These existing research
works combine the workload characteristics with flash memory
to reorder the cache queue to keep hot data in the cache as
much as possible. For example, Chen et al. propose eviction-
cost-aware (ECR) cache management policy for page-level
flash-based SSDs [6]. ECR organizes the write data in the
cache according to the underlying flash chip, and expects to
free up the cache space by writing back the dirty pages on
the idle chip. Similar to ECR, Liu et al. propose load-aware
cache replacement algorithm (LCR) [5], which trades off the
miss ratio and the miss penalty by narrowing down the range
of victim data (dirty or clean data) to be selected in cache.
The basic idea is to give a higher priority to cache the data
on the flash that are in high I/O state. CFLRU (Clean-First
LRU) [4] evicts clean written data preferentially but does not
consider the trade-off between write-through and write-back
in different workload phases, resulting in the uneconomical
eviction of clean data. Write-through means that the data is

also synchronously written to the flash layer when it is written
to the cache. At this time, the data in the cache is clean data.
On the contrary, write-back means that data only needs to be
written to the cache. In this case, there is dirty data in the
cache, which needs to be written to the flash memory when
the dirty data is replaced out of the cache. Note that this paper
does not explore the impact of different cache replacement or
prefetching algorithms on SSDs.

In fact, the core of the above methods is to keep an
appropriate proportion of clean pages in the SSD cache, so
as to reduce the impact of burst I/O on SSD. However, these
methods adopt passive update plans, which are reflected in
the fact that corresponding strategies are only taken when
the system experiences abnormal performance. Frequent re-
placement of dirty data in the face of burst I/O under write
intensive workloads often leads to a sharp SSD performance
cliff [2]. Besides, these caching scheme need to allocate the
detailed physical address for all write data in advance, which
undoubtedly increases the SSD complexity. Recently, Co-
Active [2] solves the above problem through the queuing theory
model. Unfortunately, various mechanisms such as program
or erase-pause make it difficult for Co-Active to establish
accurate queue prediction models. Moreover, we also found
that the existing techniques use heuristically determined fixed
design and do not adjust the factors at run time. In addition,
some aggressive caching policies also affect the SSD related
properties, like WAF. For example, Huang et al. [9] design
a cache management scheme that periodically write-back data
to flash in active mode. CFLRU, LCR, and ECR also do not
consider flash memory wear during write-through, resulting
in these methods continuously writing a large I/O traffic to
flash memory, which raises write amplification and shortens
the lifespan of SSDs. Limited by the fact that the frequency
of access only distinguishes between once and many times, it
also does not filter out hot data very well, so the wear problem
remains as well.

Through some preliminary studies in realistic enterprise scale
traces (see Section III), we find that the differences in I/O
traffic and locality of the read and write requests for modern
block-level I/O traces can be complementary. This allows us
to improve SSD performance by taking advantage of the read
and write I/O on the relevant features, which involves the
coordination of the read and write cache policies. Furthermore,
burst I/Os are also very common in enterprise traces, which can
cause the SSD performance cliff in the cache. One reason is that



existing cache policies use write-back method to handle data
updates [7], which makes SSD cache unable to quickly buffer
I/O traffic. Therefore, we need to consider how to alleviate
the impact of burst I/O on SSDs. At the same time, setting
a reasonable caching scheme for data with better locality is
also important to further reduce flash wear and improve SSD
lifespan [10]. Aiming to augment and coordinate these practical
policies in SSD (e.g., read cache, write-through), in this paper,
we propose a coordinated read-write cache management policy
based on online reinforcement learning called L-CoRW which
makes the advantages and drawbacks of the different caching
modes complement each other. The contributions of this paper
are as follows:

• We provide an in-depth experimental analysis of the
latest realistic enterprise scale traces. We find significant
differences between the read and write requests in the
I/O traffic and locality, forming the key component of our
proposed novel cache policy.

• We propose L-CoRW, a light-weight learning-based cache
control framework for modern SSDs that mitigates the
performance degradation and performance cliff triggered
by burst I/O under write-dominated workloads.

• We evaluate L-CoRW using a wide variety of storage
workloads consisting of diverse applications in an open-
source SSD simulator and demonstrate the efficiency of
L-CoRW.

The paper is organized as follows. Section II introduces
the background, while Section III presents our motivation for
this work. Section IV clarifies our design goals and explains
why we used a learning-based approach. Section V presents
the proposed L-CoRW policy. The experimental evaluation is
presented in Section VI, with a discussion in Section VII.
Section VIII concludes the paper.

II. BACKGROUND

A. SSDs Architecture

Fig. 1 illustrates the architecture of an SSD. Inside the SSD,
requests fetched from multiple host-side submission queue (SQ)
are first placed at the host interface logic (HIL). Each request is
divided into multiple transactions at the granularity of a single
page. Next, all transactions will access the on-board DRAM.
Some transactions that do not hit the cache or trigger a dirty
data write-back will be translated by the address mapping table
from the logical page address (LPA) into the physical page
address (PPA). Finally, the transaction scheduling unit (TSU)
schedules these transactions to achieve four level parallelism,
from channel, chip, die to plane [11], [12].

Most current SSD controller consists of embedded DRAM
and processors to process the I/O requests and manage the flash.
Due to the read and program NAND flash-based asymmetry,
SSD internal cache is usually designed as a write cache mode.
More specifically, read requests will not be cached when cache
miss, while write requests are cached in the SSD cache (when
write cache miss) [7]. To ensure data consistency, dirty pages
replaced out of the cache are written back to the underlying
flash memory synchronously (passive policy). In addition, there
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Fig. 1. The overview of a modern SSD and L-CoRW.

is a proactive write-through policy to synchronize write data
to cache and flash memory. However, either write-back or
write-through will compete with the read request for limited
bandwidth resources at the TSU, which is unfair to the read
request.

B. Block-level I/O Traces

We use realistic enterprise scale workloads to study cache
management policy. To gain meaningful insight into the I/O
characteristics of the storage system, we consider the public
block-level I/O traces from Alibaba Cloud [13], Tencent Cloud
[14], and Microsoft [15]. Table I shows different categories of
basic statistics of AliCloud, TenCloud, and MSR, where MSR
has been used in most previous studies related to SSD caching
[1], [2], [6], [16].

TABLE I
BASIC STATISTICS OF ALICLOUD, TENCLOUD, AND MSR

AliCloud TenCloud MSR
Source Alibaba Cloud Tencent Cloud Microsoft

#Volumes 1000 4966 36
Duration (days) 31 (Jan. 2020) 7 (Oct. 2018) 7 (Feb. 2007)
Total requests 20,232,973,351 25,998,077,615 868,424,016

Write (%) 75.00 69.84 29.77

We can observe that both AliCloud and TenCloud have
a significantly higher percentage of write requests. This is
because front-end application servers absorb the vast majority
of reading requests by caching hot data in storage system,
resulting in many storage back-ends experiencing a write-
dominant workload behavior. Since MSR traces are over 10
years old and the number of volumes is small, we mainly focus
on the AliCloud and TenCloud traces in this paper.

C. Reinforcement Learning

In reinforcement learning (RL), an agent interacts with its
environment to learn how to adapt to the current state. The
goal of RL is to learn the optimal action function and thus
maximize the reward. In L-CoRW, we adopt Q-Learning [17] as
the learning algorithm. Q-Learning is a popular RL algorithm
that is one of the most classic value-based RL methods and
does not require any prior knowledge of the system. Many
research works [16], [18], [19] have confirmed that Q-Learning
can adapt well to discrete state spaces, which meets our goal
of a light-weight learning algorithm. The core of Q-Learning



is the calculation of Q-tables, which are defined as Q(s, a).
The s and a represent state and action. The rows of Q-table
represent Q-value of the state while the columns of Q-table
represent action, which measures how good it will be if the
current state takes this action. Q(s, a) updates follow Bellman
Equation which is defined below:

Q(s, a)←−Q(s, a) + λ[r + γmaxaQ(s
′
, a

′
)−Q(s, a)] (1)

where λ, r, and γ are the learning rate, the reward, and the
discount factor, respectively. The a

′
is the action in the next

state s
′
. For the use of Q-table, we will choose the action a that

maximises Q(s, a) (argmaxaQ(s, a)) at state s, thus obtaining
the policy recommended by RL.

III. MOTIVATION

In this section, we present a high-level analysis of AliCloud
and TenCloud. Even though there are more write requests in
AliCloud and TenCloud, we find some interesting differences
between the read and write requests, creating more challenges
for designing an optimal cache management policy. Currently,
there are studies [2] pointing out that SSD performance is
more affected by burst I/Os. In addition to limited hardware
resources, stereotypical resource scheduling also reduces the
utilisation of hardware resources. For example, although some-
times the read data traffic is greater than the write traffic, the
SSD cache is always used as the write cache at this time.
According to Ren et al. [20], tens of times disparity in peak
workloads on cloud storage servers should be considered when
load balancing. We pre-process the workloads for our analysis
and evaluation as follows. We remove some workloads that
have almost no read requests (e.g., <0.1% of reads) or a
too small number of requests (e.g., <8MB) to avoid biasing
our analysis. We analyze the percentage of data traffic in the
workloads when the I/O traffic is 10 times (>10), 100 times
(>100), 1000 times (>1000), and 10000 times (>10000) larger
than the average I/O bandwidth. The results are shown in Fig. 2
and Fig. 3.

(a) read (b) write

Fig. 2. The cumulative distribution of the burst I/O traffic for AliCloud.

We find that burst I/O contains a large proportion of traffic,
especially for read I/O. For example, in about 80% of Ali-
Cloud’s read traces, the data volume generated by >100 times
traffic accounts for over 67% of the total data volume of each
workload, which is 64% in TenCloud. In contrast, the >100
times write traffic in 60% of AliCloud traces accounts for less

(a) read (b) write

Fig. 3. The cumulative distribution of the burst I/O traffic for TenCloud.

than 34% of the total data volume of each workload, which
is even less in TenCloud (<8%). This means that burst read
I/O is more common, and the write traffic is more stable and
smooth than the read traffic in AliCloud and TenCloud.

For SSD caches, smooth I/O traffic can reduce the possibility
of blocking and SSD performance cliff. Moreover, another
important factor that affects the cache performance is the data
locality. A vast majority of cache replacement algorithm favor
LRU (Least Recently Used) in SSD because it can exploit
locality features. LRU performs well when data that was used
recently is likely to be reused in the near future [21]. Some
metrics generally used to characterise data locality include
footprint [22], re-access ratio [14], and reuse distance [23], etc.
Here we use the re-access ratio to show the locality because
the algorithm overhead is small, and it facilitates us to build
the corresponding model inside the SSD for analysis. Re-access
ratio (RAR ∈ [0, 1)) is defined as a ratio of the re-access data
to the total data and a higher RAR-value indicates better data
locality. We speculate on the possible relationship by observing
the change in I/O traffic versus locality. Fig. 4 plots I/O traffic
versus locality for one of the traces selected in AliCloud, with
similar cases for the other traces. We can see that the locality of
read requests and I/O traffic show a positive correlation (Fig. 4
(a)), and the trend of the read traffic is not stable (from 0 to
1400 MiB), while the write traffic’s behavior is the opposite
of the read (Fig. 4 (b)). However, a question is whether the
above pattern still holds during the whole time period of the
workload.

Based on the observation of I/O traffic and locality, we
conduct experiments to evaluate the potential correlations be-
tween them. By calculating the Pearson correlation coefficient
ρ (ρ ∈ [−1, 1]) between the real-time I/O traffic and the RAR,
we can quantify the correlation between them. A higher |ρ|-
value indicates higher correlation, where the ρ is positive for
positive correlation and negative for the opposite. Fig. 5 shows
the correlation analysis of the read and write request I/O traffic
and locality for all volumes.

We can see that more than 80% / 87% of volumes have a
positive correlation (ρ > 0) between RAR and I/O traffic for
the read, and nearly 50% / 56% have a moderate correlation
(ρ > 0.4) in AliCloud / TenCloud. In contrast, more than 80%
/ 84% of volumes have a negative correlation (ρ < 0) between
RAR and I/O traffic for the write, and nearly 70% / 66% have a
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Fig. 4. Motivating examples, trends in I/O traffic and locality.

Fig. 5. Correlation analysis of I/O traffic and locality.

moderate correlation (ρ < −0.4) in AliCloud / TenCloud. This
means that a higher read I/O traffic exhibits better locality,
and a higher write I/O traffic exhibits poor locality. These
observations provide key insight for us to design novel cache
management policy.

IV. DESIGN GOALS AND CHALLENGES

A. Our Goal

We present L-CoRW, a learning-based coordinate read-write
cache policy that balances SSD cache resources to improve read
and write performance. L-CoRW has the following goals:

• Perform better than other cache management policies.
• Require no special knowledge or configuration.
• Be robust to dynamic workloads.

To achieve these goals, two concerns need to be considered.
The first is the allocation of read cache, which will affect the
benefit trade-off when the cache space is used by read and
write requests. Although traditional SSD caches are used as
write caches, since read and write requests have differences
in locality characteristics, a reasonable allocation of cache re-
sources is able to optimise both read and write performance. In
AliCloud and TenCloud workloads, burst read I/O exhibit better
locality, it is possible to improve overall SSD performance by
caching some read requests when the write data has a poor
locality. Suppose a part of cache space is allocated to the read
requests with little impact on write requests. Especially when
the write locality is poor, the cache will trigger frequent dirty
data write-back. In this case, can we allocate cache space to
read requests with better locality to obtain higher cache gains?
This can reduce the number of read requests that enter the TSU
due to SSD cache misses and possibly boost write performance
(more available TSU bandwidth released from read requests)
while improving read performance (release some SSD cache
space from write cache as read cache).

The second is write cache policy in SSD cache. There are
two ways to synchronise the cache, write-through and write-
back. Both methods affect the clean data ratio within the SSD
cache. Considering the write overhead of SSDs, SSD cache
usually uses write-back mechanism by default. Nevertheless,
write-back results in a large amount of dirty data in the cache,
leading to frequent flushing of dirty data back to flash when
the cache is full. Evicting dirty data requires triggering a write-
back flash operation which is the most cost-effective way for
cache. But furthermore, it is not wise to always evict clean
data preferentially like CFLRU, as obtaining clean data requires
consideration of the cost of write-through. To reduce the write
latency, existing research projects [2], [7] reduce passive dirty
data write-back when the cache is full by setting an active
write-through. However, this method does not consider the
data locality. In fact, implementing a write-through policy for
write requests with better locality does not improve write
performance. On the contrary, excessive write-through will
consume some TSU bandwidth, which will affect the read
performance. One possible solution is to stop frequent write-
through when the write traffic exhibit better locality, better write
data locality will allow previously written data to be updated
(rewrite) in a short time. In this case, using a write-back policy
does not affect the SSD performance because the written data
is constantly updated in the cache and does not trigger a lot of
dirty page flushes back. Therefore, the allocation of read cache
and write cache policy must be determined by considering the
workload patterns and the internal behavior of SSD cache such
as data locality, clean data ratio etc. Besides, these factors
must be adjusted according to the system state change (e.g.,
insufficient cache space or high amount of dirty data).

B. Challenges
With a determined goal, the key of our design includes the

allocation of read cache and the selection of write policy. Since
the adjustment is not very complicated, can other conventional
methods be useful in doing so? To explore the challenges of



constructing problems in this paper and show the advantages of
the learning-based approach, we have performed several pre-
liminary experiments. The evaluation environments and device
parameters are described in Section VI-A. We fix the relevant
parameters in Algorithm 1 to obtain eight schemes respectively,
and the parameter thresholds of each scheme are shown in
Table II. tt and rt thresholds control the allocation of read
cache, while ct controls the selection of write policy. Although
these parameters and algorithm have not been introduced in
detail, here we only need to know that these eight schemes
(CoRW1-CoRW8) are the models of L-CoRW without learning.
We conduct experiments with the trace used in Fig. 4, where the
conventional SSD (Baseline) and the proposed learning-based
scheme are used for comparison, and the results are shown in
Fig. 6.

TABLE II
DIFFERENT MODEL PARAMETERS FOR CORW

policy threshold group
tt rt ct

CoRW1 100 100 0.66
CoRW2 100 100 0.33
CoRW3 100 10 0.66
CoRW4 100 10 0.33
CoRW5 10 100 0.66
CoRW6 10 100 0.33
CoRW7 10 10 0.66
CoRW8 10 10 0.33

Fig. 6. Average latency, tail latency, and WAF comparison (normalized to
Baseline).

Overall, CoRW performs better than Baseline in both average
latency and tail latency, which suggests that the insight we
observed is meaningful. However, CoRW is still far from
L-CoRW in all metrics, and CoRW is unable to obtain trade-
offs on different metrics. In detail, CoRW1 and CoRW2 require
high values of I/O intensity and locality to allocate read cache
for read I/O (tt and rt have higher thresholds), resulting in
limited performance gains. In contrast, CoRW7 and CoRW8 have
more relaxed read cache allocation conditions, but this further
reduces the write cache space resulting in triggering more cache
replacements and causing higher WAFs. In addition, a larger
ct threshold means that more write requests will be write-
through to maintain a higher proportion of clean data. This can

mitigate the impact of burst I/O, so CoRW schemes with larger
ct-value will perform better in terms of tail latency, but this
also results in higher WAF. In general, the constantly changing
workloads (Fig. 4) make it difficult to set optimal values to
adapt to all types of workloads, which is not only a challenge
for CoRW. In the experimental section, we will compare the
performance differences between existing studies and learning-
based approaches.

V. DESIGN

A. Architectural Overview

As shown in Fig. 1, L-CoRW consists of three main com-
ponents, including the monitor, controller, and executor.
The monitor extracts I/O features from the HIL and cache
features from the FTL, while collecting the end-to-end latency
of all requests. The controller is a light-weight RL algorithm
based on Q-Learning and the internal Q-table can be updated
according to the workloads and the SSD cache state. The
executor completes the adjustment of the read/write policy
and the update of the threshold according to the controller.
To summarize, L-CoRW learns policies such as favoring read
traffic with better locality over write traffic and keeps some
clean data free to service future arriving burst I/O traffic directly
from experience.

B. Reinforcement Learning in L-CoRW

In this work, we formulate SSD cache management as a
reinforcement learning problem, as shown in Fig. 7. With every
new request, L-CoRW observes the state of the workload and
the SSD cache and takes a chosen action (read cache allocation
and write cache policy). For every choice, L-CoRW receives a
reward related to the latency that evaluates the chosen action’s
accuracy and timeliness by taking into account current I/O
average latency and tail latency. Based on the reward, L-CoRW
will be able to improve its decision policies by updating
the model parameters. We hope that L-CoRW can find the
optimal cache management policy for read and write requests
respectively that can balance SSD resources such as cache
space to minimise the I/O latency. The status space, action
space, and reward function for RL-based L-CoRW are defined
as follows.

<Environment>
SSD Cache

<Agent>

L-CoRW

<Reward>
I/O Latency

<Action>
Threshold Group

<State>
I/O & SSD Cache

Fig. 7. Formulating the L-CoRW as an RL-agent.

1) State: In Section III, we reported that I/O traffic and
locality are important factors affecting cache performance. So
the I/O traffic T and RAR-values Ra of the read (Tr, Rar) and
write (Tw, Raw) traffic are the main characteristics reflecting



TABLE III
CATEGORIZATION OF STATE

Category State Metrics
Low Mid High

Workload
Tw
Tr

[0, 10) [10, 100) [100,∞)
Rar
Raw

[0, 10) [10, 100) [100,∞)

SSD Cr [0, 0.33) [0.33, 0.66) [0.66, 1]

the workload state. What’s more, it is also important to choose
between write-through or write-back for write requests, as
replacing clean pages has less overhead, while replacing dirty
pages requires writing data to flash memory (need to consume
TSU bandwidth). However, when the I/O traffic is light, the
flushing back of dirty pages does not have an impact on the
I/O of the HIL because the SSD is experiencing very light
traffic pressure at this time and there are sufficient bandwidth
resources on the TSU side. Therefore, L-CoRW also needs
to maintain a certain ratio of clean pages Cr in the cache
according to the current workload and SSD state (clean data
ratio in SSD cache). For workload characteristics, we use the
proportion (e.g., A ÷ B) to reflect the difference between read
and write requests in I/O traffic ( Tr

Tw
) and RAR ( Rar

Raw
). For the

SSD cache state, we also classify the ratio of clean data Cr in
the cache. Table III shows the workload and cache state, each
of which is divided into multiple bins (low, mid, and high)
to limit the total number of different states, inspired by [16],
[18], [24]. For the workload state, we divide it into [0, 10),
[10, 100), and [100,∞), while the clean data ratio is divided
into [0, 0.33), [0.33, 0.66), and [0.66, 1]. There are a total
of 3×3×3=27 state combinations for L-CoRW. The threshold
settings of 10 and 100 times are based on the description in
[20] and the observation of the results in Fig. 2 and Fig. 3.
We can see from Fig. 2 and Fig. 3 that for read I/O traffic the
distinction is most obvious at×100 and×1000, while this value
is ×10 and ×100 for write I/O. This means that the proportion
of read and write I/O intensity is around 10 to 100 times (100
÷ 10 = 10, 1000 ÷ 100 = 10, 1000 ÷ 10 = 100). Therefore, we
simply divide the workload state interval into two thresholds of
10 and 100, while the clean data ratio is based on the principle
of uniform division (1 ÷ 3 ≈ 0.33, 2 ÷ 3 ≈ 0.66). We intend
to investigate the effect of fine-grained division in our future
work.

2) Action: L-CoRW needs to adjust two cache policies based
on the state, including read cache allocation and write cache
policy. When allocating a cache for a read request, we do not
directly specify a precise cache size, but rather decide whether
the read request needs to be cached (bypass or caching) if read
cache miss. In this process, L-CoRW requires two thresholds
including the I/O traffic threshold tt ∈ {ttl, tth} (ttl < tth)
and the RAR threshold rt ∈ {rtl, rth} (rtl < rth), which
will be used to determine whether the current workload state
meets the conditions for caching read requests. For the write
cache policy, L-CoRW decides whether to use write-through or
write-back policy for write requests based on the clean data
threshold ct ∈ {ctl, cth} (ctl < cth) within the SSD cache.
In summary, the action of L-CoRW is to select an appropriate

threshold group (tt, rt, ct), and we will describe how to use
these thresholds in Section V-C. There are a total of 2×2×2=8
action combinations for L-CoRW.

3) Reward: The goal of L-CoRW is to learn an optimal
cache management policy that can minimize the end-to-end
request latency. L-CoRW needs to determine how good the cur-
rent policy is based on the current average latency (latencyave)
and tail latency (latencytail) together with the I/O traffic (T ).
The reward function is given as follows:

r = −[w × latencyave
T

+ (1− w)× α× latencytail
T

] (2)

where α is the scaling factor (α = latencyave

MAX(latency) ) for tail
latency, used to normalize tail latency to the same value range
as the average latency. The w represents the weight when
L-CoRW optimizes the two objectives of average latency and
tail latency. By default, w is set to 0.5, which means that
average latency and tail latency are equally important in the
optimization objectives of L-CoRW. The minus sign means
that we punish long latencies because the reward is typically
maximized. The reward function is independent of changes in
the hardware environment and workload, but depends only on
the state. Therefore, adapting the reward function to other state
definitions is relatively easy.

4) Update and Use: L-CoRW needs to select the action a
with the maximum Q(s, a)-value corresponding to the current
state s in the Q-table. The selected a-value is used as the new
threshold group (tt, rt, ct), which will be used to implement the
cache management policy for L-CoRW. Then, L-CoRW obtains
the reward r-value and uses the current and past states (s

′
and

s) and actions (a
′

and a) to update the Q-table with Equation
1. In Equation 1, the λ and γ are set to 0.9 and 0.1. We plan
to update the Q-table every 0.2 second.

C. Cache Management Policy in SSD

Algorithm 1 shows the pseudo-code of the cache manage-
ment policy, which describes how L-CoRW uses the threshold
group (tt, rt, ct).

By default, the SSD cache inside L-CoRW is a write cache.
However, for the read I/O, they can be cached if the current
write I/O traffic is less than the read I/O traffic and the read
locality is better (Algorithm 1, lines 4-5). This ensures that
read performance is improved by allocating some of the write
cache to the read I/O without affecting the write performance.
For the write I/O, L-CoRW needs to choose to write-through
or write-back based on the current write I/O traffic, clean data
ratio, and locality (Algorithm 1, lines 10-14). L-CoRW will
only apply a write-through policy for worse locality write data
(Raw < 0.01, empirically) when the I/O traffic is light and
the ratio of clean data is low. This allows L-CoRW to have
sufficient clean data in the cache when it encounters burst I/O
write, while reducing unnecessary write-through when write
requests have better locality. In Algorithm 1, Tw is calculated
based on the I/O traffic in the past time, which is because
AliCloud and TenCloud collect data daily.

In addition, several problems should be solved before the
above Coordinated Read-Write policy works. The threshold



Algorithm 1: Cache management policy in L-CoRW
Input: I/O traffic threshold (tt), RAR threshold (rt),

clean data threshold (ct), the current average
write I/O traffic (Tw), the current clean data
ratio (Cr)

1 for every request do
2 if request is read I/O then
3 if there is a cache miss for request then
4 if Tr

Tw
> tt and Rar

Raw
> rt then

5 Put request into cache and Fetch from
cache

6 else
7 Fetch request from flash memory

8 else
9 Fetch request from cache

10 else if request is write I/O then
11 if Tw < Tw and Cr < ct and Raw < 0.01 then
12 Write-through request

13 else
14 Write-back request

used by tt and rt are sensitive parameters. Taking tt as an
example, for a large tt threshold, L-CoRW needs to reach
a higher condition for I/O traffic in order to trigger cache
space allocation for read requests, which will limit L-CoRW to
achieve better performance. However, for a small tt threshold,
L-CoRW will make cache allocation for read I/O easier, but
this will reduce write cache space, which may impact the
SSD performance. The above analysis apply equally to the rt.
Second, similar to the determination of tt and rt, maintaining
an appropriate proportion of clean pages for burst I/O is also
an important problem (based on threshold ct). L-CoRW wants
to maintain enough clean pages in the cache, but this requires
write-through more write requests and causing write amplifica-
tion issues. However, write amplification can be mitigated if the
ct is set very small, but the performance improvement on SSD
will be very limited. Finally, the update frequency for Q-table is
also an issue. Updating too slowly will fail to accommodate I/O
changes, and updating too quickly is completely unnecessary. In
the experiment, a sensitive study will be presented (see Section
VI-E in detail).

VI. EVALUATION

A. Experimental Settings

We use MQ-SSD [7], an open-source multi-queue NVMe
(Non-Volatile Memory Express) SSD simulator [25], to test the
effectiveness of RL-based cache management policy. MQ-SSD
has been widely used in the exploration of SSDs [2], [26]–[28].
Table IV presents the SSD configuration in this paper. We apply
the block-level I/O traces from Table I and these traces have
already been introduced in previous section.

TABLE IV
CONFIGURATION OF THE SIMULATED SSD

SSD Host Interface PCIe 3.0 (NVMe 1.2)
SSD Capacity / Data Cache 512GB / 128MB
Data Cache DRAM row size 8KB

Flash Communication Interface ONFI 3.1 (NV-DDR2)
Width: 8 bit, Rate: 333 MT/s

Flash Latencies (TLC) [2]
Read latency: 75 µs

Program latency: 750 µs
Erase latency: 3.8 ms

Channel / Chip / Die / Plane 8 / 4 / 2 / 2
Block/Page 2048 / 256

Page Capacity 8KB

Flash Translation Layer

GC Policy: RGA [29]
GC Threshold: 0.05

Address Mapping: DFTL [30]
TSU Policy: Sprinkler [31]

Over Provisioning Ratio: 0.07

We compare L-CoRW with the following five alternative
solutions, including the CFLRU [4], MQ-SSD [7], LCR [5],
ECR [6], and Co-Active [2]. CFLRU is an LRU queue that
prioritises the expulsion of clean data. MQ-SSD represents the
conventional SSD design for cache management, in which write
cache mode combined with a cold-and-hot separation unit are
applied. LCR and ECR are both load-aware cache management
algorithms, the only difference is that ECR chooses between
dirty and clean pages in order to minimize the eviction cost in
write-dominant applications. Co-Active is a cache management
policy that proactively triggers write-backs based on hot or cold
data, which is collaboratively aware of I/O access patterns and
the status in flash chips. We run these methods on a local Inspur
server equipped with a six-core 2.10GHz Intel(R) Xeon(R) E5-
2620, 64GiB RAM, and an SMC 512GB hard disk.

B. Performance Evaluation

Fig. 8. Average latency comparison (normalized to MQ-SSD).

Fig. 8 compares average latency of different cache policies
with AliCloud and TenCloud traces. The performances are
normalized to MQ-SSD (baseline). To summarize the findings,
L-CoRW is distinctly the best performing policy in 87% / 83%
of the AliCloud / TenCloud traces ranging from 0.5 to 0.9
normalized average latency. A head-to-head comparison shows
that L-CoRW reduces the average latency of CFLRU, ECR,
and Co-Active by 48.6%, 34.5%, and 25.8% among all the



Fig. 9. Tail latency comparison (normalized to MQ-SSD).

workloads, respectively. Since CFLRU prioritizes the eviction
of clean data in all cases, which leads to a case where no clean
data to choose in burst I/O accesses. Thus, CFLRU is worse
than MQ-SSD in some workloads. ECR has more options for
evicting dirty pages than LCR, thus obtaining slightly better
performance than LCR by balancing write-back overhead. Co-
Active allows the pressure of burst I/O to be released in
TSU and achieves better performance in write-dominant traces.
However, compared with L-CoRW, ECR and Co-Active do not
work until passive write-back is triggered, whereas L-CoRW
tends to be proactive.

Fig. 9 shows the P99 tail latency for all traces, reflect-
ing the ability of different caching policies to mitigate SSD
performance cliffs. The results show that L-CoRW has lower
tail latency with 22.6% to 36.7% reduction compared to other
caching policies. L-CoRW maintains more clean data for the
cache by writing cold data and worse locality data to flash
memory in advance (write-through) under low I/O traffic, so
as to cope with future burst I/O. In this way, L-CoRW can
have more clean data to evict in case of burst I/O, thus
avoiding the need to consume the TSU bandwidth resources
when replacing dirty data. In contrast, other caching policies,
especially CFLRU and LCR, do not have sufficient clean data
in the cache, thus leading to performance cliff in SSDs.

C. Performance Analysis

To demonstrate how L-CoRW can reduce the end-to-end
latency and SSD performance cliffs, we analyze the real-
time internal metrics of L-CoRW. We extract two million I/O
requests from AliCloud traces as simulator inputs. We set
every 10000 I/Os as an episode and count the metrics of each
episode. Fig. 10 shows the change of cache hit rates for MQ-
SSD (baseline) and L-CoRW and cache space allocated by
L-CoRW for read I/O, with similar results for other volumes.
We can observe that L-CoRW improves the read cache hit rate
by caching read requests at the appropriate episode. Although
caching these read requests occupies the write cache space, it is
possible to improve the write cache hit rate simultaneously in
most cases (e.g., episode in 29∼32, 52∼55). This is because
L-CoRW evaluates the differences in I/O traffic and locality
between the current read and write requests. Thus, caching read
requests is likely to benefit when the read I/O traffic is small

Fig. 10. The change of cache hit rates for MQ-SSD (baseline)
and L-CoRW and cache space allocated by L-CoRW for read I/O.
(MQ-SSDread/MQ-SSDwrite: MQ-SSD’s read/write cache hit rate;
L-CoRWread/L-CoRWwrite: L-CoRW’s read/write cache hit rate)

Fig. 11. The adaptability of the write I/O traffic and the clean data ratio.

relative to the write I/O traffic and the read requests have better
locality (at this time, the write locality and hit rate are low).
Note that L-CoRW does not achieve better performance by
increasing cache hit rates, which is not a feature or optimization
objective used by L-CoRW. We only demonstrate this process
to analyze why L-CoRW is better than other solutions.

Furthermore, Fig. 11 depicts the real-time write I/O traffic
and clean data ratio in L-CoRW. It is observed that L-CoRW
can reserve a sufficient clean data ratio in the cache for burst
I/O, thus reducing cache blocking caused by flushing dirty
data to flash memory. Besides, when the write I/O traffic
is light, L-CoRW utilises the TSU’s bandwidth resources to
write-through infrequently data to the underlying flash memory
timely, so as to prepare for the next burst I/O by increasing the
clean data ratio in the cache.



D. Write Amplification Factor

WAF is very important to understand SSD performance
and lifetime. WAF is calculated as Flash write/User write,
where Flash write and User write are flash write size and
user write size, respectively [32]. Low write amplification value
signify good performance. Fig. 12 presents the experiment
result of the WAF in AliCloud and TenCloud workloads. On
average, L-CoRW reduces the overall WAF by 24.3% com-
pared with conventional SSDs and 9.6%-24.7% compared with
other schemes. MQ-SSD and CFLRU lack effective recognition
mechanisms for hot and cold data and locality, leading to
high WAF. ECR only selects and distinguishes data for load
balancing, and this method only have limited effectiveness in
reducing WAF. Co-Active still has uncertainty in prediction
accuracy, and passive replacement strategies can easily affect
the prediction of future data, so it does not perform better
than L-CoRW. By contrast, L-CoRW improves adaptability
and timeliness using RL, aiming to keep more better locality
write requests in the cache as much as possible. Thus, the
write amplification is improved by reducing the amount of data
written into the flash memory, allowing it to achieve the lowest
overall WAF. In addition, we also notice that AliCloud has a
larger WAF value than TenCloud. This is because TenCloud in
general shows a higher randomness ratio than AliCloud [33],
resulting in the need to move more valid pages during garbage
collection.

Fig. 12. Write amplification factor comparison.

E. Sensitivity Study

At the end of Section V-C, we mention several key thresh-
olds that need to be determined, which affect the average
latency, tail latency, and WAF of L-CoRW. To understand
their characteristics, sensitive studies are presented to show
their performance impact. In sensitivity experiments, the two
thresholds ttl and tth for tt are varied from 2 to 512 and
4 to 1024, respectively (ttl and tth must meet the condition
ttl < tth). We only discuss the results for the tt as our
observations apply equally to the rt. Fig. 13 (a) shows how
ttl and tth affect the average latency of L-CoRW (normalized
to the optimal value of L-CoRW). We can observe that both
ttl and tth will result in poor performance of L-CoRW in both

large and small cases. This is because L-CoRW allocates too
much read cache when the threshold is small. However, when
the threshold is large it will misallocate read cache resources,
resulting in limited performance improvement. This case is
especially worst when ttl and tth are at extreme values (ttl = 2
and tth = 1024). But we also find that there is a appropriate
combination of ttl and tth thresholds (ttl = 8 and tth = 128)
that allow L-CoRW to perform optimally. For rt, we obtain
optimal values of rtl = 16 and rth = 64, as shown in Fig. 13
(b).

We use the same method as analysing tt thresholds to
investigate the effect of ct threshold (including ctl and cth) on
L-CoRW, with the difference that we focus on the tail latency
metric as in Fig. 13 (c). Note that the lowest tail latency occurs
when both ctl and cth have high values, while the performance
of L-CoRW is the worst when ctl and cth are very small. This
is because L-CoRW eliminates the long-tail latency impact of
burst I/O on SSDs when L-CoRW reserves enough clean pages
for the cache. However, reserving too many clean pages can
trigger more write-through in the SSD cache, leading to a larger
WAF. Fig. 14 shows the impact of different ctl values on WAF
when cth is equal to 0.9, 0.7, and 0.5. It can be observed that
when the values of ctl and cth are large, the WAF of L-CoRW
is ×2 to ×3 times higher than that of conventional SSD (MQ-
SSD), which is obviously unacceptable. Therefore, we choose
the most appropriate ct threshold (ctl = 0.3 and cth = 0.7) to
satisfy both tail latency and WAF.

Furthermore, we investigate the impact of updating Q-table
frequency on L-CoRW. As observed in Fig. 15, there is no
significant improvement in performance when updates are very
frequent. This is because we divide each state into multiple
bins to limit the total number of different states of the Q-table,
resulting in only a limited number of optional values. Frequent
updating of Q-table at this time does not allow L-CoRW to
update the values in the threshold group. When Q-table updates
too slowly, L-CoRW may miss the best optimisation time due
to its inability to adapt to the rapid change of I/O workload,
resulting in no performance improvement. Therefore, we set
the update interval for Q-table to 0.2 second. Finally, we also
analyze the impact of different SSD cache sizes, as shown in
Fig. 16. We find that when the cache is small, the cache space
resource becomes valuable at this time, so L-CoRW can have
the opportunity to exploit the I/O locality as much as possible.
When the cache is large, the performance of L-CoRW decreases
because the SSD has enough cache space to hold more data.
In summary, L-CoRW can maximize performance gains in the
case of small SSD cache, which is in line with our design goal.

F. Implementation Overhead

The overhead of L-CoRW mainly comes from the space
overhead of Q-table structure and the time overhead of RL
model training and updating the threshold group, and we will
analyze the impact of these two overheads in detail.

Space Overhead. The size (# of entries) of Q-table is # of
states × # of actions. From the number of bins of each state and
action in Section V-B, the total number of combinations is 216
(=27×8), and the Q-table size is 16byte×216=3456byte<4KB,



(a) Sensitive study of ttl and tth (b) Sensitive study of rtl and rth (c) Sensitive study of ctl and cth

Fig. 13. Sensitive study of threshold group (tt, rt, ct) (all cases where ttl ≥ tth, rtl ≥ rth, and ctl ≥ cth are replaced by 0, indicating that the purple area
of the figure is meaningless).

Fig. 14. The impact of ctl and cth on WAF (there are missing parts of the
curve due to ctl < cth).

Fig. 15. Sensitive study of updating Q-table frequency.

Fig. 16. Sensitive study of SSD cache sizes.

which is less than 0.003% of the cache spaces. The number
27 (=3×3×3) is the number of state combinations, 8 (=2×2×2)
is the number of action combinations. Thus, the small Q-table
can be cached in the internal DRAM of the SSD. Moreover,
L-CoRW can be implemented in the firmware of a modern SSD,
and does not require specialized hardware.

Time Overhead. Since updating the Q-table takes only
1.6ms every 0.2 second, the latency overhead is almost negligi-
ble (2.7ms/0.2s <2%). The time overhead of different policies
are MQ-SSD : CFLRU : ECR : Co-Active : L-CoRW = 1 :
1.06 : 1.23 : 1.46 : 1.17. Overall, considering the significant
performance improvement of the L-CoRW on both latency and
tail latency, the above small overhead is acceptable.

VII. DISCUSSION

Two issues need to be considered during the actual deploy-
ment of L-CoRW. The first one is the impact on the cache per-
sistence model. In fact, L-CoRW’s design is entirely orthogonal
to the cache persistence model, and L-CoRW does not modify
the consistency mechanism of dirty data and metadata in SSDs.
On the contrary, L-CoRW reduces the risk of data loss in the
event of SSD power failure. This is because L-CoRW reduces
the proportion of dirty data in the SSD cache. In traditional



SSDs, the write cache mode within modern SSDs is write-
back mode by default [7], which means that in the worst-case
scenario, all data in the current cache will be dirty. In contrast,
due to the existence of the ct threshold, L-CoRW will always
have a portion of clean pages in the cache, which will prevent
L-CoRW from introducing additional dirty pages after a power
outage. Therefore, the capacitance inside the existing SSD is
sufficient for L-CoRW to flush dirty data to the underlying flash
memory. In addition, L-CoRW requires only a limited number
of parameters (threshold group) to run, and these parameters
are not required to be persisted in flash memory. Therefore,
the working mechanism of L-CoRW does not affect the data
persistence and consistency in the cache. Another issue is
that some studies [34], [35] have pointed out that traditional
write-back can evict dirty data out of order (relative to the
original write sequence), resulting in the networked storage
being inconsistent after host-level failures. Network storage
inconsistency compromises both data availability after a flash
or host failure and the correctness of network storage level
solutions such as replication and backup. However, since each
module of L-CoRW does not involve network storage and host-
side caching, the above issues do not exist for L-CoRW. If
L-CoRW is deployed in ZNS SSD, because some functions
need to be implemented in the host side memory, this issue
needs to be further studied in future work.

Another explanation is why L-CoRW chose to use rein-
forcement learning instead of other machine learning or deep
learning algorithms. There are several reasons for this. 1) RL-
based cache management policy can learn to find the optimal
solution without prior knowledge about I/O workload or SSD
configuration. Therefore, it can be easily deployed and used
in any SSD cache. 2) Traditional machine learning or deep
learning algorithms can solve some of the above problems.
Although these methods can have high accuracy, they require
large datasets for training in offline mode. 3) Due to param-
eter updates requiring retraining, making specific rules that
can effectively handle the various SSD configurations under
dynamically changing user workloads is hard. There have been
some studies using RL in real-world system environments [18].

VIII. CONCLUSION

In this paper, inspired by our analysis of diverse real
enterprise scale workloads, we proposed an RL-based cache
management policy for the SSDs. The proposed method dy-
namically coordinates read and write cache policy based on
the I/O characteristics and the SSD cache status. Our extensive
evaluations show that L-CoRW effectively improves system
performance compared to state-of-the-art SSD cache policies.
Further, we significantly demonstrate that L-CoRW improves
the efficiency of write amplification during garbage collection
and sensitivity.
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