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Abstract—RAID-enabled SSDs commonly have unbalanced I/O
workloads on their components (e.g., on their SSD channels), and
updating parity requires issuing a number of additional read
requests (termed as pre-reads), which causes long tail latency. To
address this issue, we introduce an adaptive scheme for selecting
the update method on parity chunks. Our scheme uses the most
suitable routine for updating parity to better balance I/O accesses
over all channels of RAID-enabled SSDs. In particular, it can
adaptively select routines including read-modify-write (RMW) and
read-construct-write (RCW), when renewing data stripes. To this
end, we build a mathematical model to assess the time required
for updating parity chunks with different update routines by
considering the number of pre-read requests and the blocked I/O
traffic on the affected SSD channels. As a result, it can determine
whether the update of parity chunk should be performed with
RMW or RCW during I/O scheduling. Trace-driven experiments
illustrate that the proposed scheme can balance the workloads
across channels, as well as reduce the long-tail latency of I/O
requests by up to 24.8% at the 99.9th percentile and the overall
I/O time by 13.5% on average, in contrast to existing approaches.

Index Terms—Solid-state Drivers, RAID-5, Load Balance,
Update Requests, Read-Modify-Write, Read-Construct-Write

I. INTRODUCTION

NAND flash-based solid-state drives (SSDs) have advan-
tages of fast random access and low energy consumption, so
they are widely used as persistent storage in various digital
devices [1]–[3]. Benefiting from the rapid development of chip
manufacturing technologies, the density of SSDs has increased
substantially and the per-unit price of SSDs has consequently
decreased [4]–[6]. Modern high density SSD devices, however,
are severely impacted by read/write disturb, data retention and
low disturbance endurance that directly increase their raw bit
error rate (RBER) [7]–[11]. Therefore, efficiently dealing with
such noise to ensure the reliability of flash memory-based
SSDs has becomes a major challenge [6], [12], [13]. Advanced
Error Correction Code (ECC) schemes such as Low Density
Parity Check Code (LDPC) can easily cover RBERs at the
cost of additional latency due to read retries [14], but they
cannot correct chip/channel-level failures in SSDs [15], [16].

In order to ensure the reliability of data, the technology
of Redundant Array of Independent Disks (e.g., RAID-5) has
been introduced into SSDs1, or called Redundant Array of

1 We use the channel-level RAID-5 implementation inside SSDs by default
in the paper, where a (data/parity) chunk is normally referred to as a page in
RAID-enabled SSDs.

Independent NAND (RAIN) [17], to avoid data loss and data
unavailability [6], [12], [16], [18]. Vendors have incorporated
RAID technology into SSD products [19], [20] and several
research studies have investigated RAID-enabled SSDs to
enhance access performance and durability [18], [21], [22].
Specifically, RAID-5 organizes the data as stripes (labeled as
the N+1 structure), where each stripe consists of N data chunks
and 1 parity chunk that is XORed with the corresponding
data chunks [23], [24]. Lost data chunks can be recovered by
referring to the rest of the data chunks and the parity chunk
in the given stripe using certain XOR computations [25].

Although enabling RAID-5 increases SSD reliability, it
doubles the number of write operations and requires additional
XOR computations while servicing small update requests. This
is attributed to the fact that each update to data chunk(s)
within a stripe leads to another update on the corresponding
parity chunk, referred to as write penalty [5], [23], [26].
More specifically, RAID-enabled SSDs generally come with
two routines for updating their parity chunks in a data-stripe,
the read-modify-write (RMW) and the read-construct-write
(RCW). Both update routines need to issue additional read
requests (called pre-reads [27], [28]) to obtain the data/parity
chunks in the given stripe for regenerating the latest version of
its data. To be specific, when satisfying the update request(s)
and correspondingly renewing the parity chunk of a data stripe,
RMW requires reading the target data chunk of the update
request as well as the old parity chunk. Meanwhile, RCW
requires reading all data chunks of data stripe except for the
one currently being updated. Consequently, the two update
methods have different associated costs, i.e., the number of
pre-read requests, and the I/O scheduler usually makes a
choice between the two methods by referring to the number
of pre-read requests required to update the parity chunk.

RAID-enabled SSDs usually perform out-place-update op-
erations and round-robin parity placement, that can result in
unbalanced I/O across the channels of the SSD device [29]–
[31]. Furthermore, unbalanced I/O load generally causes un-
even distribution of garbage collection (GC), which further
increases I/O congestion on busy SSD channels [32], [33].
The issue is that the critical factor of the congestion status of
all RAID components (i.e., SSD channels in the paper) has not
been fully considered when selecting the routine for updating
a parity chunk. This may greatly impact I/O load evenness
over RAID components. As a result, major I/O performance
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Fig. 1. Updating data stripe in RAID-enabled SSDs with 5+1 stripe
configuration. Note that the interim stripe in the illustration is not in a
consistent state.

metrics, such as I/O response time and long-tail latency will
be greatly impacted by the increased number of pre-read
operations [34].

On the other side, considerable user applications exhibit
the feature of update storm, that greatly degrades the storage
performance [35], [36]. Specifically, an update storm indicates
a large amount of transaction accesses on the same pieces of
data in a short interval, thus negatively affecting the quality-
of-service (QoS). In particular, Virtual Desktop Infrastructure
(VDI) seeks utilizing network connected virtual machines
to provide desktop services with easier management, greater
availability, and lower cost [37]. As a result, VDI has been
widely adopted in offices and universities in recent days.
Maintaining high QoS, however, is a difficult problem in the
VDI environment due to the high degree of resource sharing.
From the perspective of I/O access patterns, VDI applications
reveal update burstiness and the largest write throughput in
the morning [38].

To adaptively support the selection of update methods for
parity chunks, and thus further reduce the tail latency in RAID-
enabled SSDs, when running user applications (e.g., VDI
applications), we propose a selection method between RMW
and RCW when servicing an update request by referring to not
only the number of pre-read requests but also to the congestion
status of the corresponding SSD channels. In summary, this
paper makes the following contributions:

- We introduce an adaptive selection of update methods
for parity chunks in RAID-enabled SSDs. The proposed
scheme intends to avoid worsening I/O workloads on con-
gested RAID components through adaptively selecting
the most suitable routine for updating the parity chunk
when renewing RAID data stripes.

- We build a mathematical model to assess the time
required for updating the parity chunk that considers
the factors of the number of pre-read requests and the
blocked I/O traffics on affected SSD channels. During
I/O scheduling, the model helps determine whether the

update of a given parity chunk should be performed using
RMW or RCW.

- We perform simulation based experiments by replay-
ing six commonly used block traces of real world
applications on RAID-enabled SSDs with varied size
of stripe configurations. As our measurements indicate,
the proposed scheduling approach improves metrics of
overall I/O response time, I/O long-tail latency as well
as I/O workload balance.

The remainder of this paper is organized as follows: Section
II presents the background and motivation of our work. The
specifications on the design and implementation of our model
are described in Section III. Section IV depicts the evaluation
methodology and discusses the results. The related work is
summarized in Section V. At last, the paper is concluded in
Section VI.

II. BACKGROUND AND MOTIVATION

A. RAID Implementation in SSDs

SSD devices commonly have a functionality of ECC to
guarantee data integrity when reading a data page [6], [39]. If
errors are detected and the number or span of errors is beyond
the ECC capability, the read operation is deemed a failure and
the SSD device is notified. In such cases, the RAID technique
is employed to regenerate the data and write a new copy onto
a free data page of the SSD to maintain RAID guarantees.

As one of standard RAID levels, RAID-5 consists of block-
level striping with distributed parity, and provides advantages
in load-balancing and I/O parallelism. RAID-5 has been com-
monly applied in SSDs either at the chip-level [40] or channel-
level, for the purpose of reliability [28]. Figure 1 shows our
example of I/O processing on the write request of WD0. For
illustration purposes, we use six channels, where each data
stripe has five data chunks and one parity chunk. As per RAID-
5, whenever a data chunk is updated, both the original data
chunk and the corresponding parity chunk in the same stripe
are marked as invalid first. Subsequently, the new data chunk
and the parity chunk are flushed onto free pages using the
same SSD channels.

As seen in Figure 1, the operation first updates the data
chunk of D0 to D′

0 after completing the write request of WD0.
Next, it takes advantage of RMW instead of RCW (since the
former routine triggers less pre-reads), to renew the parity
chunk to P ′

01234 so that the stripe is kept consistent. Note that
the updated data chunks or the parity chunk should be placed
on the same channel(s) of the SSD to keep the stripe structure.

B. Routines of Updating Parity

To ensure the consistency of data stripe while servicing
an update (write) request, there are two methods to update
the parity chunk of a data stripe, RMW and RCW [26]. This
section describes both methods in detail, also by referring to
Figure 1.

In the RMW routine, the updated parity chunk can be ob-
tained by XORing the obsolete parity chunk with the obsolete
data chunk(s) and the updated data chunk(s) that are related

2
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Fig. 2. The values of coefficient of variation of the number of blocked requests in RAID components after replaying the traces from the LUN block
collection [38]. The number in the X-axis is the sequential number of the trace in the collection folder of systor17-additional-01.
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Fig. 3. CDF of I/O latency on the most congested channel and the remaining
channels of the same stripes in conventional RAID-enabled SSDs (unit: ms).

to the write request(s). As the example shows in Figure 1(a),
the operation triggers 2 pre-read requests on the parity chunk
of P01234 and the obsolete data chunk of D0. Note that the
up-to-date contents of D′

0 are buffered in the DRAM cache
associated with the write request of WD0 and consequently it
does not require a pre-read. Finally, the operation carries out
an XOR computation to obtain the latest contents of parity
chunk of P ′

01234 for keeping the stripe consistent.

In the RCW routine, the updated parity chunk can be
obtained by XORing the updated data chunk(s) that are related
to the write request(s) with unchanged data chunks in the same
stripe. As seen in Figure 1(a), the operation triggers 4 pre-
read requests on the data chunks of D1, D2, D3, and D4,
and then carries out an XOR computation to renew the parity
chunk. Conventional SSD controllers generally select either
RMW or RCW for updating the parity chunk of data stripe by
comparing the number of pre-read requests required by each
routine [28], [41], [42]. According to the general approach,
RMW is selected to update the parity chunk for small write
requests, as seen in Figure 1(a), and RCW is used for updating
the parity chunk of larger write requests that span multiple data
chunks [26], [43], as seen in Figure 1(b).

C. Motivation

In order to disclose the channels of RAID-enabled SSDs
exhibit different levels of I/O congestion when running user
applications, we specifically analyzed the LUN block I/O
traces [38] and recorded the number of blocked I/O requests
as the indicator of I/O congestion after replaying them. In fact,
the LUN block trace collection is recently gathered from a part
of an enterprise virtual desktop infrastructure2.

Subsequently, we performed χ2 hypothesis testing whether
the number of blocked requests on channels conformed to
a uniform distribution or not for each trace, and we found
that a majority of tests rejected the uniform distribution at
P<0.001 [44], see Appendix A. This fact implies that imbal-
anced I/O workloads are common in real-world applications,
such as those run in VDI environments.

Furthermore, we computed the value of coefficient of vari-
ation (cv) for the number of blocked requests in all channels
to quantify the degree of imbalance workloads over all SSD
channels. A larger value of cv implies that all channels
have varied congestion status, whereas a smaller value of cv
indicates that all channels have a similar congestion level [45].
In fact, cv is defined as the ratio of standard deviation to the
mean of the blocked requests on the SSD channels, and we
obtain the value of cv after replaying a benchmark with the
following steps: ❶ we record the number of the enqueued I/O
requests in each channel, after a request is serviced, and then
sum the numbers of blocked I/O requests once the benchmark
is finished. ❷ we divide the sum of blocked I/O requests
by the total number of completed I/O requests, to yield the
average number of blocked I/O requests in each channel. ❸
we can calculate the standard deviation of blocked I/O requests
across all channels. ❹ we can compute the value of cv through
dividing the standard deviation with the mean of blocked I/O
requests in all channels.

Figure 2 shows the results of the cv values for the used
traces with a stripe configuration of 5+1. As seen, the cv

2The LUN trace collection consists of 438 pieces of traces and organizes
them as 7 folders. We present the results of all traces in the first folder of
systor17-additional-01 in the paper.
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Fig. 4. The high level overview of adaptive selection of updating on parity
chunks. The details of computing the overhead of updating routines in Step
❹ can be found in Figure 5 of Section III-B.

value is distributed between 0.24∼1.18, which indicates
that all traces capture imbalanced I/O workloads across all
RAID components.

Modern SSDs are composed by a controller, and multiple
flash channels. When the applications sends an I/O request,
the SSD device picks it up and inserts it into the (per-channel)
I/O queue for processing. In order to boost I/O performance,
the SSD controller manages the channels to enable accessing
their data in a parallel manner. Since the macro request may
span several pages, SSD device will parse such request into
several page-sized sub-requests and mapping them to the target
channels, and the request is considered to be completed only
when all sub-requests have been serviced. That is to say, the
response time of I/O request may become larger unexpectedly
if its sub-requests are mapped to the most congested channels,
causing tail latency [46]. In fact, it has been verified that
imbalanced I/O workloads will exacerbate the problem of tail
latency, and the most congested channels commonly have the
worst responsiveness in RAID-enabled SSDs [1], [41]. To
further illustrate this fact in our example scenario of VDI
applications, we present the results of long tail latency of I/O
requests in two randomly selected LUN traces. Figure 3 reports
the results as Cumulative Distribution Function.

In the figure, X-axis labels correspond to I/O latency in
milliseconds, and Y-axis labels scale from the 99.0th to the
100.0th percentile latency. The average numbers of blocked
requests (reads+writes) on channels are shown in the legend,
and more blocked requests on a SSD channel commonly
represent a congested I/O workload on it. To obtain the number
of blocked requests, we recorded the number of the enqueued
requests in each channel after a request is serviced. When the
benchmark was finished, we averaged the number of blocked
requests. We conclude that the worst tail latency comes from
the most congested channels, and such observations drive us
to introduce dynamic selection of update methods for parity
chunks by considering not only the number of pre-reads, but
also the congestion status of affected RAID channels.

III. ADAPTIVE SELECTION OF PARITY UPDATE METHODS

A. Architectural Overview

The basic idea of our proposal is to select an update routine
on parity chunks by considering both factors of the number of
pre-reads and the congestion level of the I/O workloads across
the channels participating in a given stripe in RAID-enabled
SSDs. To this end, we build a cost assessment model (see
Section III-B) for evaluating the queuing overhead of updating
routines of RMW and RCW, and recommend using the routine
with less overhead for updating the parity chunk. As a result,
our approach yields a more even I/O workload distribution
across SSD channels and ensures lower tail latencies for the
I/O requests while running the applications.

Figure 4 presents a high-level overview of completing a
write request of WD0 and the relevant update on the parity
chunk by using our proposal. As seen, after updating the data
chunk of D0, it evaluates the update cost of RMW and RCW by
using the proposed assessment model. Subsequently, it chooses
the RCW routine that has less overhead to update the parity
chunk for ensuring the consistency of the stripe, even though
it needs to issue more pre-read requests.

B. Cost Assessment Model

We construct a mathematical model for assessing the time
required for using both routines to update the parity chunk
of the data stripes. Table I summarizes the symbols and their
definitions used in the model.

Assuming that the stripe structure consists of K channels,
labelling as CH0, CH1, ..., CHK−1. The number of read
and write requests in these channels can be represented as
R0, R1,..., RK−1 and W0, W1, ..., WK−1. In addition to
processing read and write requests, SSD channels endures
time-consuming tasks of GC operations, we employ TGC

representing the GC latency. The parameter Θ is an indicator
for the set of involved channels corresponding to a given data
stripe. Specifically, Θ = { 0, 1, ...,K−1 }. We also define the
notations of ΘRMW and ΘRCW that mean the channel sets
while using the routines of RMW and RCW to update a given
parity chunk, respectively. Thus, the following two equations
hold:

4



TABLE I
NOTATION DESCRIPTIONS

Symbol Explanation
tR Read latency

tW Write latency

tE Erase latency

CHi The ith channel of SSD

Wi The number of write requests on CHi

Ri The number of read requests on CHi

TGC Average GC latency

Θ The channel set of data stripe

ΘRMW The involved channel set with RMW

ΘRCW The involved channel set with RCW

TRMW Update The update latency with RMW

TRMW Delay The delay on enqueued req. with RMW

TRMW The overall latency of RMW

TRCW Update The update latency caused by RCW

TRCW Delay The delay on enqueued req. with RCW

TRCW The overall latency of RCW

CntrMove The number of page movements

CntrER The number of erasure

ΘRMW ∪ΘRCW = Θ (1)

ΘRMW ∩ΘRCW = ∅ (2)

Furthermore, the GC process blocks normal I/O requests
aiming at the target channel, and its latency consists of the time
required for moving valid pages on the GC block to another
free block (i.e., page moves) and the time needed for erasing
the GC block. More exactly, we estimate the time overhead
of the future GC operation by using two per-chip counters of
CntrMove and CntrER. Specifically, CntrMove and CntrER

respectively represent the total number of page movements
and erases during garbage collection, by referring to [46]. The
erasure time is usually a fixed value, tE . Thus, the TGC can
be calculated by Equation 3:

TGC = (tR + tW )× (CntrMove/CntrER) + tE (3)

Both update routines need to create a write operation on
the channel corresponding to the original parity chunk, so that
our model does not take the overhead of the write operation
into account. Considering that read operations exhibit faster
performance than write operations, and users demonstrate a
heightened sensitivity to delays in data retrieval, SSDs usually
assign a higher priority to read requests [47], [48]. When a
specific stripe update routine is selected, a number of pre-
read requests must be issued at the end of read requests but the
beginning of the write requests in the I/O queue of the affected
SSD channels. The successful completion of these pre-read
requests is crucial because the XOR computation for the parity
chunk depends on completing all associated pre-reads. In other
words, the overall pace of this process is typically determined
by the slowest pre-read request among them. Moreover, we

5
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Fig. 5. Assessment example of update overhead of RMW and RCW by using
the proposed model. Note that the original write operation was completed on
CH0 and the parity update operation should be on CH5.

understand that all I/O requests on the GC channel cannot be
serviced until the GC operation is completed. Then, the time
cost of updating the parity chunk with different routines can
be defined as following two parts.

The first part of wait time in the time cost after using two
routines to update the parity chunk is defined as TRMW Update

and TRCW Update with Equations 4 and 5. In which, TGC i

represents the current GC time on the ith channel, and is set
as 0 while no GC on the SSD channel.

TRMW Update = max
i∈ΘRMW

{tR · (Ri + 1) + TGC i} (4)

TRCW Update = max
i∈ΘRCW

{tR · (Ri + 1) + TGC i} (5)

The second part of the time cost is the delay on the
subsequent write requests in the I/O queue caused by the
additional pre-read request. In fact, as read operations are
accorded superior priority, SSDs categorize unprocessed read
requests and write requests into two separate queues. That
is to say, the pre-read request is inserted to the tail of the
queue of read requests, resulting in each queued write request
within the same channel incurring an additional waiting period,
corresponding to the processing time of one read request.
Then, we define TRMW Delay and TRCW Delay in Equations 6
and 7, to represent the total delay time caused by the inserted
pre-read requests with two update routines.

TRMW Delay = tR ·
∑

i∈ΘRMW

Wi (6)

TRCW Delay = tR ·
∑

i∈ΘRCW

Wi (7)

At last, we obtain the total time cost of TRMW and
TRCW by summing up the aforementioned two parts of time
overhead, as defined in Equations 8 and 9.

TRMW = TRMW Update + TRMW Delay

= max
i∈ΘRMW

{tR · (Ri + 1) + TGC i}+ tR ·
∑

i∈ΘRMW

Wi

(8)
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TRCW = TRCW Update + TRCW Delay

= max
i∈ΘRCW

{tR · (Ri + 1) + TGC i}+ tR ·
∑

i∈ΘRCW

Wi

(9)

For a given write request, the model determines the val-
ues of TRMW and TRCW by observing the current status
of I/O workloads and the GC state on the relevant RAID
components, and selects the preferred routine that has smaller
overall latency updating the parity chunk. To better illustrate
the specifications of our proposed model, Figure 5 gives an
assessment example of the update overheads with both routines
to end the write operation of WD0 (which was originally
shown in Figure 4).

On the one hand, the value of TRMW Update is related to
the number of read requests and the GC time on CH5 since
it has the largest overall latency of processing GC and read
requests in the RMW-channel set. The value of TRMW Delay

is related to the sum of the number of write requests in the I/O
queues of CH0 and CH5. On the other hand, TRCW Update

only depends on the number of read requests in the I/O queue
of CH3, and TRCW Delay is relevant to the sum of the number
of write requests in the I/O queues of CH1 to CH4.

As a result, the RCW method will be selected for ending the
update on the parity chunk based on the output of our model,
despite the fact that it has to issue more pre-reads.

C. Implementation Details

Algorithm 1 shows the implementation specifics on how an
update routine is selected for a given parity chunk. Lines 7 and
8 locate the involved channel set using the update routines of
RMW or RCW. Afterwards, it computes the total overhead of
RMW (Lines 9 - 14) and RCW (Lines 15 - 18) for updating
the parity chunk. At last, it chooses the method with less
overall time cost to finish the update operation on the parity
chunk.

IV. EXPERIMENTAL EVALUATION

This section first describes the experimental settings and
then presents the results to validate the feasibility of the
proposed selection of update routine on RAID parity. Finally,
we analyze the time and space overhead of our proposal.

A. Environmental Setup

Due to its advances in a diverse set of configurations and
its validation accuracy against a real hardware platform, the
SSDsim simulator [50] has been widely used in many SSD
focused studies [51]. Thus, we performed trace-driven simu-
lations using SSDsim (ver 2.1) to evaluate the newly proposed
scheme. In order to further characterize the effectiveness of
our proposal using different RAID stripe structures, we test
data stripes using both 5+1 and 7+1 configurations. Table II
presents the settings of SSDsim in our experiments. Since
we employ LDPC to correct bit errors, the read latency
directly depends on the level of LDPC soft decision. The

Algorithm 1: Adaptive Selection of Update on Parity
Input: args of tR, Req and its stripe structure;
Output: null;

1 /*Initializing the overhead of RMW and RCW*/
2 TRMW Update = TRCW Update = 0;
3 TRMW Delay = TRCW Delay = 0;
4 TRMW = TRCW = 0;
5 if Req is write on an existing stripe then
6 /*Find the channels which selected by routines*/
7 ΘRMW = find_channel(RMW, Req);
8 ΘRCW = find_channel(RCW, Req);
9 /*Compute overhead of RMW*/

10 TRMW Update = max {
tR · (Ri in ΘRMW + 1) + TGC i in ΘRMW };

11 /*
∑

Wi is the sum of writes in queues of
ΘRMW */

12 TRMW Delay = tR ·
∑

Wi;
13 /*Sum two parts overhead*/
14 TRMW = TRMW Update + TRMW Delay;
15 /*Compute overhead of RCW*/
16 TRCW Update = max {

tR · (Ri in ΘRCW + 1) + TGC i in ΘRCW };
17 TRCW Delay = tR ·

∑
Wi;

18 TRCW = TRCW Update + TRCW Delay;
19 if TRMW > TRCW then
20 update_stripe(RCW, Req);

21 else
22 update_stripe(RMW, Req);

TABLE II
EXPERIMENTAL SETTINGS OF SSDsim

Parameters Values Parameters Values
Channel Size 6/8 Read latency 0.045-0.819ms

Chip Size 4 Write latency 0.7ms

Plane Size 4 Erase latency 3.5ms

Block per plane 512 XOR latency 0.019ms

Page per block 64 GC threshold 10%

Page size 8KB RAID level 5

FTL scheme Page ECC 7-level LDPC

Wear-leveling Static Stripe Struct. 5+1 or 7+1

basic read time is configured as 0.045ms, and the read time
is increased by 0.024ms per read retry after upgrading a
LDPC level [52]. Then, the read time spans from 0.045ms
to 0.819ms, reflecting the levels of LDPC soft decisions.
Within our mathematical model, the read time of tR is adjusted
in response to the respective LDPC levels.

We employed six widely used block I/O traces, cov-
ering a wide range of write ratios, as workloads for the
RAID-5 system to verify the effectiveness of our proposal
in various application scenarios. Among them, hm 0 comes
from the MSR Cambridge block I/O collection [53]. Three
block I/O traces are captured from real world VDI ap-
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TABLE III
SPECIFICATIONS ON SELECTED TRACES (ORDERED BY THE cv)

Traces # of Req. Wr Ratio Wr Size Upd R cv
hm 0 3,993,316 64.5% 8.3KB 97.8% 0.10

lun0 2,387,992 14.1% 27.7KB 79.3% 0.32

lun1 824,068 45.4% 11.2KB 79.8% 0.60

lun2 948,330 35.6% 11.9KB 81.1% 0.65

Ali 0 623,524 86.8% 13.4KB 85.8% 0.78

Ali 1 398,009 90.8% 12.7KB 87.4% 1.24

TABLE IV
CUMULATIVE DISTRIBUTION FUNCTION OF REQUEST INTERVALS IN THE

SELECTED TRACES

Traces 20% 40% 60% 80% 100%
hm 0 0.1us 0.3us 1.9us 0.2ms 0.9s

lun0 39.9us 385.8us 879.1us 2.0ms 11.4ms

lun1 31.0us 397.1us 836.9us 4.2ms 2.0ms

lun2 32.3us 433.9us 888.1us 4.0ms 2.9ms

Ali 0 1.0us 1.3us 1.5us 2.7us 9.9ms

Ali 1 1.9us 2.2us 2.6us 4.9us 200.0ms

plications [38], which are additional-01-2016021612-LUN4
(labeled as lun0), additional-01-2016021618-LUN6 (labeled
as lun1) and additional-01-2016021619-LUN6 (labeled as
lun2). Moreover, we employed two recent traces from Alibaba
Cloud [54], corresponding to twelve-hour trace segments of a
40 GB virtual disk. The size is notably align to the capacity of
our emulated SSD device, labeled as Ali 0 and Ali 1. All these
selected benchmarks are also commonly used in the domain
of SSD optimization [31], [55], [56].

The detailed information about these I/O traces are reported
in Tables III and IV. It should be noted that the metric of
Upd R in Table III is the ratio of update (write) requests to
all write requests in the trace. Table IV presents the details on
the intervals between two I/O requests in the selected trace,
in Cumulative Distribution Function, to reveal the bursty level
of I/O requests. Generally, a small value of interval means
congested I/O workloads, and will cause a large average I/O
latency for servicing a read/write request.

Besides our proposal (labeled as Adaptive), we included the
following two schemes for comparison in our evaluation:

• Baseline [28], [42], is the common update policy for
updating the parity chunk in RAID-enabled SSDs. It
chooses the routine (i.e., RMW or RCW) that has fewer
pre-read requests when updating a given stripe. Note
that this policy does not consider the status of the I/O
workloads on the affected SSD channels.

• BPU [27], which is a balanced parity update algorithm
considering the factor of the congestion level of I/O
queues. This algorithm empirically classifies all updates
on parity into several categories, on the basis of the
number of pre-reads and the total length of I/O queues.
After that, it employs the recommended routine to update
parity chunks in each category.
We argue that BPU is the most related work to our
proposal, which takes the factor of channel congestion
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Fig. 6. Normalized update-routine distribution after using selected comparison
method.
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Fig. 7. Normalized coefficient of variation (cv) after using selected compari-
son methods. Note that the numbers underlying X-axis are the absolute values
with Baseline.

into consideration for selecting the routine to update the
parity chunk. The BPU scheme, however, lacks adaptivity
and universality, as it employs certain fixed empirical
thresholds for guiding the selection of update routine
and fails to consider the difference in the impact on
enqueued read/write requests and GC operations caused
by the inserted pre-read request.

B. Results and Discussion

To measure the validity of our proposal, we utilize the
following three metrics in our experiments: (a) the congestion
level of SSD channels, (b) I/O response time, and (c) long-tail
latency.
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Fig. 8. Results of I/O performance metrics of write latency (a) and overall
I/O latency (b) with 5+1 stripe structure.

1) Update Routine Selection and Congestion Analysis: We
record the distribution of varied update routines for updating
parity, when processing the selected benchmarks with Base-
line, BPU and Adaptive. Figure 6 shows the results.

On the one hand, Baseline makes use of either RMW-
or RCW-based updates on parity chunks, according to their
number of pre-read requests to service the update on the parity
chunks. On the other hand, BPU and Adaptive will select the
routine even though it has more pre-reads, by considering the
I/O workload status. Thus, they have one more part of Adjusted
in the update routine selection to indicate using the opposite
recommended by Baseline.

Compared to BPU, the proposed Adaptive scheme brings
about more Adjusted operations by 56.2% on average. This
illustrates the fact that our proposal causes more updates on
the parity chunks with the adjusted routine by considering the
factor of real-time workload congestion so that it can yield
more I/O improvements in contrast to BPU.

The indicator of coefficient of variation (cv) of blocked
I/O requests in the I/O queues of SSD channels reflects the
status of load balance over all channels. Figures 7(a) and 7(b)
demonstrate the cv results with 5+1 and 7+1 stripe structure,
respectively. As shown, both the BPU and Adaptive schemes
contribute to a notable reduction of cv of blocked I/O requests
in RAID components as they consider the current congestion
status of I/O workloads when selecting the routine to update
parity. More importantly, compared with the related work of
BPU, our proposal reduces the value of cv by 12.1% on
average. This observation verifies the fact that our proposal
contributes to the I/O workload balance of applications by
timely selecting an appropriate update routine with the support
of the cost assessment model.

2) I/O Response Time: I/O response time is the most
important metric to reflect the performance of SSD devices.
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Fig. 9. Results of I/O performance metrics of write latency (a) and overall
I/O latency (b) with 7+1 stripe structure.

We have thus measured the time required for replaying the
block I/O traces by using the different methods for updating
parity. Figures 8 and 9 present the normalized results of
overall I/O response time that consists of the read time and
the write time for SSDs with 5+1 and 7+1 stripe structures,
respectively. It is worth mentioning that all schemes cause
high overall I/O latencies for replaying the traces from MSR
Cambridge and Alibaba Cloud, by comparing to running the
LUN traces. We argue that these traces are write-intensive, and
have very small values of the interval between two requests
in a major part of workloads (refer to Table IV), implying
congested I/O workloads in them, so that they requires more
time for servicing all requests.

In contrast to Baseline, both BPU and Adaptive noticeably
reduces the overall I/O latency of all traces, as Baseline does
not take the factor of real-time I/O workloads into account
when selecting the routine for updating parity chunks even
though a part of channels are heavily congested with I/O
requests. As reported in Figures 6(a) and 6(b), both optimized
approaches do service a part of updates on parity chunks with
the routine that may have more pre-reads, to purposely refrain
from worsening the congestion status on some SSD channels.

Specifically, Adaptive improves the overall I/O latency by
up to 29.8% in all traces, compared to BPU. This is be-
cause BPU employs certain pre-trained, empirical thresholds
to identify the current situation which it uses to select the
corresponding routine (i.e., RMW or RCW) for updating parity.
On the other hand, the overhead assessment model of Adaptive
can benefit timely selecting the preferred update routine, by
referring to both the number of pre-reads and the workloads
of stripe-involved channels into account, without any pre-
defined thresholds. Thus, Adaptive can more accurately avoid
dispatching pre-reads onto the most congested channels, which
relieves the I/O workloads on them and thus improves I/O
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Fig. 10. Results of long tail latency after replaying the selected traces, with
5+1 stripe structure (unit : ms).

performance.
Furthermore, we observe that the I/O performance im-

provement induced by BPU is limited when replaying the
traces from MSR Cambridge and Alibaba Cloud, which is
in accordance with the values of cv in Figure 7. We argue
this is because these traces will generate burst I/Os and BPU
is particularly ineffective to deal with such I/Os. On the
other side, our proposal shows outstanding capability for the
application having intensive I/O workloads that are unevenly
distributed over all RAID components. In summary, the I/O
improvements brought about by BPU are tightly sensitive to
the pre-trained parameters and the specific I/O workload of
application. To the contrary, our Adaptive proposal can achieve
the same level of I/O enhancements in a wide range of SSD
capacity configurations, through evening I/O workloads over
all SSD channels in a real-time manner.

3) Long-tail Latency: As discussed in our motivations,
imbalanced I/O workloads on RAID-enabled SSD channels
can postpone some I/O requests and further aggravate the
tail latency issue. To reduce the long-tail latency is another
target of the proposed scheme, Figures 10 and 11 show the
comparison of long-tail latency (in Cumulative Distribution
Function) for requests after replaying the selected traces with
different size of stripe structure.

The lines of Baseline are almost the lowest ones since
it does not make use of any optimization strategies to cut
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Fig. 11. Results of long tail latency after replaying the selected traces, with
7+1 stripe structure (unit : ms).

down the long-tail latency. Our proposed Adaptive approach
exhibits better long-tail latency than that using other selected
schemes. More exactly, Adaptive can significantly reduce the
long-tail latency by 14.6%, and 12.9% on average at the
99.9th percentile, compared to Baseline and BPU. This fact
proves that adaptively selecting the routine to update parity
by using the proposed cost assessment model, can efficiently
minimize the impacts on normal I/O requests caused by the
inserted pre-read requests, and thus ensure I/O responsiveness.

To better confirm our proposed method can balance I/O
workloads among all RAID components after replaying the
traces, we recorded the tail latency of each channel in the
RAID-enabled SSDs, and calculated the average, minimum,
and maximum tail latency of all channels. Figure 12 and 13
present the normalized result of tail latency of all channels,
with the 5+1 stripe structure and the 7+1 stripe structure,
respectively. As seen, the height of the bars represents the
average long-tail latency, and the error bars indicate the max-
imum and minimum values respectively. Since Baseline does
not take the workload balance into consideration, the average
tail latency is the largest in the most cases. On the other side,
we can see our proposal of Adaptive outperforms the other two
comparison schemes in the majority of cases, with the best
average tail latency and the smallest difference between the
maximum and minimum tail latency of all channels. This fact
proves our method can better achieve workload balance among
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Fig. 12. Results of long tail latency among all channels after replaying the
selected traces, with 5+1 stripe structure.

all channels in the RAID-enable SSD, and then contribute to
better I/O performance.

Another interesting observation from Figures 12 and 13 is
that, Adaptive does not outperform Baseline and BPU after
replaying the LUN traces, on the measure of average tail
latencies across all channels. This is because these traces
generally have large intervals between two I/O requests and
will not lead to heavily congested channels, directly limiting
the improvement room of our method. We emphasize that,
but, our proposal of Adaptive can yield the least difference
of tail latency of all channels after replaying the most of
traces, indicating the best workload balance among all RAID
components.

C. Overhead

The main memory overhead of our proposal is due to the
additional storage required for the parameters used by the
cost assessment model. The model has to record the number
of enqueued read and write requests of each channel, which
translates to 64B = 8 channels × (2 counts × 4B).

On other other hand, BPU records not only the number
of enqueued I/O requests of each channel, but also some
parameters and thresholds to identify the current state of SSD
for guiding the selection of update routine on the parity chunk.

In summary, the space overhead caused by our proposal
accounts for a very small part of the storage capacity of SSD,
resulting in an acceptable amount of memory space in SSDs.

With respect to time overhead, the proposed approach only
requires to additionally compute the overhead of different
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Fig. 13. Results of long tail latency among all channels after replaying the
selected traces, with 7+1 stripe structure.
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Fig. 14. Time overhead of Adaptive after running the selected Traces.

update routines (i.e., TRMW and TRCW in the cost assessment
model). To measure the compute overhead of Adaptive, we
run the selected traces on an ARM-based platform, sim-
ulating the main controller of SSD device has a limited
compute processing capacity. As the results shown in Figure
14, Adaptive causes time overhead between 1.9 and 16.7
seconds, accounting for an average of 5.7µs per update parity
operation, or less than 0.3% of the overall I/O time. Then,
we consider that the time overhead caused by the computing

10



is acceptable, even though our experiments are done on the
ARM Cortex A7 Dual-Core CPU with 800MHz and 128MB
of memory.

V. RELATED WORK

When a write request modifies part of data stripe, the parity
chunk needs to be updated by using either RMW or RCW.
Both update schemes require issuing a number of pre-read
requests onto relevant RAID components for the purpose. In
conventional SSD RAID implementations, such as CR5M [28],
[41] and SWO [42], the basic selection rule is to compare
the number of pre-reads of RMW with that of RCW, and the
routine having the less number of pre-reads will be employed
to update the parity chunk.

In general, RMW is suitable for small write requests, and
RCW fits the large write requests. Sevilla et al. [43] proposed
modifying the write selection algorithm to classify medium-
writes as small-writes and then to knowingly update the parity
with RCW, based on their experimental observations that
show RCW can contribute to better system performance in
borderline size of requests.

Sun et al. [57] and Thomasian [58] successively proposed
their methods for selecting either RMW or RCW when up-
dating the data chunks, to specifically enhance the overall
performance of RAID systems that are built on the top of
hard disk drives. On the other hand, Chen et al. [27] focused
on the load balance in SSDs and proposed selecting the
update routine by referring to the current I/O workloads.
Specifically, their approach uses certain empirical and pre-
trained thresholds to identify the current situation, according
to the number of pre-reads and the length of I/O queues in
the RAID system. We argue that it is better to have a common
model to timely direct the selection of update routines on
parity, for eventually yielding I/O workload balance among
all SSD channels by considering not only whether channels
are busy or not, but also the levels of busyness of involved
SSD channels caused by serving normal I/O requests.

Besides, Jiang et al. [59] have proposed FusionRAID target-
ing small write requests, to avoid directly updating the data
stripe. FusionRAID temporally replicates data chunks of small
write requests to lighten I/O congestion, and later converts
the replicated chunks into RAID stripes according to various
configurable thresholds.

VI. CONCLUSION

This paper proposes adaptive routine selection for updating
parity chunks of data stripes in RAID-enabled SSDs. Our
goal is to achieve a balanced I/O workload distribution and
to guarantee their I/O responsiveness. To this end, we first
construct a mathematical cost assessment model to estimate
the overhead of two update routines by referring to the number
of pre-reads corresponding to the update on the parity chunk,
as well as the blocked I/O traffics on the different RAID
components. Then, we determine how the update on the parity
should be serviced with the routine introducing less overhead
by choosing between RMW or RCW.

Experimental results show that our proposal substantially
decreases the long-tail latency of I/O requests, by up to
24.8% at the 99.9th percentile, as well as the overall I/O
time by more than 13.5% on average, in contrast to state-of-
the-art methods.
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APPENDIX

Table A.2 reports the results of χ2 hypothesis testing on LUN traces, in which the trace name is the sequential number
of trace in the collection folder of systor17-additional-01. All tests rejected the uniform distribution at P<0.001, implying
imbalanced I/O workloads are common in the LUN trace collection.

TABLE A.2
RESULTS OF χ2 HYPOTHESIS TESTING ON LUN TRACES.

Trace 1# 2# 3# 4# 5# 6#
χ2 854,484,849 79,719,420 109,985,422 49,749,672 27,003,878 9,184,267

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 7# 8# 9# 10# 11# 12#
χ2 31,310,151 14,978,171 346,083,789 24,382,869 62,889,713 33,891,180

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 13# 14# 15# 16# 17# 18#
χ2 4,619,822 4,229,208 46,708,063 4,097,840 1,539,935 5,803,152

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 19# 20# 21# 22# 23# 24#
χ2 9,478,078 3,661,880 17,526,959 2,631,865 2,625,367 21,642,197

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 25# 26# 27# 28# 29# 30#
χ2 9,779,624 6,027,253 5,320,520 3,278,062 2,722,826 25,132,491

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 31# 32# 33# 34# 35# 36#
χ2 6,228,995 2,645,198 4,442,138 3,679,142 3,502,246 4,958,340

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 37# 38# 39# 40# 41# 42#
χ2 7,617,855 7,456,892 1,342,894 2,202,148 2,776,262 8,215,202

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 43# 44# 45# 46# 47# 48#
χ2 4,171,076 11,591,926 3,418,844 2,635,552 2,500,641 9,272,870

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 49# 50# 51# 52# 53# 54#
χ2 4,607,131 55,315,372 4,373,151 18,210,202 2,802,453 1,722,316

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 55# 56# 57# 58# 59# 60#
χ2 15,822 43,831 217,441 5,565 3,986 80,538

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Trace 61# 62#
χ2 30,323,188 11,741,528

P value <0.001 <0.001
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