
Minding the Semantic Gap for Effective
Storage-Based Ransomware Defense

Weidong Zhu∗, Grant Hernandez∗, Washington Garcia†, Dave (Jing) Tian‡, Sara Rampazzi∗, and Kevin Butler∗
∗University of Florida, †University of Dayton Research Institute, ‡Purdue University

∗{weidong.zhu, grant.hernandez, srampazzi, butler}@ufl.edu
†washington.garcia@udri.udayton.edu

‡daveti@purdue.edu

Abstract—Ransomware attacks have become frequent and
high-profile, leading to billions of dollars worth of data and
operational losses every year. Many state-of-the-art defenses
created to combat ransomware assume a trusted operating
system, but they are susceptible to privileged adversaries that can
compromise the OS. Deploying defense schemes inside storage
can solve this problem, but they suffer from low accuracy
as they lack access to higher-level semantics of data, such as
filesystem metadata. To address these challenges, we develop
SrFTL, a ransomware defense framework that bridges heuristics
and semantic knowledge with SSD’s flash translation layer (FTL)
to enhance the detection of encryption ransomware, even in the
presence of privilege escalation. SrFTL enforces policy within
the SSD, while our improved ransomware classification combines
content and behavior-based heuristics for detection. Classification
occurs within an enclave, allowing designers to customize the
detection policy and leverage multiple semantic information and
I/O access patterns that are visible to the host’s filesystem but
not only at the storage level, to identify ransomware activity.

Our evaluation of a proof-of-concept prototype of SrFTL
shows that ransomware classification reaches zero false positives
and true negatives in detecting real-world ransomware from eight
families, outperforming state-of-art FTL-based defensive solu-
tions (e.g., MimosaFTL) while incurring an average performance
overhead of 2.2% across different I/O-intensive workloads. With
SrFTL, we aim to help designers to better protect their systems
against privileged ransomware by effectively conveying semantic
information between the storage and the OS filesystem.

Index Terms—Ransomware, detection, solid-state drive, TEE

I. INTRODUCTION

Ransomware is a high-profile cybersecurity threat that has
significantly impacted large companies, organizations, gov-
ernments, and individuals in recent years. Some of the more
notorious ransomware incidents include an attack on ICBC [1],
which is the biggest lender in China, disrupting the trade
of the US Treasury market in 2023, and an attack against
a German hospital [2] in 2020 that led to a disruption of
emergency care and the death of a patient. In 2023, human-
operated ransomware attacks increased over the last year by
60% [3]. Rather than simply contaminating the computer
system, ransomware locks victim data and systems to ex-
tort victims for financial reward. While multiple variants of
ransomware exist, the most wide-ranging threat comes from
encryption ransomware, which encrypts victim’s data until a
ransom is paid. Thus, encryption ransomware has received
extensive attention from academia and industry [4], [5], [6],
[7], and this paper focuses on its defense.

Previous defensive approaches have relied on analyzing
ransomware workflow and features and fall into two pri-
mary categories. Software-level methods leverage properties
of the Operating System (OS) and other software such as
cryptographic libraries [8], [9] and filesystem information [4],
[6], and may deploy a recovery strategy by enabling data
backup [10], [11]. However, ransomware that is able to gain
root privilege (i.e., privileged) on a machine can disable such
defenses. By contrast, firmware-level defenses [12], [13],
[14] run inside a storage device. Such defenses monitor the
I/O requests at the storage level to differentiate malicious
traffic generated by encryption ransomware. Solid-state drives
(SSDs) present a particularly compelling platform for deploy-
ing firmware-level defenses, given their widespread adoption
and performance compared to magnetic storage. SSDs contain
an independent processor that runs its firmware, including a
flash translation layer (FTL) that services I/O requests from
a host system and operates on flash memory. Not only is
the interface to the drive limited – such that if an attacker
compromises the OS, they still cannot compromise the storage
– but because of the nature of SSD operations, when data is
deleted, copies on the drive continue to exist until the FTL
explicitly erases them. As such, these drives are typically more
resilient to ransomware attacks.

Despite such advantages, we observe that storage devices
lack semantic information on incoming I/O requests, which
have no inherent meaning to the drive. In other words, there
is a semantic gap between the filesystem on the host and the
storage device. This makes it difficult for firmware-level solu-
tions to classify the I/O traffic generated by ransomware for
two main reasons: (1) Ransomware compromises data within
the OS, which contains semantic information at file-level
granularity about the stored data. Firmware-level ransomware
detection deployed in the storage device can only observe
those ransomware operations indirectly by reasoning about
data page accesses. Such information used by existing works
is often obscure – e.g., access addresses [12] and offset [13],
[14] – and cannot be correlated to specific file operations,
causing potential misdetection. (2) Since firmware-level meth-
ods do not have access to semantic information to correlate
ransomware data operations to actual file compromise – since
are mixed with benign I/O traffic – they also present reduced
capability to detect ransomware when benign applications run

in parallel, as in multicore systems such as servers, desktops,
and laptop computers [15].

To address this semantic gap, one potential approach is
to integrate ransomware detection into semantic-aware disk
that implements filesystem knowledge within the storage de-
vice [16], [17]. However, the OS is limited to deploying
the filesystem only supported by the semantic disk, limiting
flexibility and usability. Moreover, existing semantic disks
adopt a “grep-box” method [18] in which they only inte-
grate partial filesystem functionalities into the storage device
without encoding the full filesystem, which makes the disk
less maintainable [16]. Therefore, the filesystem information
provided by existing semantic disks might be insufficient for
ensuring ransomware detection.

In this paper, we show how semantic information can
enhance ransomware detection with our framework SrFTL
(Semantic-reinforced Flash Translation Layer). Our solution
tailored for SSDs leverages a Trusted Execution Environ-
ment (TEE) and deploys enforcement mechanisms within the
storage while allowing semantic information from the OS
to inform the classification of potential ransomware. Unlike
simply incorporating ransomware detection into a semantic-
aware disk, our approach only requires a change to the FTL
without the need for additional hardware support – such as
a more powerful processor and more DRAM space – of
the drive itself, facilitating the deployment, adaptability, and
scalability. SrFTL uses the FTL within the SSD to collect I/O
requests and send them to a secure hardware enclave where
they can be securely and accurately classified with additional
filesystem-level information. The classification result can be
sent to the SSD, which can suspend the deletion of victim
data if a ransomware attack is detected. To ensure a secure
data transfer between the enclave and SSD, we design a
secure channel approach that bridges the SSD and enclave
with assurances of confidentiality and integrity, while the
authenticity of the enclave is provided by a remote attestation.
Filesystem metadata is transferred through the secure channel
from the SSD to the enclave and then parsed to extract
semantic information for classification. To demonstrate the
effectiveness of our approach we leverage Intel’s Software
Guard Extensions (SGX) as an exemplar of a secure enclave.
Note that other solutions that provide a TEE can also be
used. In our proof-of-concept implementation, we show how
SrFTL can leverage I/O access patterns, data content, and
filesystem metadata as potential heuristics reaching 100%
accuracy in detecting 8 real-world ransomware families while
staying secure against privileged attacks that can compromise
the host’s OS. We thus make the following contributions:

• We design SrFTL, a privilege-resistant ransomware detec-
tion framework which allows to establish ransomware classifi-
cation combined with semantically-informed heuristics based
on access behavior and data content.

• We devise a novel ransomware classification method on
SrFTL that can parse filesystem metadata for our detection
while leveraging semantic heuristics, such as data content.

• We implement and evaluate a prototype of SrFTL on an
SSD emulator that includes Intel SGX hardware. Our analysis
illustrates that SrFTL can achieve zero false negatives and
zero false positives detection, outperforming state-of-the-art
FTL-based solutions such as MimosaFTL [13], while incurring
minimal performance overhead of 2.2% over a regular SSD.

II. BACKGROUND

This section illustrates the basics of flash-based SSD, ran-
somware, and trusted execution environments.

A. Flash-based SSDs
Flash memory is a popular non-volatile storage medium for

SSDs. It consists of data pages that are typically 4KB. Read
and write operate at page-level granularity, while multiple
pages are grouped into a flash block, the granularity at which
erasures occur. However, flash memory has a limited number
of program/erase (P/E) cycles. For example, multiple-level cell
(MLC) flash memory can only be erased 10K times [19].

SSDs leverage a flash translation layer (FTL) to maintain
flash memory and manage data operations. FTL operates
independently from the host OS with the following func-
tionalities. Address translation translates the logical block
addresses (LBAs) to physical page addresses (PPAs) to locate
the physical address of data. Garbage collection (GC) pe-
riodically reclaims invalid data pages to release free space.
To mitigate the limited P/E cycles of SSDs, wear-leveling
(i.e., evenly distributing the writing on blocks) and bad block
management (i.e., identifying broken flash blocks) serve to
improve the lifetime and reliability.

Once these functions are employed in the SSD, physical ac-
tions of data overwrite or erasure does not result in immediate
data removal until FTL processes garbage collection to release
storage space. This offers a cost-free data backup that benefits
ransomware defense. Ransomware attackers are compelled to
trigger GC, an action that can potentially raise suspicion [12],
to physically remove victim data. Thus, flash-based SSDs raise
the bar for the success of a ransomware attack.

B. Ransomware on Flash-based SSDs
Ransomware can be classified into two types: locker and

encryption. Locker ransomware [20] typically makes the entire
computer system inaccessible, such as preventing the OS
booting by modifying the Master Boot Record (MBR) of
the computer, whereas encryption ransomware compromises
users’ data directly by encrypting it. Given that locker leaves
data accessible and users can recover them by plugging the
storage device into another computer, encryption ransomware
is a more severe threat, and this paper focuses on it.

We classify encryption ransomware functionality as over-
writing data and writing data out-of-place. Overwriting vic-
tim data involves replacing it with ciphertext, invalidating
the victim flash pages. In contrast, out-of-place ransomware
writes the encrypted data into new LBAs; the original data
is then deleted (e.g., using Trim command [21]). Advanced
ransomware has further capabilities to circumvent ransomware
defenses, such as manipulating data randomness. We discuss
advanced ransomware in Section V.

C. Trusted Execution Environment
A trusted execution environment (TEE) runs independently

from the host system, including from the operating system
(OS), as a security component of the processor, and it guar-
antees the confidentiality and integrity of the data and code.

Intel Software Guard Extensions (SGX) is a widely de-
ployed TEE that strengthens the security of applications [22],
[23]. SGX creates memory regions in the DRAM, called
enclaves, to isolate code and data from the untrusted OS.
An application outside the enclave can call trusted routines
within the enclave, which executes specific code and returns
a result to the application. Enclave code and data are placed
in the Enclave Page Cache (EPC), which is encrypted and
decrypted by a dedicated Memory Encryption Engine (MEE)
in the processor. Attestation is the process of demonstrating
whether the enclave was established correctly on a secure
platform. When two applications run in different enclaves,
a secure communication channel can be established between
them using a local attestation or remote attestation. Local
attestation allows enclaves in the same device to verify their
trustworthiness through exchanging cryptographic messages
between the enclave and a local verifier. With remote attes-
tation, a quote is generated and sent to a remote challenger,
which can be used to establish trust in the enclave.

III. MOTIVATION

This section discusses the limitations of existing defenses to
reason the motivation of SrFTL and gives the threat model.

A. Limitations Of Software-level Solutions
Privilege-escalated ransomware. The OS possesses a large

trusted computing base (TCB), meaning that any compromise
of hardware or software within the TCB can potentially put
the entire system at risk, exposing a large attack surface. This
makes OS vulnerable to privilege escalation. For instance,
in 2022, 1066 assigned CVEs were related to privilege es-
calation [24], indicating that such threat is persistent. Thus,
ransomware can escalate its privilege to disable defenses
within the OS – we call them with these abilities privileged.

To illustrate the capabilities of privilege ransomware, we
implement a vulnerability CVE-2019-13272 [25] in an Ubuntu
Desktop 18.04 with Linux kernel 4.15.0 to steal root privilege
for a non-root user and explore three potential attacks to
compromise software-level solutions. (1) Replacement attack.
State-of-the-art software-level methods modify OS kernels –
e.g., system services [26] and filesystem filter driver [4],
[6], [27] – in the I/O path to sniff I/O requests and oper-
ations for ransomware detection. A privilege-escalated user
can replace those customized OS modules with non-modified
ones to circumvent the defense. (2) Pass-through attack. With
root privilege, adversaries can directly access storage devices
without interacting with I/O sniffers in the OS. For example,
privileged ransomware can directly use pread/pwrite system
calls to read and overwrite with encrypted data on the storage
device in Linux. (3) Termination attack. Software-level defense
methods typically launch an ad-hoc program [6], [27] as an
analysis engine to receive the sniffed I/Os and operations for

classifying malicious traffic. Thus, a termination attack can
terminate the analysis thread to avoid being detected.

B. Limitations Of Firmware-level Solutions
Limited semantic information. It has been explored in pre-

vious work on how semantic information, such as filesystem
(FS) metadata and data randomness, describes data features
that can facilitate ransomware classification [5], [6]. However,
current firmware-level defenses [13], [15] cannot use this
semantic information as heuristics because they lack access to
such information at the storage level. Therefore, distinguishing
malicious I/Os from benign I/O traffic is challenging as benign
applications can be running simultaneously and obscure the
I/O access pattern (e.g., I/O sequence) of ransomware.

Integrating the filesystem (e.g., IPFS [28]) into a TEE
can potentially solve the privileged compromise. However,
adversaries can deploy a pass-through attack to bypass the
protected filesystem. Although some works [29], [30] employ
in-storage enforcement to prevent unauthorized data modifica-
tion, they do not consider semantic information for achieving
accurate ransomware classification. Therefore, we design our
SrFTL framework to overcome these limitations and improve
detection even in the presence of OS compromise.

Challenges of semantic-aware detection in the SSD. A
potential solution to leverage semantic information might be
incorporating the filesystem directly into the storage. However,
such architectures bring limited usability and compatibility
issues because they require the OS to only use the filesystems
supported by the storage device. For example, state-of-the-art
semantic disks [16], [17] only implement partial filesystem
functionalities (e.g., file creation) into the storage device. Such
limited information is typically insufficient for ransomware
detection because designed for performance purposes and not
security. Finally, although integrating the entire filesystem into
the SSD can apparently mitigate the compromise, it signifi-
cantly makes the storage device less maintainable [16] without
preventing future exploitation. Finally, such solution requires
the SSD to have sufficient computing and memory resources,
which is not realistic for SSDs equipped with computing-
bounded processors and small DRAM, further limiting its
deployment and scalability.

C. Threat Model
We assume that the OS can be entirely and arbitrarily com-

promised. Thus, adversaries can achieve root privileges and
consequently disable any software-level ransomware defenses.

Flash-based SSDs are isolated from the OS by having
independent CPUs, memories, and firmware. Moreover, SSDs
have a smaller trusted computing base (TCB), and OS can
only communicate with them by limited I/O interfaces [31].
Thus, we assume that privileged adversaries cannot tamper
with the SSD and cannot steal secrets (e.g., keys) from it.
We also assume that the firmware can be securely retrieved
and updated into the SSD by a digital signature and secure
boot [32], [33]. Thus, we trust the SSDs.

We assume the SSD can generate cryptographically-secure
random numbers (e.g., using an accelerometer [34]). We also

 Secure Channel

Block Layer

Driver

 Ransomware
 Finder

Nand Flash

 Classification EnclaveUserspace

Kernel

Storage
Device

 Secure Channel

 Ransomware Finder in SSD

 Classification
 Enclave Applications

1

2

3 4

5

Fig. 1: The architectural overview and workflow of SrFTL.
SrFTL modules are shown in the gray area.

consider the manufacturer of the SSD to be trusted. Our
design assumes that the manufacturer can securely embed a
credential into the SSD for future upper-layer user authenti-
cation [29], [33], and distribute the credential to authenticated
users securely – e.g., using two-factor authentication – through
existing key protection technologies such as USB security
key [35]. Finally, we assume the presence of a trusted remote
administrator who can securely hold and manage a credential
distributed by the manufacturer, and we trust the computing
platform of the remote administrator [36]. Details on this
assumptions are illustrated in Section IV-C.

We assume the CPU is trusted and we do not consider
physical attacks in this setting. Privileged adversaries cannot
change the code and data inside enclaves, since are protected
within the CPU package boundary. We do not consider side-
channel attacks [37], [38] such as timing and cache collision.
Mitigation of side channels in trusted hardware is orthogonal
to this work as they are actively researched [39].

IV. SRFTL DESIGN

In Figure 1, we show the overview of SrFTL in its main com-
ponents. Ransomware Finder in the SSD records I/O request
metadata (e.g., address and operation type). This information
is transferred to a TEE, where we deploy a Classification
Enclave. The Classification Enclave analyzes the received I/O
requests to detect ransomware in the enclave, returning the
result to Ransomware Finder, which suspends the erasure of
victim data in the SSD. In addition, we design SrFTL to estab-
lish a Secure Channel to ensure the confidentiality, integrity,
and authenticity of the communication between Ransomware
Finder and Classification Enclave.

Figure 1 also illustrates the workflow of SrFTL. A secure
channel is established (as a one-time process) before starting
the detection 1 . Then, SrFTL SSD starts serving normal
or malicious I/O 2 . Ransomware Finder collects metadata
of I/Os into predefined tables, which are fetched by the
Classification Enclave for ransomware judgment through the
Secure Channel 3 . Once the classification is concluded, the
detection result is returned to the Ransomware Finder 4 , and
the victim data pages are suspended for garbage collection
(GC) 5 to prevent deletion.

Ransomware Finder in FTL
I/O Submission Queue

OS

Storage
Device Is write?

X R —
LBA R/W RBO

Y W T
Z W F
… … …

I/O Replay Table (IRT)

Previous
read exists?

Mark RBO flag
to True (T)

Mark RBO flag
to False (F)

No

Yes

No

Yes

Detection Result Update

D N1
PPA Sus_num

E N2
F N3
… …

GC Suspend Table (GST)

A Is_Ransom
LBA Result

B Not_Ransom
… …

GC Suspend Table (RDR)

Update GST
based on RDR

Fig. 2: The ransomware detection flow of Ransomware Finder.

A. Ransomware Finder
Our Ransomware Finder operates within the SSD as a part

of the FTL. All incoming I/O requests are collected by the
FTL, starting with logical block addresses (LBAs), which can
be used to reason the physical page address (PPA) of data by
searching a logical-to-physical (L2P) address mapping table.
Figure 2 shows the workflow of Ransomware Finder, which
records the metadata of the incoming I/O requests in I/O replay
table (IRT), allowing the upper classification enclave to pull
and analyze the state of storage for ransomware judgment. The
metadata of each entry (i.e., I/O request) in IRT consists of
LBA, operation type (e.g., read/write), and an indicator flag
of read-before-overwrite (RBO) operation.

LBA and operation type are essential for SrFTL to deter-
mine the location of data generated by potential ransomware.
Moreover, encryption ransomware typically read the victim
data before overwriting or deleting it, generating an inevitable
RBO access pattern [12] to the victim data. We thus create
an RBO indicator in IRT to record such an access pattern.
Specifically, SrFTL reserves a “read bit” in the out-of-band
(OOB) area, which is used as a metadata store [12] for each
flash page to indicate whether the page has been read. For
an overwrite or deletion (i.e., TRIM [21]) request, if the
accessed LBA has a prior read (i.e., read bit is 1), the current
request triggers a RBO access pattern, and the RBO flag of
the accessed LBA in the IRT is set as True (T); otherwise,
the RBO flag is set as False (F). Once an IRT is full, SrFTL
sends it to the classification enclave over a secure channel. We
set the size of the IRT to 1000 entries, which achieves the best
trade-off between the table size and detection granularity. To
ensure all I/O requests are mediated, if the IRT is not changed
for a long time, SrFTL submits it to the enclave.

When the detection is executed the ransomware detection
result (RDR) is sent to the SSD. Details on the classification
enclave are illustrated in Section IV-B. In our implementation,
our SrFTL classifies the potential ransomware I/O requests as
Not_Ransom, Low, and Is_Ransom, where Not_Ransom means
the request is benign, Low indicates the request has a low
probability of being malicious, and Is_Ransom indicates com-
promised data. SrFTL uses the number of Is_Ransom requests
to reason about the occurrence of ransomware, and it sends a

Ransomware
RBO

Entropy
…

Heuristics
Extract

Heuristics Extraction
New

Ransomware
File type

Chi-square
…

New Heuristics
Extract

Heuristics Updating

SGX
1110
1101
0101
10….

Enclave App
Load into

Detection Updating

0110
1101
0101
10….

SrFTL Firmware
Manufacturing Process

SSD
Flush

Ransomware Analysis

SrFTL

1

2

3

4

5

6

Fig. 3: The workflow of establishing and updating ransomware
classification in the enclave.

warning to the user when the ratio of Is_Ransom requests in
the IRT is over a pre-defined threshold, which is reasoned by
training the classification with real-world ransomware samples
and benign applications (see Section V-E). In addition, SrFTL
ensures fail-safe data protection even if false negatives occur
during the detection. Since RBO behavior is generated by
encryption ransomware, SrFTL gives all victim data with such
access pattern (i.e., overwritten or deleted) at least the Low
threat level, which cannot be downgraded to Not_Ransom.

To prevent victim pages from being erased, we modify
the GC mechanism such that suspicious victim pages do not
receive invalid status – waived from GC – until the SSD has
gone through a specific number of GC routines. SrFTL creates
a GC Suspend Table (GST) to record the suspended number
of GC operations for each flash page. This number increases
with the threat level. Moreover, SrFTL prevents the erasure of
any data collected in the IRT until the detection result has been
returned from the classification enclave. Based on the result,
it updates the GST. Since threat levels of data pages in an
RDR can be lower than previously processed RDRs containing
the same data pages, SrFTL prevents the downgrade of threat
levels for existing GC-suspended flash pages.

B. Classification Enclave
Our proof-of-concept SrFTL prototype employs a hardware-

backed SGX enclave as TEE to incorporate the ransomware
classification. We design the classification enclave to leverage
a secure channel (discussed in Section IV-C) to securely fetch
data from the SSD for ransomware classification and send
classification results back to the SSD.

SrFTL allows users to integrate their detection methods
into the classification enclave. Moreover, a filesystem metadata
parser can be devised in the classification enclave to extract
file-based heuristics from storage device. Specifically, it takes
the following steps in our SrFTL: (1) determine the layout
of the FS to understand its metadata on the storage device,
(2) read the raw FS metadata from the storage device to the
enclave through a secure channel, and (3) parse the raw FS
metadata to extract the target file’s attributes in the enclave.

Figure 3 shows the workflow of deploying a defense on
our SrFTL. The SrFTL firmware (i.e., Ransomware Finder)
should be first loaded into the SSD 1 . Then, developers should
collect real-world ransomware and analyze them to select rel-
evant ransomware heuristics 2 based on their objectives. The
heuristics are then used to generate a new classification enclave

application 3 , which should be loaded 6 into the enclave
and verified through our secure channel (see Section IV-C).
Developers can also update their detection directly in the
enclave. New ransomware samples can be analyzed to extract
new heuristics 4 for building a new enclave applications 5 ,
which can be flushed to the enclave 6 without updating the
SSD firmware. In Section V, we show how to leverage SrFTL
to devise a practical example of ransomware detection.

C. Secure Channel
Our design incorporates a secure channel that ensures

the authenticity, integrity, and confidentiality of data transfer
between the SSD and enclave. Figure 4 shows the workflow
of the secure channel. Since the SSD cannot directly com-
municate with the enclave, we design a relay application –
Data Transfer App – in the host OS to provide minimal OS
services (i.e., pread/pwrite) through OCALLs (i.e., calls
pre-defined functions in the OS) for the enclave to establish
the secure channel with the SSD. Note that our design only
supports one secure channel at a time.
Authenticity. Authenticating the classification enclave and
SSD is challenging because their communication must pass
through the untrusted OS. To establish a trustworthy secure
channel, SrFTL has been designed to leverage a remote
administrator to verify the enclave (step 1) using the TEE
(e.g., SGX) remote attestation. This is a common way [40],
[41] to verify that the enclave runs correctly on the target
machine before provisioning secrets. The remote component
of SrFTL can be deployed as a trusted computer managed
by users or an online service provided by the manufacturer
that allows the users to manage their SSD securely remotely.
As discussed in Section III-C, we assume the manufacturer
is trusted and the remote administrator securely retrieves the
credential. Thus, the enclave, verified by the remote adminis-
trator using remote attestation, can be used for the following
authentication process. Once the enclave is verified, the remote
administrator and the enclave derive a shared key to build a
secure (encrypted) communication between them (step 2).

SrFTL leverages a public/private key pair to verify the
authenticity of the SSD. We assume that during the manu-
facture of the SSD, the private key K−

SSD can be embedded
into the firmware as performed in other secure storage [42],
[33]. The public key K+

SSD instead might be distributed to
the users (e.g., certificate) for developing the classification
enclaves. Thus, the enclave can use the public key to verify
the authenticity of the SSD because only the SSD holds the
private key. Specifically, in our design the enclave and SSD
first generate and exchange random numbers – RENCL (step
3) and RSSD (step 4) – for the following key establishment.
Then, the enclave creates a secret S (e.g., a random number)
and uses it to derive a key K by hashing with RENCL and
RSSD, and the enclave encrypts the secret S with public
keyK+

SSD and send it to the SSD, along with its HMAC value
HMAC(K,S) (step 5). Thus, the SSD uses its private key
K−

SSD to decrypt secret S and derive the key K with S using
the same hash method as the enclave. Once the SSD verifies

Data Transfer AppAdministrator Enclave SSD

RENCL<latexit sha1_base64="RfQJxWThnYDL6y9nyw4FzVY8rMY=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LLaCp5LUgx6LRfAgUsV+YBvKZrtpl242YXcjlNB/4cWDIl79N978N27bHLT1wcDjvRlm5vkxZ0o7zreVW1ldW9/Ibxa2tnd29+z9g6aKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/FFt6reeqFQsEg96HFMvxAPBAkawNtJj6b6XXt3Wbialnl10ys4MaJm4GSlChnrP/ur2I5KEVGjCsVId14m1l2KpGeF0UugmisaYjPCAdgwVOKTKS2cXT9CJUfooiKQpodFM/T2R4lCpceibzhDroVr0puJ/XifRwYWXMhEnmgoyXxQkHOkITd9HfSYp0XxsCCaSmVsRGWKJiTYhFUwI7uLLy6RZKbtn5cpdpVi9zOLIwxEcwym4cA5VuIY6NICAgGd4hTdLWS/Wu/Uxb81Z2cwh/IH1+QM0N4/z</latexit>

3. Random number
1. Remote Attestation
2. Secure communication

Select secret: S
Get key K: H(S, RENCL, RSSD)

<latexit sha1_base64="gYGvmUt4ZVGiVfsFFlMEViyEDOc=">AAACBHicbZDLSsNAFIYnXmu9RV12M9gKFaQkdaHLYhW6EKnWXqANYTKdtkMnF2YmQglZuPFV3LhQxK0P4c63cZpmoa0/DHz85xzOnN8JGBXSML61peWV1bX1zEZ2c2t7Z1ff228JP+SYNLHPfN5xkCCMeqQpqWSkE3CCXIeRtjOuTuvtB8IF9b17OQmI5aKhRwcUI6ksW89FhVqxcQLv7OjqpnodJ9RoXMbHhdjW80bJSAQXwUwhD1LVbf2r1/dx6BJPYoaE6JpGIK0IcUkxI3G2FwoSIDxGQ9JV6CGXCCtKjojhkXL6cOBz9TwJE/f3RIRcISauozpdJEdivjY1/6t1Qzk4tyLqBaEkHp4tGoQMSh9OE4F9ygmWbKIAYU7VXyEeIY6wVLllVQjm/MmL0CqXzNNS+bacr1ykcWRADhyCIjDBGaiAGqiDJsDgETyDV/CmPWkv2rv2MWtd0tKZA/BH2ucPJh2V3Q==</latexit>

Finish key exchange

H(S, RENCL, RSSD)
<latexit sha1_base64="gYGvmUt4ZVGiVfsFFlMEViyEDOc=">AAACBHicbZDLSsNAFIYnXmu9RV12M9gKFaQkdaHLYhW6EKnWXqANYTKdtkMnF2YmQglZuPFV3LhQxK0P4c63cZpmoa0/DHz85xzOnN8JGBXSML61peWV1bX1zEZ2c2t7Z1ff228JP+SYNLHPfN5xkCCMeqQpqWSkE3CCXIeRtjOuTuvtB8IF9b17OQmI5aKhRwcUI6ksW89FhVqxcQLv7OjqpnodJ9RoXMbHhdjW80bJSAQXwUwhD1LVbf2r1/dx6BJPYoaE6JpGIK0IcUkxI3G2FwoSIDxGQ9JV6CGXCCtKjojhkXL6cOBz9TwJE/f3RIRcISauozpdJEdivjY1/6t1Qzk4tyLqBaEkHp4tGoQMSh9OE4F9ygmWbKIAYU7VXyEeIY6wVLllVQjm/MmL0CqXzNNS+bacr1ykcWRADhyCIjDBGaiAGqiDJsDgETyDV/CmPWkv2rv2MWtd0tKZA/BH2ucPJh2V3Q==</latexit>

S = D(K�
SSD, E(K+

SSD, S))
<latexit sha1_base64="w1l0Ur4FIrhWaajVB+t6AWZSbOk=">AAACDHicbVDLSgMxFM3UV62vqks3wVZosZaZutCNULSC4KYy9gHtWDJppg3NPEgyQhn6AW78FTcuFHHrB7jzb0zbQbT1QODknHNJ7rEDRoXU9S8tsbC4tLySXE2trW9sbqW3d+rCDzkmNewznzdtJAijHqlJKhlpBpwg12akYQ8uxn7jnnBBfe9WDgNiuajnUYdiJJXUSWdMeAazldx1JzLNyujuqAAvfy6HBWjm81mV0ov6BHCeGDHJgBjVTvqz3fVx6BJPYoaEaBl6IK0IcUkxI6NUOxQkQHiAeqSlqIdcIqxosswIHiilCx2fq+NJOFF/T0TIFWLo2irpItkXs95Y/M9rhdI5tSLqBaEkHp4+5IQMSh+Om4FdygmWbKgIwpyqv0LcRxxhqfpLqRKM2ZXnSb1UNI6LpZtSpnwe15EEe2Af5IABTkAZXIEqqAEMHsATeAGv2qP2rL1p79NoQotndsEfaB/fY/+XZQ==</latexit>

Get secret S:

Calculate key K:

7. Send a nonce

RSSD<latexit sha1_base64="xsh1XTRM6jC8+OZH6+6b5kAXDVE=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCRqYYkioIEL2Vv2YMPu3mV3z4Rc+BU2Fhpj68+x89+4wBUKvmSSl/dmMjMviDnTxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ShRhDZJxCP1EGBNOZO0aZjh9CFWFIuA03Ywupr67SeqNIvkvRnH1Bd4IFnICDZWeizf9dJG43pS7hVLbsWdAS0TLyMlyFDvFb+6/YgkgkpDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lEguq/XR28ASdWKWPwkjZkgbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwgs/ZTJODJVkvihMODIRmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0mrWvHOKtXbaql2mcWRhyM4hlPw4BxqcAN1aAIBAc/wCm+Ocl6cd+dj3ppzsplD+APn8we334+x</latexit>

4. Random number

5. Encrypted secret E(K+
SSD, S)

<latexit sha1_base64="IC8ez7nTGcnHR9XDsIcciyPGqDI=">AAAB+nicbVDLSsNAFJ3UV62vVJduBluhopSkLnRZfIDgplL7gDaGyXTSDp1MwsxEKbGf4saFIm79Enf+jdM2C7UeuHA4517uvceLGJXKsr6MzMLi0vJKdjW3tr6xuWXmt5syjAUmDRyyULQ9JAmjnDQUVYy0I0FQ4DHS8obnE791T4SkIb9Vo4g4Aepz6lOMlJZcM1+8LF27Sb1+Mb47PIL1g6JrFqyyNQWcJ3ZKCiBFzTU/u70QxwHhCjMkZce2IuUkSCiKGRnnurEkEcJD1CcdTTkKiHSS6eljuK+VHvRDoYsrOFV/TiQokHIUeLozQGog/3oT8T+vEyv/1Ekoj2JFOJ4t8mMGVQgnOcAeFQQrNtIEYUH1rRAPkEBY6bRyOgT778vzpFkp28flyk2lUD1L48iCXbAHSsAGJ6AKrkANNAAGD+AJvIBX49F4Nt6M91lrxkhndsAvGB/fDK2R6Q==</latexit>

 along with HMAC(K, S)
<latexit sha1_base64="4NNPcQliL9orjR1fJSXxZ8vO3m4=">AAAB83icbVBNS8NAEJ34WetX1aOXxVaoICWpBz1WeymIUNF+QBvKZrtpl242YXcjlNC/4cWDIl79M978N27bHLT1wcDjvRlm5nkRZ0rb9re1srq2vrGZ2cpu7+zu7ecODpsqjCWhDRLyULY9rChngjY005y2I0lx4HHa8kbVqd96olKxUDzqcUTdAA8E8xnB2kjdQu3uulq8PUcPZ4VeLm+X7BnQMnFSkocU9V7uq9sPSRxQoQnHSnUcO9JugqVmhNNJthsrGmEywgPaMVTggCo3md08QadG6SM/lKaERjP190SCA6XGgWc6A6yHatGbiv95nVj7V27CRBRrKsh8kR9zpEM0DQD1maRE87EhmEhmbkVkiCUm2sSUNSE4iy8vk2a55FyUyvflfOUmjSMDx3ACRXDgEipQgzo0gEAEz/AKb1ZsvVjv1se8dcVKZ47gD6zPH8swj5A=</latexit>

Verify the credential
and start detection

9. Table,
Data,

10. Result,

6. Finish,HMAC(K, Finish)
<latexit sha1_base64="N23EkDPIcCLc94b929qSEL+uLtA=">AAAB+nicbVDLSgNBEOyNrxhfGz16GUyECBJ240GP0YAERIhgHpAsYXYySYbMzi4zs0qI+RQvHhTx6pd482+cPA6aWNBQVHXT3eVHnCntON9WYmV1bX0juZna2t7Z3bPT+zUVxpLQKgl5KBs+VpQzQauaaU4bkaQ48Dmt+4PSxK8/UKlYKO71MKJegHuCdRnB2khtO50t316Wcjen6JoJpvon2badcfLOFGiZuHOSgTkqbfur1QlJHFChCcdKNV0n0t4IS80Ip+NUK1Y0wmSAe7RpqMABVd5oevoYHRulg7qhNCU0mqq/J0Y4UGoY+KYzwLqvFr2J+J/XjHX3whsxEcWaCjJb1I050iGa5IA6TFKi+dAQTCQztyLSxxITbdJKmRDcxZeXSa2Qd8/yhbtCpng1jyMJh3AEOXDhHIpQhgpUgcAjPMMrvFlP1ov1bn3MWhPWfOYA/sD6/AEtNZIB</latexit>

8. Hashed credential H(Nonce + Credential)
<latexit sha1_base64="drioMdtzCnCJ+t7pocJ2sPelQ74=">AAAB/nicbVDLSsNAFJ3UV62vqLhyE2yFilCSutBlsZuupIJ9QBvKZHLTDp1MwsxEKKHgr7hxoYhbv8Odf+O0zUJbD1w4nHPvzL3HixmVyra/jdza+sbmVn67sLO7t39gHh61ZZQIAi0SsUh0PSyBUQ4tRRWDbiwAhx6Djjeuz/zOIwhJI/6gJjG4IR5yGlCClZYG5kmpUb6LOIHLugAfuKKYXZQGZtGu2HNYq8TJSBFlaA7Mr74fkSTUDxCGpew5dqzcFAtFCYNpoZ9IiDEZ4yH0NOU4BOmm8/Wn1rlWfCuIhC6urLn6eyLFoZST0NOdIVYjuezNxP+8XqKCGzelPE4UcLL4KEiYpSJrloXlUwFEsYkmmAiqd7XICAtMlE6soENwlk9eJe1qxbmqVO+rxdptFkcenaIzVEYOukY11EBN1EIEpegZvaI348l4Md6Nj0VrzshmjtEfGJ8/Y/iUeQ==</latexit>

HMAC(K, Table)
<latexit sha1_base64="3b1EOEVpBl7pfKmNShVL3S92mhc=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CbZCBSkzdaHLajcFESr0Be1QMmmmDc08SDKFMvRP3LhQxK1/4s6/MW1noa0HAodz7uHeHDfiTCrL+jYyG5tb2zvZ3dze/sHhkXl80pJhLAhtkpCHouNiSTkLaFMxxWknEhT7Lqdtd1yd++0JFZKFQUNNI+r4eBgwjxGstNQ3zULt8a5afLhCDawzl4W+mbdK1gJondgpyUOKet/86g1CEvs0UIRjKbu2FSknwUIxwuks14sljTAZ4yHtahpgn0onWVw+QxdaGSAvFPoFCi3U34kE+1JOfVdP+liN5Ko3F//zurHybp2EBVGsaECWi7yYIxWieQ1owAQlik81wUQwfSsiIywwUbqsnC7BXv3yOmmVS/Z1qfxUzlfu0zqycAbnUAQbbqACNahDEwhM4Ble4c1IjBfj3fhYjmaMNHMKf2B8/gBLxZF+</latexit>

, and
, and HMAC(K, Data)

<latexit sha1_base64="LfOEVpzXNRATC84riCtJVYs8bBs=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTARIkjYjQc9RuMhIEIE84BkCbOT2WTI7IOZWSEu+RIvHhTx6qd482+cJHvQaEFDUdVNd5cbcSaVZX0ZmZXVtfWN7GZua3tnN2/u7bdkGAtCmyTkoei4WFLOAtpUTHHaiQTFvstp2x3XZn77gQrJwuBeTSLq+HgYMI8RrLTUN/PF+u1lrXRziq6xwifFvlmwytYc6C+xU1KAFI2++dkbhCT2aaAIx1J2bStSToKFYoTTaa4XSxphMsZD2tU0wD6VTjI/fIqOtTJAXih0BQrN1Z8TCfalnPiu7vSxGsllbyb+53Vj5V04CQuiWNGALBZ5MUcqRLMU0IAJShSfaIKJYPpWREZYYKJ0Vjkdgr388l/SqpTts3LlrlKoXqVxZOEQjqAENpxDFerQgCYQiOEJXuDVeDSejTfjfdGaMdKZA/gF4+Mbe2aRBg==</latexit>

, and HMAC(K, Result)
<latexit sha1_base64="kwfIQ+FcZixdLQUUTJBeeZk3VqI=">AAAB+nicbVDLTgJBEJzFF+Jr0aOXiWCCiSG7eNAjyoXEmKCRRwIbMjvMwoTZR2Z6NQT5FC8eNMarX+LNv3GAPShYSSeVqu50d7mR4Aos69tIrayurW+kNzNb2zu7e2Z2v6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO6xM/eYDk4qHwT2MIub4pB9wj1MCWuqa2Xz15rJSuD7Fd0zFAk7yXTNnFa0Z8DKxE5JDCWpd86vTC2nsswCoIEq1bSsCZ0wkcCrYJNOJFYsIHZI+a2saEJ8pZzw7fYKPtdLDXih1BYBn6u+JMfGVGvmu7vQJDNSiNxX/89oxeBfOmAdRDCyg80VeLDCEeJoD7nHJKIiRJoRKrm/FdEAkoaDTyugQ7MWXl0mjVLTPiqXbUq58lcSRRofoCBWQjc5RGVVRDdURRY/oGb2iN+PJeDHejY95a8pIZg7QHxifP1s1kh8=</latexit>

E(K, Table)
<latexit sha1_base64="2J33LTRoiy1dA2zeaL6AM7YjYfQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBFuhgpSZutBlUQTBTYW+oB1KJs20oZnMmGQKZeh3uHGhiFs/xp1/Y9rOQlsPBA7nnMu9OV7EmdK2/W1l1tY3Nrey27md3b39g/zhUVOFsSS0QUIeyraHFeVM0IZmmtN2JCkOPE5b3uh25rfGVCoWirqeRNQN8EAwnxGsjeQW70oPF6iOTfy82MsX7LI9B1olTkoKkKLWy391+yGJAyo04VipjmNH2k2w1IxwOs11Y0UjTEZ4QDuGChxQ5Sbzo6fozCh95IfSPKHRXP09keBAqUngmWSA9VAtezPxP68Ta//aTZiIYk0FWSzyY450iGYNoD6TlGg+MQQTycytiAyxxESbnnKmBGf5y6ukWSk7l+XKY6VQvUnryMIJnEIJHLiCKtxDDRpA4Ame4RXerLH1Yr1bH4toxkpnjuEPrM8fGE6QWw==</latexit>

E(K, Data)
<latexit sha1_base64="x/mCHav3BZ6+a3Q4StF9kN/k9VU=">AAAB83icbVDJSgNBEK2JW4xb1KOXxkSIIGEmHvQYXEDwEsEskAyhptNJmvQsdPcIYchvePGgiFd/xpt/YyeZgyY+KHi8V0VVPS8SXGnb/rYyK6tr6xvZzdzW9s7uXn7/oKHCWFJWp6EIZctDxQQPWF1zLVgrkgx9T7CmN7qe+s0nJhUPg0c9jpjr4yDgfU5RG6lTvC3dn5Eb1Hha7OYLdtmegSwTJyUFSFHr5r86vZDGPgs0FahU27Ej7SYoNaeCTXKdWLEI6QgHrG1ogD5TbjK7eUJOjNIj/VCaCjSZqb8nEvSVGvue6fRRD9WiNxX/89qx7l+6CQ+iWLOAzhf1Y0F0SKYBkB6XjGoxNgSp5OZWQocokWoTU86E4Cy+vEwalbJzXq48VArVqzSOLBzBMZTAgQuowh3UoA4UIniGV3izYuvFerc+5q0ZK505hD+wPn8ASOiP4w==</latexit>

E(K, Result)
<latexit sha1_base64="HDVbquvicEUrG951lu4rA9T4wP0=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LLZCBSlJPeixKILgpYr9gDaWzXbSLt1swu5GKaH/w4sHRbz6X7z5b9y2OWjrg4HHezPMzPMizpS27W8rs7S8srqWXc9tbG5t7+R39xoqjCWFOg15KFseUcCZgLpmmkMrkkACj0PTG15O/OYjSMVCca9HEbgB6QvmM0q0kR6KV6WbE3wHKub6uNjNF+yyPQVeJE5KCihFrZv/6vRCGgcgNOVEqbZjR9pNiNSMchjnOrGCiNAh6UPbUEECUG4yvXqMj4zSw34oTQmNp+rviYQESo0Cz3QGRA/UvDcR//PasfbP3YSJKNYg6GyRH3OsQzyJAPeYBKr5yBBCJTO3YjogklBtgsqZEJz5lxdJo1J2TsuV20qhepHGkUUH6BCVkIPOUBVdoxqqI4okekav6M16sl6sd+tj1pqx0pl99AfW5w8mxZD8</latexit>

Fig. 4: The workflow of establishing a secure channel and
subsequently the process of ransomware classification.

that the generated key K using the HMAC, it sends a Finish
message HMAC(K,Finish) to the enclave, ending the key
exchange (step 6). Thus, an encrypted communication channel
(using K) can be established between the enclave and SSD.

To prevent replay attacks, the SSD sends a randomly
generated nonce to the remote administrator (step 7) through
the established channels. The remote administrator then can
compute a hash value H(Nonce + Credential) using the
credential and nonce and sends it to the SSD (step 8). Finally,
the SSD can compare against the received hashed credential
to verify the authenticity of the enclave.
Integrity and confidentiality. After the establishment of a
secure channel, the classification enclave fetches the I/O replay
tables (i.e., IRT) and data from the SSD periodically (i.e.,
every second) for ransomware classification (step 9), and the
enclave returns the detection result (RDR) to the SSD after
the classification process (step 10). SrFTL uses the shared key
K to encrypt the transferred data – including IRT, data, and
RDR – to provide confidentiality. Thus, adversaries cannot
observe the data transferred on the secure channel to infer
the classification algorithms in the enclave. Our SrFTL design
further leverages a keyed HMAC to ensure the integrity of
transferred data on the secure channel.
Privileged attack resistance. An adversary can resend the
previous results to the SSD (replay attack) or prevent the SSD
from receiving detection results (denial-of-service attack). To
handle these attacks, we design SrFTL to assign a unique table
ID for each suspicious table, and the table IDs are attached to
the transferred suspicious tables and detection results (RDRs).
Any RDR attached with previous table IDs is deemed as
suspicious, thus the SSD skips their processing and notifies
users of such suspicious behavior. Furthermore, the table ID
is used as a nonce when encrypting the transferred data. Thus,
adversaries cannot predict the data transfer pattern to infer
the content of transferred tables and results. Finally, if the
number of suspicious tables is increasing for a long time
without any new RDRs received in the SSD, the adversary
might have terminated the secure channel, and SrFTL disables
block erasure in the SSD to avoid potential data loss.

V. RANSOMWARE CLASSIFICATION

This section illustrates how to devise an accurate ransomware
detection while bridging the semantic gap on SrFTL.

A. File-based Heuristic Extraction

We use the ext4 in our classification implementation for
filesystem metadata extraction. Through the documentation of
ext4 [43], we determine its metadata layout on the storage
device, and it is as follows: superblock describes the enclosing
FS, group descriptor contains the location of the inode table,
and the inode table maintains the specific metadata of each file.
Thus, the enclave fetches data in the address of the superblock
from the storage through a secure channel and parses it to
extract the storage address of the group descriptor and the
number of inodes. Then, the enclave reads the storage with
the address of the group descriptor. Based on the content of
the group descriptor, the enclave can locate the inode table on
the storage and then fetch the inode table from the storage to
extract the final FS metadata.

Through the filesystem parser, a filesystem metadata table
(FMT) is created, and each entry of it includes a key-
value pair, where the index is the first LBA (LBAFirst)
of the file followed by its metadata1, including file length
(FileLength), file type, and file type change flag2 (TypeFlag).
For each reloading of the filesystem metadata in the enclave,
the TypeFlag is adjusted accordingly by comparing the current
fetched file flag with the previously stored one. If the file type
changes, the TypeFlag is set to 1. Otherwise, is set to 0. Since
frequent FS metadata loading can burden the I/O bandwidth of
normal requests, our implementation reloads FS metadata in
the enclave every second to track FS operations timely without
significant performance overhead.

Then, our classification selects two file-based heuristics
through the parsed metadata.
File type changes. Given that files tend to maintain their
types even after the content modification, our methodology
includes monitoring the modification of file types, with any
alteration deemed as suspicious. Therefore, our classification
tracks the file type change for each read request, which can
be processed by ramsomware for victim files, in an IRT.
For the LBA of each IRT read entry, if it falls within the
range [LBAFirst, LBAFirst+FileLength] of an FMT entry,
the filesystem metadata of the LBA can be located and the
TypeFlag is used to indicate the file type change.
File Deletion. The deletion operation of files can be suspicious
because ransomware typically deletes files after it encrypts
victim data. Moreover, the victim files need to be read before
their deletion. Thus, we employ file deletion as a heuristic for
ransomware detection. The process of extracting this heuristic
is similar to the file type changes. Our classification searches
the FMT through the LBA of the read requests in the IRT. If
its metadata does not exist in the FMT, the file deletion occurs.

1Other metadata can be included. This is determined by the used heuristics
in the detection method.

2The initial flag value is 0.

JPG
MPG

TXT
PNG

MOV PDF
PPTX

DOCX
GZIP

GZIP-Best

LZ4-Best

AES-CBC

AES-GCM

DES-ECB

DES-CBC
0%

20%
40%
60%
80%

100%
Fa

ls
e

Po
si

tiv
e/

N
eg

at
iv

e
R

at
io

Entropy-256B Entropy-4KB Entropy-16KB Chi-256B Chi-4KB Chi-16KB

False Positive False Negative

Fig. 5: The false positive and false negative ratio when
solely detecting data using entropy or chi-square testing
at different data processing granularities.

B. Incorporating Content-based Heuristics

Encryption ransomware alters data content to an encrypted
format, which increases data randomness. However, benign
applications, such as compression, can also generate data with
relatively high randomness, leading to false positives. Thus,
our classification introduces multiple randomness evaluators
(i.e., entropy and chi-square testing) as content semantics to
avoid such misclassification.
Entropy of writing data. Encryption induced by ransomware
can increase data entropy due to the high randomness of
encrypted data. Thus, our classification method monitors the
entropy of writing operations. To achieve that we leverage the
entropy calculation explored in previous work [6]. Based on
our entropy evaluation on the ransomware dataset, we deem
the trigger of entropy heuristic when the entropy exceeds 7 as
encrypted data has typically a high entropy value approaching
8. Figure 5 shows this implementation can detect data with
high randomness, especially those generated by encryption
algorithms.
Chi-square testing for writing data. While high entropy
serves as a strong indicator for data encryption, it introduces
a high false positive as shown in Figure 5 when handling
applications that generate high randomness data, such as com-
pressed data. In contrast, we observe that chi-square testing
incurs low false positives and false negatives when detecting
data with a coarse granularity (e.g., 16KB). Thus, we introduce
chi-square testing as a heuristic. In our implementation, we
use 293.25 as the threshold by referring to the chi-square
table with 255 degrees and 5% significance level [44]. If the
chi-square value of data is smaller than 293.25, it might be
generated by encryption ransomware.
Heuristic Extraction. Through the secure channel, the clas-
sification enclave sends the LBAs extracted from IRT to the
SSD to fetch data for computing entropy and chi-square testing
values. Since the chi-square testing (i.e., 16 KB) has a coarser
granularity than a flash page (i.e., 4 KB) in our classification
method, we group four data pages – each LBA represents an
address of a 4 KB data page – in IRT for the calculation of
chi-square testing. For every four consecutive write requests
in IRT, their corresponding data can be used to calculate a chi-
square testing value, which is assigned to each page in the four
consecutive data pages. Since entropy has a small granularity,
in our implementation each data page is divided into segments
with 256 B granularity, and the entropy of each data page is
represented by the highest entropy value of those segments.

TABLE I: The applications
used for training.

Dataset Description

FIO-randrw [47]
Test with

randrw workload

LZ4-Default [48]
Compress with
default mode

g++ [49] RocksDB compilation
RocksDB [50]

(randrw)
readrandomwriterandom
workload of db_bench

curl [51] Network download
IP-Ransom In-place ransomware

OP-Ransom
Out-of-place
ransomware

Bitman
Real-world
ransomware

WannaCry
Real-world
ransomware

Linux.Cryptor
and grep [52]

Mixing real-world
ransomware

and data searching

Globeimposter
and cp [53]

Mixing real-world
ransomware

and data copy

YESNO

NO YES NO YES

YESNO NO YES

Is RBORead Ratio

entropy>7

NO YES

YESNO

File Type
Change

Not
Ransom

Is
Ransom

Low
Chi-square

Is
Ransom

Not
Ransom

Read Ratio Read Ratio

Is
Ransom

Not
Ransom

Is
Ransom

Not
Ransom

YESNO

Not
Ransom

File
Deletion

File
Deletion

Is
Ransom

NO YES

Fig. 6: The trained decision
tree after training.

C. Incorporating Behavior-based Heuristics

SrFTL uses semantic information for ransomware detection
but also enables monitoring the block-level I/O access pat-
tern [6], [12], [5] that firmware-level solutions can provide.
Our classification leverages the read-before-overwritten access
pattern and the read ratio as detection heuristics because they
are persistent ransomware behavior based on our observations
of real-world ransomware.
Read-before-overwritten (RBO) access. As discussed in the
previous sections, ransomware reads data from a storage drive
for encryption and then removes the victim data. Our approach
monitors the overwriting or deletion of previously read data
to aid ransomware classification.
Read ratio. Since encryption yields an equivalent volume
of encrypted data compared to plaintext, the number of read
operations incurred by ransomware approximates the number
of writes. Thus, our classification approach incorporates the
read ratio as a heuristic. We evaluate the dynamic read ratio
of workloads and ransomware listed in Table III and Table IV,
and we observed that the read ratio exhibited by real-world
ransomware consistently falls within the range of 25% to 75%.
Thus, we deem that a read ratio located in this interval implies
a higher risk of ransomware occurrence.
Heuristic extraction. The RBO heuristic can be easily ex-
tracted from the RBO flag in the IRT. In addition, our
classification enclave calculates the number of read requests
in the IRT and uses it to get the read percentage.

D. Advanced Attack Defense
Adversaries can develop complex attacks to circumvent ex-

isting defenses [45], [46] thus we incorporate countermeasures
in SrFTL against existing advanced ransomware.
Padding attack defense. Padding 0s to the end of files is
a technique used to decrease data randomness and thus avoid
detection [45], [46]. We prevent this attack by calculating data
entropy and chi-square testing at fine granularity (256B and
16KB, respectively) instead of at file level.
Encoding attack defense. Adversaries can encode the en-
crypted data to reduce the source alphabet and decrease

Algorithm 1 Ransomware Detection.
Input: SuspiciousTable = IRT fetched from the SSD

Data = the data of each LBA
1: Ransom_number = 0
2: for Read request i in SuspiciousTable do
3: if The FS metadata of i not exists then
4: Mark file deletion heuristic as Y ES
5: break
6: end if
7: end for
8: for Write request i in SuspiciousTable do
9: if Data is encoded then

10: Decode the Data
11: end if
12: Calculate 6 heuristics
13: Decisioni = DecisionTree(6 heuristics)
14: if Decisioni == Is_Ransom then
15: Ransom_number++
16: end if
17: end for
18: if Ransom_number / table_size > Ransom_Threshold then
19: Report the occurrence of ransomware
20: All the read data of IRT are victim data and set them to Is_Ransom
21: else
22: Set the results of read LBAs to Not_Ransom
23: end if

randomness [45]. Nevertheless, encoding algorithms (e.g.,
Base64 [54]) transfer the original data to specific characters
(e.g., A-Z, a-z, 0-9, +, and / in Base64) that may facilitate
the detection of encoding. Therefore, SrFTL monitors the
byte value of the data to spot those consecutive encoded
bytes (256B at least) and deploys the decoding method to
those bytes. Then, SrFTL performs entropy and chi-square
methods to evaluate the randomness of potential encoded
data. Other encoding algorithms that reduce the alphabet set
can be considered for our encoding identifier. For example,
ASCII85 [55] maintains a pre-determined alphabet set, includ-
ing 0–9, A–Z, a–z, and 23 special characters (e.g., ? and !),
to encode data. Thus, our method can be adapted to other
encoding algorithms by monitoring those special characters
and employing a decoder. We leave extending our encoding
identifier in future work.
E. Combine Them Together: Ransomware Detection

We combine the six heuristics described in Section V-B
and Section V-C for robust ransomware classification using a
decision tree. Specifically, we employ the ID3 algorithm [56]
to train our decision tree, given its prevalence in classification
tasks [15]. Each heuristic yields a binary input (i.e., YES or
NO) as an indicator. We collect these heuristics of I/O re-
quests for training when running SrFTL with different benign
applications and ransomware samples, as shown in Table I.
Figure 6 shows the established decision tree.

Algorithm 1 illustrates the ransomware detection process
of our approach. For the fetched I/O replay table (IRT), we
evaluate each I/O request by extracting the aforementioned
six heuristics and feeding them into the decision tree for ran-
somware classification. As discussed in Section IV-A, SrFTL
marks requests with RBO behavior to Low at least in the FTL
to prevent potential data loss. Thus, victim data accessed with
RBO behavior are maintained even if its returned result is

Not_Ransom. Given that victim data must be read before being
encrypted and sent back to the storage, our approach assesses
write requests for ransomware decisions and suspends GCs for
the data corresponding to read requests. Finally, our method
records the number of requests classified as Is_Ransom. If
the ratio of Ransom_number exceeds the Ransom_Threshold,
ransomware occurrence is ascertained. The Ransom_number
is set to 0.3 based on decision tree training. Subsequently,
users are notified and can take remedial action to mitigate
the ransomware threat, such as disabling the internet and
terminating suspicious processes within the OS.

VI. SECURITY ANALYSIS

We examine all potential attack surfaces of our design and
demonstrate how SrFTL could mitigate these threats.
A. Secure Channels.

Adversaries could attempt to impersonate the SSD to com-
municate with the enclave. However, the private key cannot
be extracted from the SSD for shared key establishment as
it is embedded in the firmware by the manufacturer as dis-
cussed in Section IV-C. Thus, adversaries cannot authenticate
themselves to communicate with the enclave.

The communication between the remote administrator and
the enclave is facilitated by remote attestation. This safeguard
assures that adversaries cannot impersonate either the enclave
or remote administrator, thereby preventing unauthorized ac-
cess to either entity. Since the SSD in SrFTL only supports one
secure channel at a time, a privileged adversary might termi-
nate the benign enclave and build a malicious one to establish
a connection (step 3 to step 6 in Figure 4) with the SSD.
However, ransomware classification remains secure without
being compromised. The malicious enclave must intercept the
credential and resend it to the SSD to prove its authenticity.
Nevertheless, it cannot steal the credential from the channel
between the remote administrator and benign enclave without
their provisioned keys generated during remote attestation.
Moreover, adversaries cannot infer the shared key K from the
benign enclave because they cannot unveil the secret S for cal-
culating the shared key. Thus, the encrypted hashed credential
sent from the benign enclave to the SSD cannot be decrypted
and used by the misrepresented enclave. Additionally, since
the random nonce makes the hashed credential different at
each authentication cycle, replay attacks cannot compromise
SrFTL. Even if adversaries terminate the classification enclave,
this does not lead to data loss because SrFTL prevents the
erasure of deleted data if no detection result is returned to the
SSD, and it can be easily detected by a remote administrator
if it has a liveness check strategy to the enclave.

B. Attack on Filesystem Metadata.
Privileged adversaries cannot tamper with the file system

metadata in the enclave due to its strong isolation. However,
adversaries can modify the raw metadata on the storage or the
filesystem in the OS. Fortunately, existing filesystems prevent
this raw metadata manipulation due to metadata caching in the
memory. For example, a journaling filesystem (e.g., BFS [57])
first creates a log on storage to record all filesystem operations

TABLE II: Parameters of the SSD used for evaluation.
SSD Parameter Value SSD Parameter Value

Capacity 256GB Chips / Channel 8
Page Size 4KB Channels 8

Pages / Block 256 Page Read 0.04ms
Blocks / Plane 4096 Page Write 0.2ms
Planes / Chip 1 Block Erase 2ms

in a sequential and atomic manner. Then, the metadata can be
updated in memory, which is periodically flushed to the storage
to minimize storage overhead. Thus, the filesystem metadata
in the main memory can overwrite the falsified raw metadata
on the storage, and the enclave can still retrieve the correct
metadata. Additionally, modifying the filesystem metadata in
memory is an attack pattern of ransomware, which should
be considered when designing the detection method. SrFTL
affords the capability to establish a detector for potential
filesystem metadata tampering. For example, adversaries with
elevated privileges may retain the original “magic numbers”
(the first four bytes of a file) within encrypted files to hide
the changing of file type. However, this can be easily detected
by monitoring the data randomness (entropy and chi-square
value) within the file. If the file type is not changed while
data randomness is high, this can be deemed as suspicious
behavior and be reported to the remote administrator. More-
over, privileged adversaries may circumvent file system writes
by directly flushing data to the raw device. To counteract
this attack, SrFTL can monitor the incoming data to identify
those data that lack filesystem metadata, which could indicate
this filesystem falsification. To conclude, SrFTL allows the
detection of metadata falsification compared to traditional
software-level methods that can be disabled and manipulated.

VII. IMPLEMENTATION

Since Linux systems serve as the backend for numerous
critical infrastructures, an increasing number of ransomware
attacks are now targeting Linux. In 2022, there was a 75%
surge in ransomware incidents relevant to Linux systems com-
pared to the previous year [58]. Therefore, we build SrFTL on
Linux. To support a full-stack hardware and software research
with SSD and SGX, we ported the FEMU SSD emulator
[59] to QEMU-SGX [60], allowing us to simultaneously
prototype changes at the FTL/SSD layer and the guest OS with
hardware-backed SGX. FEMU [59] is a QEMU-based NVMe
SSD virtual module that emulates a physical platform. We
modify FEMU’s FTL to perform ransomware detection and
the result is processed in the SSD. We set the suspended GC
cycles of Low and Is_Ransom pages to 5 and 50, respectively.
Moreover, we modify the FTL to allow the enclave to use
direct disk read and write at specific “magic” LBAs to fetch
pending tables and data and send detection results to the SSD.
We run the untrusted part of our enclave application in a
standard guest OS process, which launches an enclave that
communicates with FEMU-based FTL. SrFTL leverages this
platform to add its ransomware-specific application code.

TABLE III: The detail of our
evaluation workloads.

Trace
Type

Trace
ID

Trace
Name

Read
Ratio

Filebench

B1 webserver 90.9%
B2 fileserver 33.3%
B3 randomrw 31.1%
B4 webproxy 83.3%

MSR

M1 hm_0 35.5%
M2 prxy_0 3.1%
M3 rsrch_0 9.3%
M4 wdev_0 20.1%

FIU

F1 mail 8.6%
F2 web 21.4%
F3 homes 0.9%

TABLE IV: The characteris-
tics of ransomware samples.

Name Source Purpose
IP-ransom In-house Training
OP-ransom In-house Training

Bitman VirusTotal Training
WannaCry TheZoo Training

Linux.Cryptor TheZoo Training
Globimposter VirusTotal Training

Base64 In-house Testing
Padding In-house Testing

Ulise VirusTotal Testing
Mikey VirusTotal Testing

Encoder TheZoo Testing
Cryp TheZoo Testing

Crypnux TheZoo Testing
Vipasana TheZoo Testing

VIII. EVALUATION

Goals. Our evaluation answers the following research ques-
tions: (RQ0) How SrFTL defend against potential privileged
attacks? (RQ1) How efficient is our approach in detecting ran-
somware and real-world applications? (RQ2) How many false
positives and false negatives are generated? (RQ3) How much
performance overhead is introduced by SrFTL? (RQ4) How
does SrFTL affect the SSD’s lifetime? For RQ0, we evaluate
how SrFTL behaves in the presence of potential rootkit attacks
in Section VIII-A. We also test the detection efficiency of
SrFTL while comparing SrFTL against an existing in-storage
detection method [13] in Section VIII-B for RQ1 and RQ2.
Finally, we evaluate the performance and lifetime of SrFTL
and compare it against normal SSDs in Section VIII-C to
answer RQ3 and RQ4.
Experimental Setup. All experiments are hosted on a machine
with an Intel Xeon E3-1245 v5 3.50GHz processor with
64GB memory. We use SGXv1, supported by our X11-SSH
motherboard and BIOS combination, and Intel SGX SDK [61]
v2.6. The host machine has a 128MB maximum EPC. We
pre-allocate 80MB of SGX memory to the guest machine
(in practice, our enclave only uses 4MB). The host operating
system is Ubuntu 18.04, running a KVM-SGX kernel [62] for
QEMU-SGX passthrough. The guest is running an Ubuntu
18.04 with kernel 4.15.0 on a 50GB QCOW2 disk image.
We attach a FEMU-backed 256GB NVMe SSD to the guest
machine as shown in Table II. Finally, we allocate 4GB of
memory for the guest and 4 vCPUs. Note that all experiments
are run within the same guest system and SSD.
Workloads. We evaluate the performance and lifetime of
SrFTL using macro-benchmarks [63] and real-world work-
loads as shown in Table III. Moreover, we evaluate the false
positives by examining commonly used applications as shown
in Table V. MSR traces [64] were collected with bursty and
idle periods, while FIU traces [65] were collected from virtual
server systems at FIU. Since MSR and FIU traces provide no
real data, we copy a private dataset (1 GB) – including multiple
types of files, such as mp4, pdf, and gzip – to the emulated
SSD. Thus, the traces would be arbitrarily associated with data
and files from our private dataset.
Comparisons. MimosaFTL [13] is an FTL-level ransomware
defense that monitors the access pattern of I/Os to indicate

TABLE V: Real-world benign applications case study of false
positive and performance degradation.

Benign
Applications

Application
Description

False
Positive

Degraded
Performance Ratio

Shred [68] Data wipper No 4.3%
GCC [69] Compile linux-sgx [61] No 1.3%

RocksDB [50]
readwhilewriting

workload of db_bench No 2.3%
Git [70] Repository clone No 5.5%

Wget [71] Linux kernel download No 4.2%
Gzip-Best [72] Compress with best ratio No 0.2%
LZ4-Best [48] Compress with best ratio No 0.7%
Dropbox [73] Cloud data syncing No 4.2%
• The performance degradation is calculated by comparing the execution
time of applications when SrFTL is running or not.

ransomware traffic. We re-implement MimosaFTL3 in an
unmodified FEMU SSD, which is the same as the implemen-
tation of SrFTL, to evaluate the efficiency of the ransomware
detection of our SrFTL. For the recent requests access (RRA)
list in MimosaFTL, we match its length with our IST (1,000).
Real-World Ransomware. Table IV shows the ransomware
samples collected from real-world sources, including VirusTo-
tal [66] and TheZoo [67]. Additionally, we implement two typ-
ical encryption ransomware – in-place (IP-ransom) and out-of-
place (OP-ransom) – for training purposes that are not reported
to the public, similar to [14]. IP-ransom writes encrypted
data to the original victim read address, while OP-ransom
writes to a new address space before removing the original
files. Moreover, we build two advanced ransomware using
Base64 encoding algorithm (Base64) and padding technology
(Padding) as illustrated in Section V-D.

A. Rootkit Attacks Testing
We deploy three privileged attacks as described in Sec-

tion III-A to test the ability of SrFTL to resist privileged
compromise. For a replacement attack, privileged adversaries
must fabricate a malicious enclave application to replace the
benign one. However, they cannot get authenticated by the
remote administrator through the remote attestation of SGX,
indicating the failure of such a replacement. For ransomware
with pass-through attack, they can circumvent file-level heuris-
tics. However, SrFTL deploys the detection enforcement at
the firmware level without being bypassed while providing
content-based heuristics and I/O access patterns – i.e., content-
based heuristics and I/O access patterns – for the decision tree
to identify ransomware behaviors. Finally, we evaluate the ter-
mination attack by killing the thread of the enclave application.
SSD cannot receive any classification results (RDRs) after the
termination. However, SrFTL can detect such attack because it
monitors the received RDRs; if no new RDR arrives for a long
time while the number of the suspicious table is increasing,
SrFTL deems the occurrence of the attack and terminates the
erasure operations in the SSD (see Section IV-C).

B. Detection Accuracy Testing
Our collected ransomware samples include both Linux and

Windows variants. To support the running of Windows-based
ransomware samples, we run them using Wine [74], which

3No source code was made available by the authors.

0.2 0.4 0.6 0.8
0%

50%

100%

Threshold Value

Fa
ls

e
N

eg
at

iv
e

Base64 Padding Ulise Mikey
Vipasana Encoder Cryp+RocksDB Crypnux+GZIP

Fig. 7: The false negative of SrFTL when the ransom thresh-
old changes.

0.2 0.4 0.6 0.8
0%

40%

80%

Threshold Value

Fa
ls

e
Po

si
tiv

e

Shred GCC RocksDB Git
Wget Gzip LZ4 Dropbox

Fig. 8: The false positive of SrFTL when the ransom thresh-
old changes.
is a widely adopted and robust tool [75], [76] for running
Windows applications in Linux. As illustrated in Section V-E,
our classification method leverages a detection threshold (Ran-
som_Threshold) to indicate the occurrence of ransomware.
We evaluate the effectiveness of our detection method within
SrFTL framework by quantifying the ratio of false negatives
and false positives when the Ransom_Threshold value is
adjusted. Figure 7 and Figure 8 indicate that SrFTL achieves
zero false negatives and positives when the threshold value
falls between 0.2 and 0.5. Thus, our classification method
achieves an accurate ransomware detection with zero false
negatives as the threshold is 0.3 (see Section V-E).

To quantify the importance of selected heuristics, we de-
construct the composition of heuristics that were identified as
positives. Figure 9 and Figure 10 show that SrFTL exhibits ro-
bust capabilities in detecting the established heuristics for the
decision tree. Vipasana triggers the fewest heuristics because
they only encrypt a small amount of victim data and generate
non-encrypted data (e.g., HTML, txt, and executable files) to
notify the success of the attack. However, it cannot circumvent
our detection method because the identified heuristics can still
provide sufficient information for our decision tree to make the
correct ransomware classification. Benign applications rarely
trigger false positives because they only activate a limited set
of heuristics for our classification method that cannot incur
false positives in notifying ransomware occurrence.

We further compare the detection accuracy of SrFTL against
MimosaFTL to illustrate the benefit of bridging the semantic
gap. Figure 11 and Figure 12 show the ratio of detected data
to ransomware writes in real-world ransomware samples and
benign applications. SrFTL detects 91% of writes generated
by ransomware, whereas MimosaFTL only identifies 29.8% of
ransomware writes on average. For benign applications, SrFTL
achieves low false positives with an average of 0.7% miss-
classified requests; in contrast, MimosaFTL yields 8.3% false
positives on average. MimosaFTL provides a worse detection
accuracy than SrFTL for the following reasons. First, SrFTL
can provide more heuristics, including semantic information of
data content and FS metadata, with an intelligent classification
(i.e., decision tree) to reason ransomware behaviors. In con-

Base64
Padding

UliseMikey
Encoder

Vipasana

Cryp+RocksDB

Crypnux+GZIP
0%

50%

100%
Pe

rc
en

ta
ge

Entropy Chi-Square RBO ReadRatio TypeChange FileDeletion

Fig. 9: The percentage of positive heuris-
tics in ransomware testing.

Shred GCC

RocksD
B Git

Wget
Gzip LZ4

Dropbox
0%

50%

100%

Pe
rc

en
ta

ge

Fig. 10: The percentage of positive heuris-
tics in benign application testing.

Base64
Padding

UliseMikey
Encoder

Vipasana

Cryp+RocksDB

Crypnux+GZIP
0%

50%

100%

Pe
rc

en
ta

ge

MimosaFTL SrFTL

Fig. 11: The percentage of identified
data pages in ransomware testing.

Shred
GCC

RocksDB Git Wget
Gzip LZ4

Dropbox
0%

20%

40%

Pe
rc

en
ta

ge

MimosaFTL SrFTL

Fig. 12: The ratio of detected data
pages in benign application testing.

B1 B2 B3 B4 M1 M2 M3 M4 F1 F2 F3
0.9

1

1.1

N
or

m
al

iz
ed

L
at

en
cy

Clean-SSD SrFTL-noEnclave SrFTL

Fig. 13: The normalized average response
time.

B2 B3 M1 M2 M3 M4 F1 F2 F3
0

0.6

1.2

W
A

F

SSD-Balance SSD-Greedy SrFTL-Balance SrFTL-Greedy

Fig. 14: The write amplification factor
(WAF).

trast, MimosaFTL only relies on I/O access pattern, which is
insufficient to detect ransomware and eliminate false positives.
Benign applications can present similar I/O access patterns
to ransomware, leading to false positives; for example, GCC
reads source codes to compile executable or library files, gen-
erating a read-before-write behavior similar to ransomware.
In addition, storage protocols (e.g., NVMe) can break the
I/O access patterns, paralyzing FTL-based detection. Since FS
always combines multiple writes together and submits them
in a batch [77] to the storage device, MimosaFTL fails to
detect out-of-place ransomware as it monitors the length of
consecutive read and write requests, and the batched write
incurs a much longer data length over read requests. Thus,
SrFTL provides a more robust capability in detecting encryp-
tion ransomware over state-of-the-art FTL-based solutions.

C. Performance And Lifetime Testing
We compare the performance of an unmodified SSD (Clean-

SSD), SrFTL that deploys the classification into the OS instead
of the enclave (SrFTL-noEnclave), and SrFTL. In Figure 13,
SrFTL-noEnclave and SrFTL increase the average latency over
Clean-SSD by 1.7% and 2.2%, respectively. Although SGX
can bring non-negligible overhead [78], it brings trivial effects
to SrFTL because the detection module of SrFTL is not in the
critical path of I/O operations. Additionally, SrFTL leads to
extra reads for entropy and chi-square computing. However,
modern SSDs have a high read performance that can avoid
significant performance overhead [79]. Moreover, only write
requests in IRT need extra reads for content-based heuristics,
and data in an IRT are read synchronously by the classification
enclave. Thus, the maximum bandwidth incurred by an IRT
is 97.7 MB/s, which is calculated by the following equation:
IRT_BW = 1, 000 ∗ PG_Size/PG_Read. However, our
implemented SSD provides 1.25 GB/s maximum write band-
width, and SrFTL does not need to load data of read requests in
an IRT. Thus, this overhead is trivial for modern SSDs that can
achieve high bandwidth with gigabytes per second. Table V
shows false positives and the performance degradation in-
curred by SrFTL when running real-world applications. Since
SGX uses a dedicated chip (i.e., memory encryption engine)
to achieve encryption that does not consume the resource

of normal CPU cores, SrFTL introduces trivial performance
overhead by 2.8% on average.

Since webserver (B1) and webproxy (B4) cannot generate
enough writes for GC, we only evaluate fileserver (B2) and
randomrw(B3) in Filebench for lifetime testing. We evaluate
the lifetime through the write amplification factor (WAF),
which is determined by the ratio of data written to flash
memory to the data generated by the host. A large WAF
value indicates a worse SSD lifetime. Then, we employ two
GC methods in this evaluation. The “balance” method is
the default GC algorithm of FEMU that selects flash blocks
parallelly for erasure, and the “greedy” algorithm prioritizes
the blocks with the most invalid pages. Figure 14 shows that
SrFTL introduces trivial lifetime degradation over balance and
greedy SSDs by 0.01% and 0.003%, respectively. We also test
the ratio of data pages with RBO access pattern that creates
Low pages, and it only takes 3.5% of data writes on average.
Thus, SrFTL incurs trivial SSD lifetime degradation because
of accurate ransomware classification and few suspended vic-
tim pages led by RBO access pattern (see Section IV-A).

IX. DISCUSSION

This section demonstrates the limitations of the proposed
approach and details that inform a practical implementation
and deployment of SrFTL.
Real-time Detection. Ransomware identification needs to be
fast to terminate the attack rapidly. Based on our proof-of-
concept implementation, SrFTL could detect ransomware in
no more than one second if ransomware runs continuously. If
ransomware runs for a short time and generates a small amount
of I/Os, it can be detected in less than six seconds. Since
attackers might develop new variants to circumvent existing
defenses, false negatives might happen. However, our approach
leverages the inevitable access pattern – i.e., read-before-
overwrite or read-before-delete – of encryption ransomware to
suspend the GC of victim data even if the benign classification
result is returned. Thus, a false negative does not lead to the
risk of data loss.
Upgradable Ransomware Defense. Ransomware detection
is an arms race where adversaries can learn system behavior
to develop more effective ransomware variants, indicating

the necessity of more effective defenses to address new
variants. However, updating firmware-level defenses requires
developing new firmware and flashing it into the storage
device, which can interrupt I/O services and can be challenging
with the risk of data loss [80]. Thus, updating ransomware
defense in the firmware could jeopardize the use of storage
devices by degrading storage availability, increasing data loss
probability, and introducing extra time and financial (i.e., extra
storage space) expenses for data backup. SrFTL overcomes
this limitation by enabling ransomware classification in the
secure enclave. Designers can easily upgrade their ransomware
detection by making a new enclave application and loading it
into the enclave without interacting with the SSD firmware.
SGX Enclave. The EPC memory available to SGX is lim-
ited (e.g., 128MB), and we need to consider the memory
consumption due to the filesystem metadata in the enclave.
In the real world, the scale of the filesystem rarely exceeds
such dimension because most users are unlikely to have a
large quantity of valuable data that needs to be protected.
For example, we extract the necessary metadata of the Linux
kernel source code, which includes 52885 files, and it only
occupies 2.3MB. If the available memory size of SGX is
128MB4, over 2.9 million files’ metadata could be stored.
To mitigate the potential of metadata overload in the enclave,
users can implement policies to selectively preserve critical
files’ metadata in the enclave. For example, we can preserve
the metadata of files that have been most frequently accessed
recently.
Full-disk Encryption. For hardware-based full-disk encryp-
tion (e.g., Samsung SSDs that use the TCG’s Opal standard),
SrFTL is compatible. Encryption of hardware-based SSDs is
transparent to the host, and the enclave can still retrieve data
from the storage for ransomware classification. For software-
based disk encryption, a potential solution might exploit exist-
ing SGX-based encryption methodologies. For example, SGX-
LKL [82] implements SGX-based full disk encryption in dm-
crypt. Our design can be combined with the detection method
in the enclave to make a full-disk encryption environment
compatible with our solution.
Data Recovery. When remote administrator notices ran-
somware infection, typically they need to terminate the attack
by turning off the host. Our design can help to retain the arrival
time to the SSD of each flash memory page in the out-of-bound
(OOB) area [12], [13]. To recover compromised data, the
remote administrator can unplug the SSD and insert it into a
secure computer. Then, an enclave application can be launched
into the secure computer using the secure channel policy,
allowing the remote administrator to retrieve all recently read
and invalidated pages and their timestamps from the SSD.
Through the read data pages, the remote administrator can
pinpoint the infected files and recover them to a past state
using invalidated data timestamps.
Ransomware-like Applications. Encryption applications can
have access patterns similar to ransomware, leading to false

4SGX2 can be expanded to 1TB [81].

positives. However, monitoring encryption in a compromised
OS is challenging because privileged adversaries can pre-
tend to behave as normal applications. Therefore, the us-
age of benign encryption should be strictly protected and
monitored. Migrating crypto functionalities into TEEs is a
realistic solution against privileged attacks that was proposed
and implemented by existing works [83], [30]. Our design
can incorporate training on benign encryption operations in
the classification enclave to avoid false positives. Moreover,
ransomware-like applications (i.e., compression and encryp-
tion) present unique characteristics over ransomware. For ex-
ample, such applications have restricted access to the original
files, indicating that the intactness of processed data can
be used for the detection [13], [5]. Through analyzing the
behavior of ransomware-like applications, a more sensitive
detection can be applied to our SrFTL framework, empowering
the capability of detecting these applications.
Deployment to Other Platforms. Our proof-of-concept proto-
type is implemented on a Linux system. However, ransomware
also targets Windows machines. Windows-based systems rely
on different system interfaces for raw disk read and write,
block-level OCALLs, functions for interacting with the file
system for metadata, and procedures for setting up Intel SGX
environments. We leave the challenges of implementing SrFTL
on Windows machines as future work.

Apart from SGX, SrFTL can also be deployed atop other
Trusted Execution Environments (TEEs). For example, SrFTL
can be ported to mobile platforms using flash-based stor-
age (e.g., eMMC cards). Such devices typically implement
ARM64 CPUs instead of Intel, and ARM TrustZone [84],
which is a slight equivalent to SGX when acting as a TEE.
Thus, SrFTL could be potentially implemented into its Trusted
Application (TA).
Extensibility of SrFTL. SrFTL can facilitate the deployment
of a more comprehensive detection with heuristics based on
the metadata. For example, SrFTL enables the detection of
directory traversal by monitoring the read requests to directory
metadata [26], tracking access frequency by observing the
number of accesses to the LBAs of files [26], and identifying
suspicious renaming operations performed on files [4]. In
addition, SrFTL exhibits promising potential for enhanced
management of false positives and negatives compared to
existing firmware-level solutions. Previous work, like Mi-
mosaFTL [13], proposes a passworded SCSI command that
can be vulnerable in a compromised OS. Our approach allows
the remote administrator to connect the enclave and SSD,
thereby, the falsely classified data and files can be altered to
be benign. We envision the future expansion of our framework
to encompass more sophisticated detection mechanisms and
improved victim data management.

X. RELATED WORK

Previous ransomware defenses have primarily focused on
detection [8], [27], [6], [26] and data recovery[4], [85], [86].
UNVEIL [5] proposed an artificial user environment that can
efficiently detect ransomware. Similarly, ShieldFS [4] ana-

lyzed billions of low-level file system I/Os to understand the
features of benign applications, which enabled the recognition
of typical ransomware behavior. Redemption [26] designed a
transparent buffer in the kernel to monitor the I/O request pat-
tern for detecting ransomware. These defenses can effectively
detect encryption-based ransomware. However, they allow the
victim’s data to be encrypted before detection. In contrast,
data recovery allows users to restore their data without paying
a ransom. PayBreak [9] supervises the encryption functions in
the standard crypto libraries and holds all the encryption keys
in a third party for potential data recovery. RDS3 [87] backs
up data in the spare space of a computing device to restore the
data encrypted by ransomware. However, an advanced attacker
may get root privileges and thus disable or bypass the detection
and recovery strategies in the OS.

Some new mechanisms leverage flash memory’s special
characteristics to defend against ransomware attacks [14], [13],
[15]. FlashGuard is the first scheme that can defend against
ransomware attacks, even if the attacker obtains root privilege,
by retaining victim data as long as possible [12]. Similar
to FlashGuard, RSSD [31] leverages NVMe over fabric to
back up the data to prevent ad hoc attacks on firmware-level
methods. However, they cannot detect ransomware when it
presents. MimosaFTL [13] and SSD-Insider++ [15] provide
fine-grained detection of ransomware-like I/O requests and
data recovery at the SSD FTL. However, they only leverage the
characteristics of I/O access patterns and cannot defend against
advanced ransomware [45]. Moreover, they are challenging to
upgrade defense as we discussed in Section III.

Tamper-resistant storage [29], [30], [33] is also used to
defend against ransomware. Krahn et al. propose an SGX-
based external storage device, called Pesos [29], that combines
a host-side TEE with storage to protect data. Inuksuk [30] cre-
ates a secure zone on the storage device for holding sensitive
user data. DiskShield [33] implements a file system in the
SSD firmware, allowing secure communication between host
TEE and storage. However, they need additional storage space
and can only protect the data in the secure zone. Thus, the
data outside the secure area is still vulnerable to ransomware.
Moreover, users cannot find and terminate ransomware in
time because they have no detection deployment. Therefore,
tamper-resistant storage is still not the perfect answer for
encryption ransomware.

XI. CONCLUSION

This paper presents SrFTL, a fail-secure ransomware defense
platform that leverages the OS-level filesystem metadata and
raw FTL I/O patterns. SrFTL operates securely in a hostile
environment due to its use of Intel SGX to ensure the integrity
and authenticity of its ransomware classification decisions.
SrFTL achieves this while maintaining low overhead and high
detection accuracy while avoiding reloading the SSD firmware
for updating the detection method.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and pa-
per readers for their valuable and insightful comments and

feedback. This work was partially supported by NSF CNS-
2055014 and CNS-2145744.

REFERENCES

[1] “Reuters.” https://www.reuters.com/world/china/chinas-largest-bank-icb
c-hit-by-ransomware-software-ft-2023-11-09/, 2023.

[2] “A patient has died after ransomware hackers hit a german hospital..”
https://www.technologyreview.com/2020/09/18/1008582/a-patient-has
-died-after-ransomware-hackers-hit-a-german-hospital/, 2020.

[3] “10 essential insights from the Microsoft Digital Defense Report 2023.”
https://www.microsoft.com/en-us/security/business/security-insider/rep
orts/microsoft-digital-defense-reports/10-essential-insights-from-the-m
icrosoft-digital-defense-report-2023/, 2023.

[4] A. Continella, A. Guagneli, G. Zingaro, G. D. Pasquale, A. Barenghi,
S. Zanero, and F. Maggi., “ShieldFS: A Self-healing, Ransomware-aware
Filesystem,” in 32th Annual Computer Security Applications Conference
(ACSAC), 2016.

[5] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda., “UN-
VEIL: A Large-Scale, Automated Approach to Detecting Ransomware,”
in 25th USENIX Security Symposium (USENIX Security), 2016.

[6] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “CryptoLock (and
Drop It): Stopping Ransomware Attacks on User Data,” in IEEE 36th
International Conference on Distributed Computing Systems (ICDCS),
2016.

[7] C. Zhou, L. Guo, Y. Hou, Z. Ma, Q. Zhang, M. Wang, Z. Liu, and
Y. Jiang, “Limits of i/o based ransomware detection: An imitation based
attack,” in 2023 IEEE Symposium on Security and Privacy (SP), 2023.

[8] D. Xu, J. Ming, and D. Wu., “Cryptographic Function Detection in
Obfuscated Binaries via Bit-precise Symbolic Loop Mapping,” in 38th
IEEE Symposium on Security and Privacy (S&P), 2017.

[9] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele., “PayBreak:
Defense Against Cryptographic Ransomware,” in 15th ACM Asia Con-
ference on Computer and Communications Security (ASIACCS), 2017.

[10] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.,
“Analysis and Evolution of Journaling File Systems,” in 2005 USENIX
Annual Technical Conference (ATC), 2005.

[11] M. Virable, S. Savage, and G. M. Voelker., “BlueSky: A Cloud-Backed
File System for the Enterprise,” in 10th USENIX conference on File and
Storage Technologies (FAST), 2012.

[12] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi., “FlashGuard:
Leveraging Intrinsic Flash Properties to Defend Against Encryption Ran-
somware,” in 24th ACM Conference on Computer and Communications
Security (CCS), 2017.

[13] P. Wang, S. Jia, B. Chen, L. Xia, and P. Liu., “MimosaFTL: Adding
Secure and Practical Ransomware Defense Strategy to Flash Translation
Layer,” in 10th ACM Conference on Data and Application Security and
Privacy (CODASPY), 2019.

[14] S. Baek, Y. Jung, A. Mohaisen, S. Lee, and D. Nyang., “SSD-Insider:
Internal Defense of Solid-State Drive against Ransomware with Perfect
Data Recovery,” in 38th International Conference on Distributed Com-
puting Systems (ICDCS), 2018.

[15] S. Baek, Y. Jung, D. Mohaisen, S. Lee, and D. Nyang, “Ssd-assisted
ransomware detection and data recovery techniques,” IEEE Transactions
on Computers (TOC), 2021.

[16] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Semantically-Smart disk systems,”
in 2nd USENIX Conference on File and Storage Technologies (FAST),
2003.

[17] J. M. Terry, N. A. Clarkson, and G. S. Barrall, “Filesystem-aware block
storage system, apparatus, and method,” 2011.

[18] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, “Information and
control in gray-box systems,” in Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP), 2001.

[19] J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh, “Improving SSD
reliability with RAID via Elastic Striping and Anywhere Parity,” in 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2013.

[20] A. Neville, “Trojan.Winlock.” https://www.symantec.com/security-cen
ter/writeup/2012-110617-3328-99, Nov. 2012.

[21] “SSD TRIM.” https://searchstorage.techtarget.com/definition/TRIM,
2019.

https://www.reuters.com/world/china/chinas-largest-bank-icbc-hit-by-ransomware-software-ft-2023-11-09/
https://www.reuters.com/world/china/chinas-largest-bank-icbc-hit-by-ransomware-software-ft-2023-11-09/
https://www.technologyreview.com/2020/09/18/1008582/a-patient-has-died-after-ransomware-hackers-hit-a-german-hospital/
https://www.technologyreview.com/2020/09/18/1008582/a-patient-has-died-after-ransomware-hackers-hit-a-german-hospital/
https://www.microsoft.com/en-us/security/business/security-insider/reports/microsoft-digital-defense-reports/10-essential-insights-from-the-microsoft-digital-defense-report-2023/
https://www.microsoft.com/en-us/security/business/security-insider/reports/microsoft-digital-defense-reports/10-essential-insights-from-the-microsoft-digital-defense-report-2023/
https://www.microsoft.com/en-us/security/business/security-insider/reports/microsoft-digital-defense-reports/10-essential-insights-from-the-microsoft-digital-defense-report-2023/
https://www.symantec.com/security-center/writeup/2012-110617-3328-99
https://www.symantec.com/security-center/writeup/2012-110617-3328-99
https://searchstorage.techtarget.com/definition/TRIM

[22] M. Bailleu, J. Thalheim, and P. Bhatotia., “Speicher: Securing LSM-
based Key-Value Stores using Shielded Execution,” in 17th USENIX
Conference on File and Storage Technologies (FAST), 2019.

[23] A. Baumann, M. Peinado, and G. Hunt., “Shielding Applications from an
Untrusted Cloud with Haven,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[24] “CVE - CVE.” https://cve.mitre.org/index.html, 2023.
[25] “Base64 Encoding Algorithm.” https://cve.mitre.org/cgi-bin/cvename.c

gi?name=CVE-2019-13272.
[26] A. Kharraz and E. Kirda., “Redemption: Real-Time Protection Against

Ransomware at End-Hosts,” in International Symposium on Research in
Attacks, Intrusions, and Defenses, (RAID), 2017.

[27] S. Mehnaz, A. Mudgerikar, and E. Bertino., “RWGuard: A Real-Time
Detection System Against Cryptographic Ransomware,” in 22nd Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses
(RAID), 2017.

[28] “Understanding SGX Protected File System.” https://www.tatetian.io/20
17/01/15/understanding-sgx-protected-file-system/, 2017.

[29] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and
C. Fetzer, “Pesos: Policy enhanced secure object store,” in Proceedings
of the Thirteenth EuroSys Conference (EuroSys), 2018.

[30] L. Zhao and M. Mannan., “TEE-aided Write Protection Against Privi-
leged Data Tampering,” in The Network and Distributed System Security
Symposium (NDSS), 2019.

[31] B. Reidys, P. Liu, and J. Huang, “Rssd: Defend against ransomware with
hardware-isolated network-storage codesign and post-attack analysis,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2022.

[32] “Ssd security firmwares features tech brief..” https://www.datasheetarc
hive.com/whats_new/1c1a884377ab1954f2efc54b614636ec.html.

[33] J. Ahn, J. Lee, Y. Ko, D. Min, J. Park, S. Park, and Y. Kim., “DiskShield:
A Data Tamper-Resistant Storage for Intel SGX,” in 18th ACM Asia
Conference on Computer and Communications Security (ASIACCS),
2020.

[34] J. Voris, N. Saxena, and T. Halevi, “Accelerometers and randomness:
Perfect together,” in Proceedings of the Fourth ACM Conference on
Wireless Network Security, 2011.

[35] “What is a USB security key, and how do you use it?.” https://www.to
msguide.com/news/usb-security-key.

[36] A. Dhar, I. Puddu, K. Kostianen, and S. Capkun, “Proximitee: Hardened
sgx attestation and trusted path through proximity verification,” 2018.

[37] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How
SGX fails in practice.” https://sgaxeattack.com/, 2020.

[38] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.,
“Spectre Attacks: Exploiting Speculative Execution,” in 40th IEEE
Symposium on Security and Privacy (S&P), 2019.

[39] T. Yavuz, F. Fowze, G. Hernandez, K. Y. Bai, K. R. B. Butler, and D. J.
Tian, “Encider: Detecting timing and cache side channels in sgx enclaves
and cryptographic apis,” IEEE Transactions on Dependable and Secure
Computing, 2023.

[40] V. Scarlata, S. Johnson, J. Beaney, and P. Żmijewski, “Supporting
third party attestation for intel® sgx with intel® data center attestation
primitives,” 2018.

[41] “Attestation Services for Intel Software Guard Extensions.” https://ww
w.intel.com/content/www/us/en/developer/tools/software-guard-extensi
ons/attestation-services.html.

[42] C. Meijer and B. van Gastel, “Self-encrypting deception: Weaknesses
in the encryption of solid state drives,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019.

[43] “Ext4 Disk Layout.” https://ext4.wiki.kernel.org/index.php/Ext4_Disk
_Layout#Directory_Entries, 2019.

[44] J. Pont, B. Arief, and J. Hernandez-Castro, “Why current statistical
approaches to ransomware detection fail,” in International Conference
on Information Security (ISC), 2020.

[45] J. Han, Z. Lin, and D. E. Porter, “On the effectiveness of behavior-
based ransomware detection,” in 16th EAI International Conference on
Security and Privacy in Communication Networks (SecureComm), 2020.

[46] X. Ugarte-Pedrero, I. Santos, B. Sanz, C. Laorden, and P. Bringas,
“Countering entropy measure attacks on packed software detection,”
in 9th IEEE Consumer Communications and Networking Conference
(CCNC), 2012.

[47] “Flexible I/O Tester.” https://github.com/axboe/fio, 2023.

[48] “LZ4.” http://lz4.github.io/lz4/.
[49] “The GNU G++ Compiler.” https://faculty.cs.niu.edu/~hutchins/csci24

1/compiler.htm, 2023.
[50] “RocksDB: A Persistent Key-Value Store for Flash and RAM Storage.”

https://www.kernel.org/.
[51] “curl - Linux manual page.” https://man7.org/linux/man-pages/man1/cu

rl.1.html, 2023.
[52] “grep - Linux manual page.” https://man7.org/linux/man-pages/man1/gr

ep.1.html, 2023.
[53] “cp - Linux manual page.” https://man7.org/linux/man-pages/man1/cp

.1.html, 2023.
[54] “Base64 Encoding Algorithm.” https://medium.com/swlh/base64-encod

ing-algorithm-42abb929087d.
[55] “ascii85(1) - Linux man page.” https://linux.die.net/man/1/ascii85, 2023.
[56] “Decision Trees: ID3 Algorithm Explained.” https://towardsdatascience

.com/decision-trees-for-classification-id3-algorithm-explained-89df76e
72df1, 2023.

[57] “BFS Filesystem for Linux.” https://docs.kernel.org/filesystems/bfs.html.
[58] “Linux Ransomware Poses Significant Threat to Critical Infrastructure.”

https://www.darkreading.com/vulnerabilities-threats/linux-ransomwar
e-poses-significant-threat-to-critical-infrastructure, 2023.

[59] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and
H. S. Gunawi., “The CASE of FEMU: Cheap, Accurate, Scalable and
Extensible Flash Emulator,” in 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

[60] J. M., “Virtualizing Intel Software Guard Extensions with KVM and
QEMU.” https://software.intel.com/en-us/articles/virtualizing-intel-sof
tware-guard-extensions-with-kvm-and-qemu, May 2019.

[61] Intel, “Intel Software Guard Extensions for Linux* OS.” https://github
.com/intel/linux-sgx, 2019.

[62] Intel, “KVM-SGX.” https://github.com/intel/kvm-sgx, 2019.
[63] “Filebench - A Model Based File System Workload Generator.” https:

//github.com/filebench/filebench, 2019.
[64] D. Narayanan, A. Donnelly, and A. Rowstron., “Write Off-Loading:

Practical Power Management for Enterprise Storage,” in 6th USENIX
Conference on File and Storage Technologies (FAST), 2008.

[65] R. Koller and R. Rangaswami, “I/o deduplication: Utilizing content
similarity to improve i/o performance,” ACM Transactions on Storage,
2010.

[66] “VirusTotal.” https://www.virustotal.com/gui/home/upload, 2019.
[67] “TheZoo - A Live Malware Repository.” https://github.com/ytisf/theZoo,

2019.
[68] “How to Securely Erase a Disk and File using the Linux shred Com-

mand.” https://www.freecodecamp.org/news/securely-erasing-a-disk-a
nd-file-using-linux-command-shred/, 2023.

[69] “Open Whisper Systems..” https://signal.org/blog/private-contact-disco
very/.

[70] “Git.” https://git-scm.com/, 2023.
[71] “GNU Wget.” https://www.gnu.org/software/wget/, 2023.
[72] “GZIP.” https://www.gzip.org/.
[73] “Dropbox.” https://www.dropbox.com/, 2023.
[74] “Wine.” https://www.winehq.org/, 2019.
[75] “The year of WINE on Linux.” https://www.datamation.com/open-sou

rce/the-year-of-wine-on-linux/, 2023.
[76] “Desktop Linux Market survey.” https://archive.ph/20120524145331/ht

tp://www.desktoplinux.com/cgi-bin/survey/survey.cgi?view=archive&id
=0813200712407#selection-247.5-247.32/, 2023.

[77] G. Haas and V. Leis, “What modern nvme storage can do, and how to
exploit it: High-performance i/o for high-performance storage engines,”
Proceedings of the VLDB Endowment, 2023.

[78] M. Taassori, A. Shafiee, and R. Balasubramonian., “VAULT: Reducing
Paging Overheads in SGX with Efficient Integrity Verification Struc-
tures,” in 23th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018.

[79] S. Wu, J. Zhou, W. Zhu, H. Jiang, Z. Huang, Z. Shen, and B. Mao,
“Ead: a collision-free and high performance deduplication scheme for
flash storage systems,” in 2020 IEEE 38th International Conference on
Computer Design (ICCD), 2020.

[80] “How To Upgrade SSD Firmware.” https://www.storagereview.com/ho
w-to-upgrade-ssd-firmware.

[81] “How will Intel’s “Ice Lake” redefine the scope of data security?.” https:
//fortanix.com/blog/2021/04/how-will-intels-ice-lake-redefine-the-sco
pe-of-data-security/, 2019.

https://cve.mitre.org/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13272
https://www.tatetian.io/2017/01/15/understanding-sgx-protected-file-system/
https://www.tatetian.io/2017/01/15/understanding-sgx-protected-file-system/
https://www.datasheetarchive.com/whats_new/1c1a884377ab1954f2efc54b614636ec.html
https://www.datasheetarchive.com/whats_new/1c1a884377ab1954f2efc54b614636ec.html
https://www.tomsguide.com/news/usb-security-key
https://www.tomsguide.com/news/usb-security-key
https://sgaxeattack.com/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/attestation-services.html
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Directory_Entries
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Directory_Entries
https://github.com/axboe/fio
http://lz4.github.io/lz4/
https://faculty.cs.niu.edu/~hutchins/csci241/compiler.htm
https://faculty.cs.niu.edu/~hutchins/csci241/compiler.htm
https://www.kernel.org/
https://man7.org/linux/man-pages/man1/curl.1.html
https://man7.org/linux/man-pages/man1/curl.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/cp.1.html
https://man7.org/linux/man-pages/man1/cp.1.html
https://medium.com/swlh/base64-encoding-algorithm-42abb929087d
https://medium.com/swlh/base64-encoding-algorithm-42abb929087d
https://linux.die.net/man/1/ascii85
https://towardsdatascience.com/decision-trees-for-classification-id3-algorithm-explained-89df76e72df1
https://towardsdatascience.com/decision-trees-for-classification-id3-algorithm-explained-89df76e72df1
https://towardsdatascience.com/decision-trees-for-classification-id3-algorithm-explained-89df76e72df1
https://docs.kernel.org/filesystems/bfs.html
https://www.darkreading.com/vulnerabilities-threats/linux-ransomware-poses-significant-threat-to-critical-infrastructure
https://www.darkreading.com/vulnerabilities-threats/linux-ransomware-poses-significant-threat-to-critical-infrastructure
https://software.intel.com/en-us/articles/virtualizing-intel-software-guard-extensions-with-kvm-and-qemu
https://software.intel.com/en-us/articles/virtualizing-intel-software-guard-extensions-with-kvm-and-qemu
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://github.com/intel/kvm-sgx
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://www.virustotal.com/gui/home/upload
https://github.com/ytisf/theZoo
https://www.freecodecamp.org/news/securely-erasing-a-disk-and-file-using-linux-command-shred/
https://www.freecodecamp.org/news/securely-erasing-a-disk-and-file-using-linux-command-shred/
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://git-scm.com/
https://www.gnu.org/software/wget/
https://www.gzip.org/
https://www.dropbox.com/
https://www.winehq.org/
https://www.datamation.com/open-source/the-year-of-wine-on-linux/
https://www.datamation.com/open-source/the-year-of-wine-on-linux/
https://archive.ph/20120524145331/http://www.desktoplinux.com/cgi-bin/survey/survey.cgi?view=archive&id=0813200712407#selection-247.5-247.32/
https://archive.ph/20120524145331/http://www.desktoplinux.com/cgi-bin/survey/survey.cgi?view=archive&id=0813200712407#selection-247.5-247.32/
https://archive.ph/20120524145331/http://www.desktoplinux.com/cgi-bin/survey/survey.cgi?view=archive&id=0813200712407#selection-247.5-247.32/
https://www.storagereview.com/how-to-upgrade-ssd-firmware
https://www.storagereview.com/how-to-upgrade-ssd-firmware
https://fortanix.com/blog/2021/04/how-will-intels-ice-lake-redefine-the-scope-of-data-security/
https://fortanix.com/blog/2021/04/how-will-intels-ice-lake-redefine-the-scope-of-data-security/
https://fortanix.com/blog/2021/04/how-will-intels-ice-lake-redefine-the-scope-of-data-security/

[82] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. R. Pietzuch, “Sgx-lkl: Securing the host os interface for trusted
execution,” ArXiv, 2019.

[83] “TresorSGX.” https://github.com/ayeks/TresorSGX, 2016.
[84] Arm, “Arm TrustZone Technology.” https://developer.arm.com/ip-pro

ducts/security-ip/trustzone, 2019.
[85] J. Yun, J. Hur, Y. Shin, and D. Koo., “CLDSafe: An Efficient File Backup

System in Cloud Storage against Ransomware,” in IEICE Transactions
on Information and Systems, 2017.

[86] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and G. Ganger,
“Self-securing storage: protecting data in compromised systems,” in
Foundations of Intrusion Tolerant Systems, 2003 [Organically Assured
and Survivable Information Systems], 2003.

[87] K. P. Subedi, D. R. Budhathoki, B. Chen, and D. Dasgupta., “RDS3:
Ransomware Defense Strategy by Using Stealthily Spare Space,” in
IEEE Symposium Series on Computational Intelligence (SSCI), 2017.

https://github.com/ayeks/TresorSGX
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

	Introduction
	Background
	Flash-based SSDs
	Ransomware on Flash-based SSDs
	Trusted Execution Environment

	Motivation
	Limitations Of Software-level Solutions
	Limitations Of Firmware-level Solutions
	Threat Model

	SrFTL Design
	Ransomware Finder
	Classification Enclave
	Secure Channel

	Ransomware Classification
	File-based Heuristic Extraction
	Incorporating Content-based Heuristics
	Incorporating Behavior-based Heuristics
	Advanced Attack Defense
	Combine Them Together: Ransomware Detection

	Security Analysis
	Secure Channels.
	Attack on Filesystem Metadata.

	Implementation
	Evaluation
	Rootkit Attacks Testing
	Detection Accuracy Testing
	Performance And Lifetime Testing

	Discussion
	Related Work
	Conclusion
	References

