
AUGEFS: A Scalable Userspace Log-Structured
File System for Modern SSDs

Wenqing Jia, Dejun Jiang, Jin Xiong
State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences;

Research Center for Advanced Computer Systems, Institute of Computing Technology, Chinese Academy of Sciences;
University of Chinese Academy of Sciences

{jiawenqing19z, jiangdejun, xiongjin}@ict.ac.cn

Abstract—We present AUGEFS, a scalable userspace log-
structured file system for modern SSDs. AUGEFS re-architects
the file system stack to address three critical challenges: ineffi-
cient control plane, limited metadata scalability, and underuti-
lized device bandwidth. First, we propose a shared and protected
address space within the userspace of accessing applications
to run AUGEFS, which enables high-performance data plane
and efficient control plane. Second, we design a scalable LSM-
tree based key-value store called METADB to organize small-
sized metadata in AUGEFS. To improve metadata scalability,
METADB employs parallel request processing to reduce thread
synchronization overhead and fine-grained parallel write-ahead
log to eliminate false sharing in metadata persistence. Finally,
AUGEFS distributes files into different domains. To reduce
contention, we maintain space management metadata for each
domain independently, which helps scale data performance and
improve device utilization. Moreover, AUGEFS designs an asyn-
chronous IO stack for fsync to reduce the latency of synchronous
writes. The evaluation results show that AUGEFS significantly
improves both metadata scalability and data scalability.

Index Terms—SSD, Userspace File System, Scalability

I. INTRODUCTION

Recent developments in non-volatile memory technolo-
gies bring modern solid-state drives (SSDs) with both ultra-
low latency and high throughput. For example, Samsung Z-
SSD [84], Intel Optane SSD [28], [30], and Toshiba XL-
Flash [72] provide sub-ten microseconds of IO latency and
up to 7.0 GB/s [30] of IO bandwidth. However, similar to
the conventional SSDs [29], these advanced SSDs still exhibit
higher performance under sequential accesses than that under
random accesses [28], [72], [84], [92].

To fully leverage the features of modern SSDs, this pa-
per explores the issue: how to build a scalable and high-
performance userspace log-structured file system (LFS) based
on modern SSDs. First, traditional kernel file systems [4], [10]
entail crossing the user-kernel boundary for IO operations and
traversing multiple layers of the kernel IO stack, resulting in
substantial software overhead [97], [98]. In contrast, userspace
file systems [7], [42], [59], [76] allow applications to directly
access storage devices and reduce kernel involvement consid-
erably. Second, the LFS organizes the address space exposed
by storage devices as an append-only log, which is a promising
practice to utilize the sequential access pattern favored by
modern SSDs [39], [92]. Thus, exploring the design choices in

a userspace LFS yields significance, which can benefit systems
like databases, key-value stores, mail server, etc.

Intuitively, one can port mature kernel-based LFSs, such as
F2FS [10], to the current userspace file system (FS) archi-
tectures [7], [42], [59], [76]. Unfortunately, we identify three
inefficiencies existing in current userspace FS architectures
and LFS designs when meeting modern SSDs. First, most
userspace file systems [7], [42], [76], [87] bypass the kernel
IO stack for high-performance data operations. However, they
rely on a trusted process or the kernel for the control plane,
including metadata operations and concurrency control. Thus,
existing userspace FSs suffer from expensive inter-process
communication (IPC) or costly kernel trapping, which imposes
overhead for the control plane and limits the scalability of FS
operations, especially for multi-process sharing [17].

Second, small-sized metadata in LFSs [10] mismatches
with the block interface of SSDs, which brings IO amplifica-
tion [40], [42] and causes suboptimal metadata performance.
Although some works aim to improve metadata efficiency [60],
[63], they still suffer from severe metadata write amplification
due to the block-based metadata organization. A promising
practice to handle small-sized metadata for local file systems
is to use log-structured merge tree (LSM-tree) based key-value
stores (LSM-KVS) as several FSs do [2], [34], [40], [85], [88].
However, we observe poor scalability in both metadata updates
and metadata persistence when adopting LSM-KVS. Through
profiling and analyzing, we find the root cause comes from a
fundamental design in existing LSM-KVS: the group updating
mechanism that aims to improve write performance for slow
storage devices. On the one hand, group updating causes the
false sharing problem in metadata updates. Metadata updates
suffer from extra synchronization overhead among multiple
threads even when they update their own private metadata,
as in §II-C. On the other hand, group updating causes false
sharing in metadata persistence. The group updating generates
a shared write-ahead log (WAL) to batch multiple writes from
small-sized metadata to generate one block-based log write.
When a thread invokes fsync for only persisting a part of
buffered metadata, it undergoes transaction entanglement [40]
that requires flushing the entire shared WAL, which brings
heavy write amplification and high latency.

Third, existing LFSs, such as F2FS [10], fail to fully
exploit the device bandwidth of modern SSDs, especially

for synchronous writes that are commonly used in many
applications [12], [16], [24], [64], [68]. Although Max [52]
identifies that the locking of shared data structure limits data
scalability and splits most of them, we find there still exist two
potential issues causing suboptimal data scalability and under-
utilization of device bandwidth: the updating dependencies for
the fsync operation and the locking contention overhead at the
submitting stage of both data and node blocks (file index).

In this paper, we propose AUGEFS, a scAlable Userspace
loG-structurEd File System for modern SSDs. To address the
aforementioned inefficiencies, AUGEFS re-architects the file
system stack with the following techniques. First, AUGEFS in-
troduces a shared and protected address space architecture to
run the file system, which aims to provide an efficient control
plane. AUGEFS is built in a reserved range within the user
address space of the accessing applications, which achieves
library-level file system performance. Meanwhile, the address
space of AUGEFS is shared by multiple processes to support
cross-process sharing efficiently. To protect AUGEFS from
stray writes, we adopt memory protection technology of exist-
ing processors (e.g., Intel Memory Protection Key, MPK) [15]
to allow a process to access the address space of AUGEFS only
when it executes the file system services.

Second, we propose METADB, an LSM-tree based key-
value store, to manage small-sized metadata (e.g., inode).
Specially, METADB designs two techniques to address the
limitation of group updating. To scale up the processing
of metadata updates, METADB introduces parallel request
processing to allow threads to update metadata independently
without sacrificing correctness, which greatly reduces the
thread synchronization overhead. To overcome the limitation
of false sharing on WAL, METADB designs fine-grained par-
allel WAL by exploiting persistent memory region (PMR) [70]
in modern SSDs. Its WAL allows different threads to write and
persist their log entries independently, improving the perfor-
mance and scalability of metadata persistence significantly.

Finally, AUGEFS introduces domain-based file organization
to increase the device bandwidth utilization. After delegating
inode and directory operations to METADB, AUGEFS further
groups files into different domains and maintains space man-
agement metadata for each domain individually. Thus, differ-
ent domains can execute file read/write, garbage collection,
and checkpoint in parallel with little locking contention. In
addition, AUGEFS proposes an asynchronous IO stack for
fsync, which parallels the writing of data and node blocks
to eliminate their updating dependencies. This stack improves
device utilization without compromising consistency.

We implement AUGEFS and evaluate it with file system
benchmarks and real-world applications against six file sys-
tems: F2FS [10], Max [52], uFS [59], Strata [42], Ext4 [4],
and TableFS [34]. Specially, AUGEFS increases the throughput
by 34× on average for synchronous metadata updates and
improves the throughput by up to 36% for LevelDB [22]. In
summary, the contributions of this paper include:
• A detailed analysis of challenges when building userspace
log-structured file systems on modern SSDs.

• A shared and protected address space in userspace to hold
the file system with efficient control plane and data plane.
• A scalable KV store to organize metadata with parallel
request processing and fine-grained parallel WAL to achieve
high metadata scalability and performance.
• A domain-based file organization to enable in-parallel file
access without cross-domain contention and an asynchronous
IO stack for fsync to accelerate data persistence.
• An extensive evaluation of AUGEFS to show its efficiency
over state-of-the-art file systems on modern SSDs.

II. BACKGROUND AND MOTIVATION

A. Modern SSDs and Userspace LFS

The development of modern SSDs exhibits three attractive
features, which inspire us to build a scalable and high-
performance userspace LFS. First, modern SSDs provide sub-
ten microseconds of IO latency, leading the kernel IO stack to
become the performance bottleneck [44], [58]. Thus, building
a userspace FS can reduce the heavy kernel-involvement over-
head and improve performance [7], [58], [59], [76], [95]. Sec-
ond, modern SSDs still exhibit higher sequential performance
than random performance. For example, Samsung SZ1735a
Z-SSD [83] offers a 4.1GB/s bandwidth for sequential writes
while only 330K IOPS for random writes. Even the Intel
Optane SSD obtains better sequential performance (10% on
average) than random performance [92]. LFS [82] can convert
random writes into sequential writes, thereby fully exploiting
the sequential performance of modern SSDs. Third, a new fea-
ture named persistent memory region (PMR) [69] is proposed
starting from NVMe specification 1.4 [70] for modern SSDs.
PMR is a designated small-capacity persistent memory area
within SSDs. It can be exposed as an internal memory area to
applications by memory mapping (MMIO). Applications can
access PMR directly through CPU load/store instructions [45],
[53]. Thus, PMR raises an opportunity to accelerate small-
sized (tens-to-hundreds-of-bytes) FS metadata access.

B. Inefficient Control Plane in Userspace FS

Userspace file systems are usually designed with the sep-
aration of control plane and data plane [7], [42], [58], [76],
[87]. The control plane generally includes metadata operations
and concurrency control, especially in cross-process cases. The
data plane mainly involves reading/writing file data. Existing
userspace FSs execute data plane operations in userspace to
reduce the kernel overhead. However, most of them depend
on the kernel [7], [76] or a trusted process [42], [87] to
execute control plane operations. This results in an inefficient
control plane as metadata operations require either trapping
into the slow kernel or using expensive inter-process commu-
nication (IPC, e.g., socket-based IPC [42]) to interact with
the trusted process. Unfortunately, write operations also slow
down as they are intertwined with metadata updates (e.g.,
space allocation). Moreover, their control plane introduces
inefficient cross-process sharing. For example, when multi-
ple processes read/write the same file concurrently, multiple
expensive IPCs are required [42] to acquire and release the

 0

 0.8

 1.6

1 2 4 8 12 16 20 24 0

 20

 40

T
hr

o
ug

hp
u
t(

m
op

s/
s)

L
at

en
cy

 (
us

)

of Threads

HDD
SSD

RAM
Lat-S

(a) Create Performance

 0

 50

 100

1 2 4 8 16 20 24

P
er

ce
n
ta

ge
 (

%
)

of Threads

Path-Lookup
Write-WAL

U-Memtable

WAL-Sync
Memtable-Sync

Other

(b) Create Performance breakdown

Fig. 1: Performance of Create and Its Breakdown

inode lock (lease mechanism), which add high communication
overhead and lead to lower performance [17], [80].

A few works [58], [59] adopt a semi-microkernel ap-
proach to place both the data and control planes in a trusted
userspace process. However, they bring additional CPU over-
head. uFS [59] is such a userspace FS that consolidates all
FS functionalities into a trusted server (process). Application
threads use the shared ring buffer to interact with the server.
They write FS requests into the shared buffer and wait for
completion by polling the buffer. The server threads poll the
shared buffer to fetch requests and use the polling-based SPDK
to access SSDs to serve the requests. This results in a polling
on polling problem because both application and server threads
spend too much time on polling. For example, uFS requires
up to 80% additional CPU cores [59] for running the trusted
file system process when running LevelDB [22].

C. Poor Metadata Scalability

Metadata operations are critical to file system performance
as they are reported to occupy nearly half of all FS opera-
tions [46], [81]. Metadata/fsync-intensive applications, such as
mail server and rsync [40], demand highly scalable metadata
performance [16]. Unfortunately, metadata operations often
incur small and random writes, resulting in large amplifi-
cation and suboptimal performance. To mitigate this, some
works [60], [63] have introduced optimizations (e.g., inverted
index) on traditional file systems. However, these approaches
still involve many extra IOs for metadata persistence due
to the mismatched granularity. Moreover, they may cause
serious delays for guaranteeing crash consistency due to IO
ordering [9], [13], [90] and journaling [16], [55].

There is another kind of file systems that utilize LSM-
KVS (e.g., LevelDB [22] and RocksDB [20]) to organize
metadata within local file systems [2], [34], [40], [85]. We ar-
gue that the LSM-KVS is well-suited to manage FS metadata.
First, LSM-KVS groups small-sized metadata and writes them
to the device sequentially in bulk, which is favored by modern
SSDs. We observe that directly using RocksDB to organize
FS metadata shows up to 5× performance improvement than
traditional FSs (detail in §VII-A). Second, LSM-KVS can
expose atomicity to support transactions considerably eas-
ier than the block interface [40], which can help support
FS metadata consistency. However, the integration of LSM-
KVS into FS metadata organization presents two challenges.
First, LSM-KVS requires building atop a file system. For ex-
ample, TableFS [34] is built atop Ext4 [4]. Fortunately, LSM-

KVS does not require a complex FS. Instead, we can build a
simple FS to manage its files (e.g., SSTables), greatly reducing
the integration complexity. Second, we find a fundamental
design: group updating adopted by existing LSM-KVS [6],
[8], [11], [20], [22], [62], [79], [96] causes the false sharing
problem, which severely limits metadata scalability. We choose
the widely used and mature RocksDB as a representative LSM-
KVS to illustrate this problem below.
False Sharing in Metadata Updates. When different threads
update metadata in their private directories, there should be
little dependence among them. However, we identify that the
group updating mechanism requires synchronization among
these threads. It causes high latency and constrains the scal-
ability of metadata operations, leading to the false sharing
problem. To display it, we first build a library FS and use
the RocksDB to store its metadata. It adopts the metadata to
KV mapping policy in §V and its KV size is about 192B.
Then, we measure the throughput and average latency of its
create operation with increasing thread count. Each thread
creates files in its private directory. We run this experiment on
HDD, Intel P4800X SSD [28], and RamDisk respectively with
the machine in §VII, and show the results in Fig. 1(a). When
running on HDD, the tested FS shows low throughput and little
scalability as the slow device is the bottleneck. As for SSD and
RamDisk, their throughputs scale initially, but their scalability
is limited. When reaching 24 threads, the latency running on
SSD (Lat-S) increases sharply, and the throughput even drops.
Since RamDisk offers bandwidth that is ten times higher than
that of SSD, it still encounters scalability limitation. This
indicates that increasing storage device bandwidth does not
improve scalability and throughput, instead, the performance
bottleneck shifts from the storage device to the CPU.

To verify the above claim, we describe the procedures of the
create operation and illustrate its performance breakdown run-
ning on the SSD in Fig. 1(b). When multiple threads execute
create, they first perform Path-Lookup, then issue a put request
to RocksDB. The group updating mechanism organizes these
threads into a group. One thread is elected as the leader that is
responsible for aggregating and writing all log entries into the
WAL file (Write-WAL). Other threads are followers and wait
until WAL writes are finished (WAL-Sync). After that, these
threads concurrently update the Memtable (U-Memtable). The
thread group exits synchronously after all threads finish U-
Memtable (Memtable-Sync). As in Fig. 1(b), when the thread
count increases, Write-WAL and U-Memtable occupy less
overhead (decreases from 65% to 15%). However, the group
synchronization overhead (WAL-Sync and Memtable-Sync)
increases a lot, contributing up to 78% latency. It is mainly
from waiting among these threads and thread invoking (yield
occupies 60% of the WAL-Sync time).
False Sharing in Metadata Persistence. When using LSM-
KVS to store FS metadata, the updates are first written
to the WAL file but may reside in the page cache. Thus,
guaranteeing metadata persistence requires flushing the WAL
file. For example, TableFS [34] provides the fsync operation
that puts a KV pair with a sync write option to flush the

 0

 0.5

 1

1 2 4 8 12 16 20

no fsync

54% 57% 62% 64% 65% 68% 83%

T
hr

o
ug

h
p

ut
(m

o
p

s/
s)

of Sync Threads

(a) Create Performance With Fsync

 0

 20

 40

0 1 2 4 8 12 16 20

0.29

W
A

L
 W

ri
te

 S
iz

e
(G

B
)

of Sync Threads

(b) Device Write Size of WAL

Fig. 2: Performance of Create with Fsync

WAL. However, the metadata of a single directory may lie
in different positions of the WAL file. Even persisting one
directory’s private metadata requires flushing the entire WAL,
resulting in false sharing on WAL. To show its impact, we add
the fsync operation atop the above create workload with 20
threads. Fig. 2(a) shows the results. The X-axis indicates the
thread count executing fsync within all threads. For example,
one sync thread means only one thread executes create-
fsync while the others only execute create. We observe that
only one sync thread can severely degrade the whole system
performance, up to 54% degradation compared to that all
threads executing create without fsync. With the increasing
count of sync-threads, the throughput decreases by up to 83%.
Thus, false sharing on WAL hurts performance heavily when
file system metadata is persisted synchronously.

To analyze the aforementioned problem further, we measure
the device write size caused by WAL (wal dev write size) and
show the results in Fig. 2(b). When there is no sync thread,
wal dev write size is only 290MB, which is far less than the
size of workloads (about 2.5GB). The reason is that most
WAL files are deleted before they are persisted to SSD as their
corresponding Memtables have been flushed. However, when
there is only one sync thread, wal dev write size increases
sharply to 10.2GB, and it can increase up to about 28GB
with all 20 sync threads. Large wal dev write size brings
additional device IOs and increased latency. When one thread
executes fsync, its updating group suffers from the long latency
of device IOs, as it requires flushing the whole WAL. Mean-
while, other updating groups must wait for a long time until
the previous group exits, which causes severe performance
degradation by blocking the whole process.

D. Underutilized Device Bandwidth of Data Operations

Data operations can execute faster within the userspace FS
architecture by directly accessing storage devices [7]. How-
ever, we find that the device bandwidth is underutilized with
existing LFSs’s data management, especially for synchronous
writes that are commonly used for data durability and storage
order [90], [91]. To illustrate this problem, we measure the
write throughputs of the state-of-the-art LFSs (F2FS [10] and
Max [50], [52]) on the above SSD with increasing thread
count. Each thread executes 4KB append writes to its private
file followed by fsync independently. We also measure the
device bandwidth utilization (calculated as the average device
used bandwidth ÷ device maximum bandwidth). Fig. 3(a)
shows the results, where F-U and M-U denote the bandwidth

 0

 200

 400

 0 4 8 12 16 20 24 0

 30

 60

 90

T
h
ro

ug
hp

ut
 (

ko
ps

/s
)

D
ev

 U
ti

li
za

ti
on

 (
%

)

of Threads

F2FS
Max

F-U
M-U

(a) Synchronous Write Performance

 0

 20

 40

F2FS MAX

64.5us91.9us

P
er

ce
nt

ag
e

(%
) data_sublock

node_sublock
nat_lock
seg_lock

(b) Lock Overhead in Fsync

Fig. 3: Performance of Write Operations

utilizations of F2FS and Max respectively. We find the per-
formance of Max only scales up to 12 threads, failing to fully
saturate the device bandwidth (up to 60%). We analyze the
reasons for the aforementioned results as below.
Intrinsic Dependency in Data Persistence. When persisting
dirty data explicitly with fsync, both Max and F2FS require the
modified data blocks to be durable before their associated node
blocks to guarantee correctness and data consistency. However,
this strict write order introduces a serial execution path and
intrinsic dependencies, which lead to unnecessary waiting time
and hurts the device’s parallel performance.
Lock Contention under High Concurrency. The shared
in-memory data structures, such as shared node address ta-
ble (NAT) and segment information table (SIT) in F2FS, cause
severe lock contention under high concurrency. Although
existing works (e.g., Max) split the shared data structure to
eliminate most contention, we still find the mutual submitting
locks to guarantee write ordering brings underutilization of
device bandwidth. For example, the data log in F2FS has a
reader-writer lock, which serializes the data submitting stage.
It also uses a global mutex lock in superblock to further serial-
ize IO. Although Max [50], [52] splits the large log into minor
logs, it only focuses and implements on the space allocation
stage. When submitting data blocks, it still simply locks the
whole stream. Moreover, all data logs in Max share a global
submitting lock, which hinders its scalability. The submitting
locks include the data log submitting lock (data sublock) and
the node log submitting lock (node sublock). To verify it, we
isolate the overhead proportion of locking in fsync under 24
threads. As shown in Fig. 3(b), the latency of locks in Max
is lower than that in F2FS (from 91.9us to 64.5us). However,
the entire lock overhead in Max still occupies 37.7% of the
fsync operation, mainly from the submitting locks.

III. DESIGN OVERVIEW

To address the above challenges, we propose AUGEFS, a
scalable and high-performance userspace LFS. Fig. 4 presents
a high-level overview of AUGEFS design, which mainly
contains the following components:
Architecture. To provide an efficient control plane without
extra CPU overhead, AUGEFS places the file system in a
shared and protected address space within the user address
space for all application processes accessing it. Applications
access AUGEFS through the userspace library (LibFS), which
only requires a fast userspace context switch. Additionally, it
provides the hash-based inode cache, the hash-based dentry

Metadata to KV
Mapping

KV KV

KV

File
Domain

File
Domain

File
Domain

MetaDB
Metadata Data

Inode
Cache

Data CacheFd Array

SSD

AugeFS MPK

File System Interface (LibFS)Kernel
Space

N/A

AugeFS

User
Space

Kernel
Space

N/A

AugeFS

User
Space

App A App B
PMR

Dentry
Cache

Fig. 4: The Overview of AUGEFS

cache, the radix-tree-based file data cache, and the run-time
file management (Fd array) similar to the virtual file system.
For protection, AUGEFS leverages memory protection tech-
nology (e.g., Intel MPK) to ensure its integrity (§IV-B).
METADB. METADB is a scalable LSM-based KV store that
is responsible for storing the file system metadata, especially
for inodes. Metadata operations such as create and mkdir are
converted into KV operations (i.e., put, get, delete), which can
handle small-sized metadata more efficiently. To further im-
prove the scalability of metadata operations, METADB adopts
parallel request processing (§V-A) to reduce the thread syn-
chronization overhead and fine-grained parallel WAL (§V-B)
to eliminate the false sharing on WAL.
File Domains. Thanks to the adoption of METADB,
AUGEFS enables scalable inode and directory operations
through METADB. Then, AUGEFS distributes files into dif-
ferent domains to achieve high data scalability (§VI-A). Each
domain includes a collection of files and maintains its own
space management metadata. AUGEFS also conducts garbage
collection and checkpoint in a per-domain way. Moreover,
AUGEFS provides an asynchronous IO stack for fsync to
accelerate data persistence in each domain (§VI-B).

IV. AUGEFS ARCHITECTURE

A. Efficient Control Plane in AUGEFS

At first, AUGEFS is designed as a userspace library FS [95],
which can avoid both the IPC and kernel trapping overhead
for the control plane. Unfortunately, this design does not
support cross-process sharing despite obtaining promising per-
formance. To overcome this problem, we propose architecting
AUGEFS as a shared and protected address space, a shared part
within the user address space for AUGEFS specially. Fig. 5
illustrates the address space layout of an application using
AUGEFS. Since the virtual address space provides up to 64PB
space range [57], we reserve a fixed and enough range (i.e.,
AUGEFS in Fig. 5) from the user address space to hold
AUGEFS. Similar to the kernel address space, AUGEFS ad-
dress space has code segment (the library file system), data
segment, stack, heap, background threads, etc.

Each application accessing AUGEFS must register with the
kernel. During the registration, the application invokes a new
system call augefs init, then the kernel checks applications’

permissions and maps AUGEFS into the applications’ address
space by adding the page table entries of AUGEFS into
the applications’ page table. Thus, any registered applica-
tion can share AUGEFS akin to sharing the kernel address
space. Then, multiple threads (both intra- and inter-process)
can manage the same data structures in AUGEFS, and lock
structures (e.g., inode lock) can be built to support concurrent
accesses among them. Applications access AUGEFS via a
library called LibFS, which offers file system interfaces like
open and close. Since AUGEFS resides in the same address
space within applications, application threads can utilize the
non-privileged function calls (call and ret instructions) to
execute AUGEFS functions entirely in userspace like the
library FS. Meanwhile, AUGEFS does not require extra server
threads to execute functions on behalf of application threads.
Therefore, AUGEFS obtains the library-file-system-like high
performance while supporting cross-process sharing, which
provides both efficient control plane and data plane.

B. Protection for Shared User Address Space

Since AUGEFS is designed as a part of user address
space, we must concern about the corruption resulting from
stray writes [19]. Stray writes typically happen when the
control flow is messed up due to bugs outside AUGEFS [17],
where misused pointers can modify the contents in arbitrary
memory addresses in AUGEFS to hurt the FS integrity. Some
works [17], [49] use Intel memory protection keys (MPK)
to prevent stray writes to persistent memory, but they cannot
directly be applied to AUGEFS as they either protect specific
abstraction (coffer in [17]) or lack protection for volatile data
structures (e.g., inode cache, page cache) [17], [49]. Thus, we
co-design AUGEFS architecture with MPK and introduce a
protection technique called MPP (i.e., Memory Protection for
address sPace). With the help of MPP, AUGEFS can expand
its protection boundary to a trusted process group [99] as in
the data center environment [49].
Intel MPK. MPK is used to restrict memory accesses in
userspace. It leverages four unused bits in page table entries
to store a protection key, giving 16 possible keys. The pages
sharing the same key are considered as one memory region.
To control access permission of each memory region, MPK
introduces a new userspace-accessible CPU register named
PKRU. This register contains 16 pairs of two-bit permissions
for these keys, determining the corresponding regions’ rights
(read, write, neither, or both). The permissions can be changed
by a user-mode instruction WRPKRU. Moreover, its permis-
sion control is at the per-thread granularity.
MPP. Its key idea is to guarantee the AUGEFS address space
to be exclusively accessible only during the invocation of
file system services. When executing the application’s code
outside AUGEFS, application threads are prohibited from
accessing AUGEFS address space, thereby preventing stray
writes. To achieve it, we reserve the last memory protection
key (pkey) to control the access permission of AUGEFS, treat-
ing AUGEFS as one memory region. After registration, one
application is not allowed to access AUGEFS by default. Then,

void gate(op_code, args, res)
{
 disable_protection();
 save_context();
 switch_stack();
 fs_call(op_code, args, res);
 switch_stack();
 restore_context();
 enable_protection();
}

Code Segment
...

void fs_call(op_code, args, res) {
 fscall_table[op_code](args, res);
}
void init_fs_table() {
 fscall_table[OPEN] = &auge_open;
 fscall_table[CLOSE] = &auge_close;
}

void auge_open(…)
 ...

Heap

Stack
Kernel
Space

N/A

AugeFS

...
open()

...

User
Space Application Address Space

PKRU
WRPKRU

Fig. 5: The Example of AUGEFS Address Space
we design a gate function to wrap each file system call of
AUGEFS to manage the permission. The gate function resides
in a code page that is mapped into the applications’ address
space at registration. When an application thread invokes a file
system call, the gate function first grants the access permis-
sion of AUGEFS by updating the PKRU (disable protection).
The instruction WRPKRU is executed fast (less than 20
cycles [73]) without trapping into the kernel. After the FS
service finishes, the gate function disables the accessibility
of AUGEFS again (enable protection). Thus, AUGEFS is
inaccessible when the application’s code is executed. Since
AUGEFS code (i.e., LibFS) is a trusted library, there are no
stray writes corrupting AUGEFS. Note that MPP is not specific
to Intel processors, as similar hardware features exist in other
processors for memory protection, such as ARM Domain [3]
and IBM Storage Protection [26].
Malicious Attacks. AUGEFS still faces malicious attacks [99]
from untrusted processes (e.g., modifying pkey) as in previous
works [17], [49]. Fortunately, there are several orthogonal
works [25], [86] exploring low-overhead binary-writing tech-
niques. They can be directly applied to AUGEFS to protect
against malicious attacks while having little impact on the
performance of both AUGEFS and applications [25], [86],
which leaves as our immediate future work.

C. Put It Together
Here, we take the process of opening a file as an example,

as shown in Fig. 5. First, an application thread calls the
open function, which calls the gate function subsequently.
Second, within the gate function, it calls disable protection to
gain access to AUGEFS address space. It then saves the
application thread context and switches to the stack in
AUGEFS. Third, it calls fs call to execute the actual FS
function (auge open) according to the opcode (OPEN). The
fs call function is placed in a fixed address in AUGEFS,
and the gate can call it using the function pointer. Note that
AUGEFS pre-initializes the fscall table in init fscall table.
Finally, it switches to the application thread stack, restores
the application thread context, and calls enable protection to
revoke the access permission to AUGEFS.

V. METADB
In this section, we present METADB, a scalable LSM-

KVS for packing metadata of AUGEFS. To improve its scal-

ability, we design two techniques: parallel request process-
ing (§V-A) and fine-grained parallel WAL (§V-B). We first
describe how to apply METADB to AUGEFS.
Metadata to KV Mapping. AUGEFS stores FS-level meta-
data (superblock) and file-level metadata (e.g., inode) into
METADB. The key of superblock is m:superblock. We adopt
similar naming rules for the key of file-level metadata as ex-
isting works [34], [40]. Specifically, AUGEFS assigns the key
of file-level metadata by combining the prefix ‘m’, the inode
number of the parent directory, a delimiter (:), and the file or
directory name. For example, if the parent directory of foo.txt
is /home/dir whose inode number is 100, the key for foo.txt’s
metadata is set as m:100:foo.txt, with its value being the inode
of foo.txt. AUGEFS also adopts an in-memory inode cache to
accelerate metadata accessing [34]. METADB provides several
APIs to serve metadata operations. For example, create is
converted to put operation, unlink is converted to delete op-
eration, and rename is converted to delete and put operations.
AUGEFS has no dentries in METADB and it uses the iterate
function to organize the hierarchical namespace, which can
list all files and directories in a parent directory [34], [40].

A. Parallel Request Processing

To eliminate thread synchronization of the group updating
mechanism, METADB introduces parallel request processing
to enable each thread to update Memtable and WAL inde-
pendently without considering the status of other threads.
Thus, different threads in AUGEFS can update file system
metadata in METADB independently instead of being in a
co-dependent group. To support parallel request processing,
METADB adopts the skiplist-based Memtable to allow concur-
rent updating [20], which supports KV insertions from multi-
ple threads. Meanwhile, METADB creates a separate WAL file
for each CPU core to eliminate the dependence on WAL writes
from different threads. When executing put, METADB divides
the process into four stages, as shown in Fig. 6. ①Preparing:
a thread checks whether the current Memtable is full. If full,
it switches both the Memtable and the WAL files. Then,
the thread obtains a sequence number of the current write
batch. ②Writing Log: the thread gets the running CPU ID and
updates the corresponding WAL file. ③Updating Memtable.
④Return. The stages ② to ④ can be executed independently
by different threads. Instead, the stage ① is protected by a
global mutex. Fortunately, the Memtable and WAL switching
occurs infrequently, thus stage ① cannot become a bottleneck
for concurrent updates. By doing so, metadata updates in
AUGEFS avoid thread synchronization overhead, improving
the metadata scalability significantly, as in §VII.
Correctness Guarantee. Compared with existing LSM-KVS,
METADB compromises the strict sequential updating order
requirement, which brings two potential issues. First, during
the preparing stage, when the active Memtable is checked as
fully filled and switched to be immutable, there may exist in-
flight KV pairs that have acquired the position of the active
Memtable but not finished the insertion due to the non-strict
sequential order. These KV pairs risk being lost when this

Prepare Write Log Update Memtable Return
Thread 1

Prepare Write Log Update Memtable Return
Thread 2

Memtable Full?

in_flight
_writesCheck

(Wait)

Switch Memtable
& Switch WAL

Wait if not zero

Wake up if zero

Add Write Count

Sub Write
Count

Detail

Y

N

Fig. 6: Parallel Request Processing

immutable Memtable is flushed by background threads. To
address it, METADB introduces a synchronization barrier be-
tween two adjacent Memtables. Its key idea is before an active
Memtable is switched to be immutable, it should wait until all
in-flight updates belonging to it are finished. METADB uses a
semaphore primitive with an atomic number (in flight writes)
for each Memtable to count in-flight KV pairs. In the preparing
stage, the in flight writes is added to the count of KV pairs
in the current write batch. After the KV pairs are inserted
into the Memtable, the in flight writes counter subtracts the
write count. When switching an active Memtable into an
immutable one, METADB checks in flight writes and waits if
it is not zero. When another thread finishes insertion and finds
in flight writes becoming zero after subscribing, it wakes up
the waiting threads. Other threads cannot proceed until the
Memtable switching is finished. Since the synchronization
barrier only sits between two adjacent Memtables, it has
little impact on scalability as concurrent updates to the same
Memtable can still execute without waiting for each other.

Second, the sequence number (seq num) is used to identify
different versions of KV pairs [18] in LSM-KVS. Seq-num is
generated and incremented on each update in METADB.
Thus, all KV pairs are logically arranged in a sorted order.
Meanwhile, multiple KV pairs with the same key may co-exist
and can be differentiated by the seq nums. METADB violates
this order as the Memtable inserting order may be inconsistent
with seq num. That means AUGEFS may not read the latest
value with the latest seq num from METADB when updating
the same key simultaneously. Fortunately, this issue can be ad-
dressed by the specific feature of the file system. In the POSIX
file system, the correctness of metadata concurrent updating
is guaranteed by inode locks. For example, when two threads
perform mkdir and rmdir to the same directory simultaneously,
their order is protected by the inode lock of its parent directory,
and they are executed in order. Thus, there are no simultaneous
updates to the same key in METADB. In conclusion, parallel
request processing does not sacrifice correctness and has the
same consistency level (similar to the ordered mode in Ext4)
with other KVS-based file systems (e.g., TableFS).

B. Fine-Grained Parallel WAL

Although METADB employs parallel request processing
with per-core WAL, it still suffers false sharing in metadata
persistence. The aforementioned false sharing on a single WAL

1
1
1
0

64K
130K

0

256 0
0
1
0

130K
0
0

64K
StartV A End

0
1
2
3

...

...
TxB TxE Log Content

Tail0 1 31 32 33 63... ...

Metadata Area Data Area

T1 T2 T3

Fig. 7: Fine-Grained Parallel WAL

file turns to false sharing on multiple WAL files. For example,
when one directory is invoked fsync, its metadata may lie
in multiple WAL files due to concurrent metadata updates to
this directory from multiple threads. To guarantee persistence,
METADB must flush all WAL files synchronously. This proce-
dure hurts performance severely, similar to §II-C. To solve this,
METADB utilizes the persistence memory region (PMR) [70]
in SSDs to build a fine-grained parallel WAL.
Enabling Parallel Logging. Different from the block inter-
face, PMR allows byte-addressable and durable access. This
allows the small-sized log of FS metadata to be persisted
immediately in a fine-grained granularity. Thus, METADB in-
troduces parallel logging to eliminate false sharing in metadata
persistence. First, METADB maintains a log tail in DRAM,
and concurrent threads use the tail as a synchronization point.
Concurrent threads use the compare-and-swap (CAS) instruc-
tion to increase the tail atomically. Since the threads know
the log entry size before logging, they can write log entries to
their positions in parallel without dependence. Second, one log
entry is 64B-aligned by adding paddings. The first 8B is its
TxB (transaction begin) area, which includes 4B for a magic
number and 4B for length. The last 8B is its TxE (transaction
end) that is used to record the commit information. There
is the log content between TxB and TxE. TxB, the log
content, and TxE are written sequentially for recovery. Note
that parallel logging does not compromise the correctness of
conflicting metadata updates because they are still protected
by FS locks (i.e., the locks of superblock and inode).
Log Data Management. Directly using PMR to store WAL
complicates log data management without the help of a file
system. Fortunately, with the byte-addressability and durability
features of PMR, METADB can organize fine-grained parallel
WAL with little overhead. METADB divides the PMR region
into two parts: a large data area and a small metadata area.
The data area stores WAL “files”. For each mutable Memtable,
METADB allocates a continuous data area to hold its logs.
The Memtables are flushed following their born order. Thus,
the data area for each Memtable is allocated and freed in
a log-structured way without incurring space fragmentation.
The metadata area resides at the beginning of PMR, which
stores metadata of WAL “files” such as their beginning and
ending offsets. Fig. 7 shows the overview of WAL on PMR
for METADB. The metadata of each WAL “file” occupies an
8-Byte slot, which consists of 1 valid bit (V), 31 start address
bits, 1 active bit (A), and 31 end address bits. The valid bit
shows the availability of the slot, and the active bit shows
whether the active Memtable uses the slot. The start and end
address bits describe the address range on PMR of the WAL

“file”. Fig. 7 shows the WAL “files” of three Memtables:
one active (mutable) and two inactive (immutable). The end
address of the active one is zero as it is being updated. When
becoming an immutable one, its end address is updated. After
a Memtable is flushed, its data area can be reclaimed, and
the valid bit of its metadata slot is also reset. Note that each
update to an 8-Byte slot can be atomic for PMR [1], [75].
PMR Size. The size of the metadata area is set to 4KB, and
the size of the data area is related to the number of Memtables
instead of the SSD’s capacity. By default, the data area requires
about 128MB to hold logs from two Memtables, each of
which is 64MB (same as RocksDB). Other information (TxB,
TxE, and paddings) requires extra but much smaller space.
A large PMR (hundreds of MBs) can directly persist logs
without flushing logs into SSDs to maximize performance and
previous works [32], [45], [47] show this PMR size is feasible.
However, a small PMR (e.g., 2MB used in prior work [53]) is
still able to serve logs for METADB efficiently. To achieve this,
we reserve a few hundreds of MBs (e.g., 256MB) on SSDs as
the backed space of PMR. We equally divide the PMR into
two parts. Initially, the first part receives the written logs. Once
the first part is full, its logs are asynchronously migrated into
the backed area on SSD. Meanwhile, the second part of PMR
is used to receive log writes. As for a small PMR, the full
part can be quickly migrated into the underlying fast SSD.
Then, METADB repeats the above process to continue using
the first part after its migration finishes. Thus, the divided
parts are used by turns, which allows METADB to still highly
benefit from our optimizations, as shown in §VII-F.
Log Recovery. First, METADB reads the metadata area to
fetch the valid Memtables and their address ranges. Second,
METADB recovers the logs of inactive Memtables by re-doing
them as they are complete. Third, for the active Memtable,
its log entries may be incomplete due to parallel logging. To
detect them, during the WAL initialization or WAL region
reclamation, METADB zeros out the corresponding space.
Then, METADB scans the data area from the start address
of the active Memtable at the 64B granularity until a TxB
is found. The log entry length is fetched from TxB, and
METADB uses it to check whether TxE exists. If it exists,
this log entry is complete and can be recovered. Otherwise,
it is dropped. METADB continues scanning and repeating the
above procedures until reaching the address of an immutable
Memtable or traversing the whole area. This procedure is fast
due to the small size of the WAL region.
Metadata Consistency: METADB first writes logs of meta-
data to PMR synchronously using fine-grained persisted in-
structions (store + cflush [53]), which provides immediate
persistence for logs. Then, METADB updates the volatile
Memtable. The metadata can be recovered due to its durable
logs even meeting crash down when updating the Memtable.
Some directory operations, such as rename, are converted into
more than one KV pair. METADB wraps the KV pairs into a
write batch and uses the above WAL to guarantee its atomicity
and durability because they are in one transaction unit. Thus,
AUGEFS can persist metadata atomically and immediately

without any consistency problems.
Discussion. While current commercial SSDs do not support
PMR, we believe it will be a key feature in future SSDs.
First, several recent works [5], [45], [51], [53], [54], [93]
show that PMR is able to accelerate system performance,
which evidences its importance for SSD-based storage sys-
tems. Second, existing technologies like non-volatile mem-
ory technologies (e.g., 3D XPoint [27] or capacitor-backed
DRAM [32], [36], provide medium-level support for realizing
PMR in SSDs. Finally, PMR requires no DIMM slots and has
a smaller capacity (hundreds of MBs or less) than persistent
memory (e.g., Intel Optane Persistent Memory [31]), which
makes it more practical in terms of cost and power saving.

VI. DATA MANAGEMENT

A. Domain-Based File Organization

The scalability of data accessing in LFSs is usually limited
by the contentions on manipulating FS-level shared data
structures (as in §II-D). Dividing the whole FS into multiple
partitions is an effective approach to reduce such contention.
However, existing partitioning approaches [35], [52] either
require extra effort to guarantee cross-partition metadata con-
sistency [35], [52] or suffer from global checkpoint locking be-
cause different files may share the same segment [52]. Thanks
to the centralized and scalable METADB, AUGEFS avoids the
cross-partition metadata consistency issue. Then, AUGEFS de-
signs a domain-based file organization to distribute files into
different partitions (called domain here). Each domain can exe-
cute read/write operations, garbage collection, and checkpoint
independently, which enables in-parallel file access with little
cross-domain contention. Thus, AUGEFS eliminates the lock-
ing contention completely for synchronous writes, including
contention on the shared data structures and the submitting
stage. AUGEFS adopts a modular-based hash function to dis-
tribute files into domains evenly, i.e., Df = Hash(ino)%N ,
where Df is the domain ID of file f, ino is the inode number
of file f, and N is the total number of domains (the default
number of domains is 16 as in §VII-F).
Space Management. AUGEFS divides the device space into
fixed-size segments (2MB), which are the space allocation
granularity of domains. Each segment is free or owned
by one domain exclusively. AUGEFS reuses the three data
structures of F2FS: segment information table (SIT), node
address table (NAT), and segment summary area (SSA). To
avoid cross-domain contention when manipulating the three
data structures, AUGEFS lets each domain maintain its own
structures. Moreover, we apply some modifications to SIT and
NAT, but leave SSA unchanged as each SSA (4KB block)
belongs to a segment that is not shared among domains.

Since SIT contains per-segment information (e.g., the num-
ber of valid blocks and the validity bitmaps), we add a domain
ID in each SIT entry (representing one segment) to indicate
the ownership of the segment. To avoid updating sharing
between SIT entries of different domains, we store the on-
disk SIT entries in METADB. The key of a SIT item is the
combination of a flag sit, the segment ID, and a checkpoint

version number (e.g., sit:0:1 for segment 0 in version 1). The
version number is used for roll-back recovery to the latest
consistent checkpoint. The value of a SIT item is the segment
entry. As for NAT, the NAT entries from different domains
may co-locate in the same block as NAT originally adopts
per-entry allocation granularity. Instead, AUGEFS allocates
NAT entries in a block granularity. In such doing, a NAT
block can only contain entries belonging to the same domain,
which avoids block sharing when persisting NAT entries.
Meanwhile, AUGEFS uses two in-memory radix trees for
SIT and NAT separately in each domain to accelerate their
lookup. Since the contents in SIT and NAT are partitioned into
different domains, the per-domain radix trees bring little extra
memory overhead as they only index a subset. Through this
partition, different domains nearly share no data structures,
which mitigates their contention significantly. AUGEFS still
adopts multi-head logging to support log-structured writing,
where each domain keeps data logs and node logs. Note that
AUGEFS maintains one active data segment and one active
node segment to accept new updates for each domain.
Garbage Collection. The garbage collection of AUGEFS first
selects the domain with the highest garbage ratio. Then,
AUGEFS performs garbage collection on the selected domain,
including victim selection and block identification and migra-
tion. The garbage collection granularity is the segment whose
SIT maintains a validity bitmap for detecting the valid blocks.
After all valid blocks are migrated, the selected segment is
registered as a free segment candidate. It finally becomes free
after a checkpoint and can be allocated by domains again.
Crash Consistency and Recovery. AUGEFS uses checkpoint
to provide a consistent recovery point after a crash. Each
domain can do its own checkpoint as it manages its own
SIT, NAT, SSA, and other metadata (e.g., current active
segment information) in both in-memory and on-disk data
structures, reducing contention on the global checkpoint
lock. To maintain a consistent state of the whole file system
across domains (e.g., the sync operation), AugeFS performs
checkpoint on all domains that are protected by a global
lock. Although the checkpoints are executed more frequently,
the size of each checkpoint is smaller as each domain is
only responsible for its own data checkpoint. For consistency
between metadata and data, AUGEFS uses the ordered mode
that persists data and node blocks first and then updates
the inode. Different from the serial recovery in F2FS,
AUGEFS runs the recovery procedure in parallel for each
domain to accelerate its recovery. After a sudden power-off,
AUGEFS rolls back to the latest consistent checkpoint and
performs roll-forward recovery on the data and node logs.
Discussion. Since AUGEFS adopts a hash-based static parti-
tion approach, it inherits a general limitation from the partition
approach: access skewness across domains, which can make
AUGEFS degenerate to F2FS in the worst case. Several
optimizations [59], [61], [74] can be used to mitigate this
limitation. For example, we can adopt a dynamic partition
with file ownership migration between domains to avoid access
skewness, and we leave it as the future work. Note that there is

Data Block IO Node Block IODevice

CPU Wait Wait

Device

CPU

Vanilla

Async

Data Pre Node Pre

Wait

Data Block IO
Node Block IO

End
Block Submit
Block Finish

Fig. 8: Asynchronous Data Stack for Fsync

no resource contention due to skewness in AUGEFS because
each domain allocates resources (e.g., segments) on demand
and AUGEFS does not reserve space for each domain. Ad-
ditionally, AUGEFS makes it easier to eliminate dependence
completely as it assigns one file only to one domain, and one
file operation only involves one domain.

B. Asynchronous IO Stack for Fsync

Current LFSs such as F2FS and Max employ the roll-
forward recovery that only writes data blocks and their di-
rect node blocks to enhance fsync performance. However,
ensuring crash consistency requires data blocks to be durable
before node blocks, which leads to intrinsic dependencies.
Consequently, this mechanism underutilizes the multi-head
logging design and cannot fully exploit the device bandwidth.
AUGEFS designs an asynchronous IO stack for fsync that
updates data and node blocks in parallel. Fig. 8 shows the
fsync paths of vanilla F2FS and AUGEFS. Vanilla F2FS first
prepares the write of data blocks, including getting node
blocks, allocating data blocks, refreshing SIT, etc. Then, it
submits the data block IO and waits for completion. After that,
F2FS prepares the write of node blocks, including finding dirty
node blocks, setting the fsync flag, etc. Then, it submits the
node block IO and waits for completion. AUGEFS overlaps
the data block IO and node block IO to reduce latency by
utilizing the waiting time. After the data blocks are submitted
to the device, AUGEFS begins to prepare and submit the node
blocks. Finally, it waits for their completion together.

This naive design may bring inconsistency. When meeting
a sudden crash, the data blocks may be lost while the node
blocks have been persisted, whose indexes may point to
garbage data. To handle this, we add a durable write version
number (write ver) for per-CPU core. We reserve a small
area at the end of PMR for write ver and each CPU core
occupies 64 Bytes (several KBs totally). Before submitting
the node blocks, the thread fetches write ver of its running
CPU core. It then adds a special flag (fsync), write ver, and its
running CPU ID inside direct node blocks. After the data block
IO is finished, write ver is increased. Since PMR is byte-
addressable and low-latency, the version number can be up-
dated with little overhead. The concurrency of this procedure
is protected by a per-CPU lock. In the roll-forward recovery,
AUGEFS collects the direct node blocks having the special
flag, fetches the write ver and CPU ID, and compares them
with the corresponding write ver on PMR. If equal or greater,
the data blocks may not have been persisted, and the node
block can be dropped. If less, the node block can be used for

recovery. The asynchronous IO stack does not compromise the
crash consistency and keeps the same consistency guarantee
with the roll-forward recovery of F2FS. It only accelerates the
data persistence path in fsync and improves device utilization.

VII. EVALUATION

In this section, we present evaluation results for AUGEFS.
We first use a set of microbenchmarks to evaluate the basic
performance of AUGEFS. Then, we show the performance of
AUGEFS under the macrobenchmark Filebench [21] and the
real-world application LevelDB [22]. Finally, we evaluate the
overhead of the control plane of AUGEFS under multi-process
workloads, and conduct a performance breakdown as well as
sensitivity analysis for AUGEFS.
Experiment Setup. We conduct all experiments on a server
with two 24-core Intel(R) Xeon(R) Platinum 8260 CPUs,
which runs CentOS 7 with Linux kernel version 4.19.11.
Hyper-threading is disabled. The machine is equipped with
256GB DRAM, 512GB Optane persistent memory (PM), a
375GB Intel P4800X SSD, and a 2TB Seagate HDD.
Implementation. AUGEFS mainly consists code segment,
heap, and stack. We implement AUGEFS in the userspace as a
dynamic linker library to be shared among multiple processes,
which is mapped into a fixed address space by modifying
the linker. For heap, AUGEFS uses a shared heap on top
of a memory-mapped file with using a simple and efficient
allocator [41]. For stack, AUGEFS creates a new stack in its
address space for new threads using AUGEFS [25]. We imple-
ment a manager process, which is responsible for registration.
Application threads communicate with the manager process
for getting permission to access AUGEFS (map the shared
heap and stack). We assume the address range of AUGEFS is
enough (e.g., 1TB) and rarely used, and we can further modify
the kernel to reserve the address range. It intercepts POSIX
IO calls [42] and requires little modifications to applications.

Since there is no available product with PMR, we reserve
256MB Optane PM to emulate it that can maximize the perfor-
mance of AUGEFS, and we also evaluate performance under
limited PMR (§VII-F). Note that the 256MB size of PMR
is reasonable as previous works [32], [45], [47]. To emulate
PCIe latency, we add a 900ns [67], [80] software delay for per
64 Bytes PM accessing. We reserve a fixed SSD area (50GB
by default) for METADB and build a simple file system for
METADB to access it in userspace like TopFS in SpanDB [11].
A global space allocator between METADB and data man-
agement leaves as future work. Since SPDK works poorly
for mutliple processes [11], AUGEFS uses the performance-
similar NVMeDirect [38] to access NVMe SSDs.
Compared Systems: We compare AUGEFS with six FSs:
Ext4 [4], F2FS [10], Max [52], TableFS [34], Strata [42],
and uFS [59]. Ext4 is a popular and widely-used journaling
FS. F2FS and Max are two state-of-the-art LFSs for SSDs.
TableFS first adopts LSM-KVS to store metadata. Strata is a
log-structured and cross-media FS involving PM and SSD. uFS
is a recent high-performance userspace FS for SSDs. Except
AUGEFS, other FSs are not explicitly designed for PMR.

We argue that only using PMR to build scalable metadata
operations atop them is not direct: i) The size of PMR is
limited, which is not sufficient to store all the metadata for an
entire FS. ii) PMR tends to have high latency through PCIe,
making it challenging to maintain complex data structures.

A. Microbenchmarks

Metadata Performance. We conduct six microbenchmarks
to measure the throughput and latency under different thread
counts. They create empty files (create) or directories (mkdir),
delete empty files (unlink) or directories (rmdir), rename direc-
tories (rename), and iterate directories (readdir). Each thread
performs metadata operations in private directories followed
by fsync for persistence and executes 1M operations with a
dir-width 10, where one directory has 10K files approximately.
We add another compared system, AUGEFS-roc, which is the
same as AUGEFS except using RocksDB to replace METADB.
Fig. 9 shows the results.

For metadata updates (Fig. 9 (a-e)), AUGEFS performs best
generally, outperforming other systems by 34× on average.
It also scales well with increasing thread count, while others
only scale to 8-12 threads. Simply using LSM-KVS to store
metadata (AUGEFS-roc) can also bring some improvement
but it suffers from the false sharing problem as in §II-C.
AUGEFS adopts parallel request processing and fine-grained
parallel WAL to handle this, which bring up to 35× im-
provement than AUGEFS-roc. Note that the rmdir operation
invokes the delete interface in MetaDB. The delete in MetaDB
behaves similarly to put except its value is the delete flag.
uFS performs better than others except AUGEFS because it
avoids coordination with logical journaling [59]. However, it
meets the bottleneck in high thread count because it only uses
one thread for directory operations. Max performs worse than
F2FS because the submitting of its node or data blocks is
serial even in different logs, but F2FS can batch metadata
updates and submit them together. Ext4 performs poorly due
to a centralized journal design. Strata has an outstanding and
scalable performance in low thread count since it logs process-
private updates in PM using the operation log pattern. How-
ever, it scales worse for two reasons. First, its digest operation
brings double write amplification. Second, the socket-based
communication between LibFS and KernFS of Strata is slow,
which hurts performance. For readdir in Fig. 9(f), AUGEFS,
TableFS, and AUGEFS-roc exhibit suboptimal performance
because they require more block reads to retrieve values. Ext4
or F2FS stores the dentries of the same directory to contiguous
blocks. However, the FSs based on LSM-KVS may place data
in different SSTs and scattered blocks. This problem can be
mitigated by re-inserting the KVS of the same directory [40] to
place them in the same data blocks of one SST. uFS behaves
worst because it has only one work thread to handle read-
dir and its communication overhead is heavy for read-intensive
operations. We do not evaluate readdir and rename for Strata
because it does not support readdir and can not run rename for
multiple threads. For latency, we select mkdir and readdir and
show their results in Fig. 9(g) and 9(h). AUGEFS has the

 1

 10

 100

 1000

 0 4 8 12 16 20 24

T
hr

ou
gh

pu
t

(k
op

s/
s)

of Threads

Ext4 F2FS

(a) Create Throughput

 1

 10

 100

 1000

 0 4 8 12 16 20 24
of Threads

Max TableFS

(b) Unlink Throughput

 1

 10

 100

 1000

 0 4 8 12 16 20 24
of Threads

AugeFS-roc Strata

(c) Mkdir Throughput

 1

 10

 100

 1000

 0 4 8 12 16 20 24
of Threads

uFS AugeFS

(d) Rmdir Throughput

 1

 10

 100

 1000

 0 4 8 12 16 20 24T
hr

ou
gh

pu
t

(k
o
ps

/s
)

of Threads

(e) Rename Throughput

 0.1

 1

 10

 100

 0 4 8 12 16 20 24T
hr

ou
gh

pu
t

(m
o
ps

/s
)

of Threads

(f) Readdir Throughput

 1

 10

 100

 1000

 0 4 8 12 16 20 24

L
at

en
cy

 (
u
s)

of Threads

(g) Mkdir Latency

 0.1

 1

 10

 100

 0 4 8 12 16 20 24
of Threads

(h) Readdir Latency

Fig. 9: Performance of Metadata Operations

 0

 0.5

 1

 1.5

4 8 16 32 64 128

T
hr

ou
gh

pu
t

(G
B

/s
)

of Write Size (KB)

Ext4
F2FS

(a) Single-Thread Write Throughput

 0

 100

 200

4 8 16 32 64 128

L
at

en
cy

 (
us

)

of Write Size (KB)

Ext4
F2FS
Max

(b) Single-Thread Write Latency

 0

 0.5

 1

 1.5

 0 4 8 12 16 20 24

T
hr

ou
gh

pu
t

(G
B

/s
)

of Threads

Max
AugeFS-syn

(c) Multi-Thread Write Throughput

 0

 150

 300

1 4 8 16 24

L
at

en
cy

 (
us

)

of Threads

uFS
AugeFS-syn

(d) Multi-Thread Write Latency

 0

 1.5

 3

 0 4 8 12 16 20 24

T
hr

ou
gh

pu
t

(G
B

/s
)

of Threads

uFS
AugeFS

(e) Multi-Thread Read Throughput

 0

 50

 100

1 4 8 16 24

L
at

en
cy

 (
us

)

of Threads

AugeFS

(f) Multi-Thread Read Latency

Fig. 10: Performance of Data Operations

lowest latency for mkdir, which increases little even in high
thread count. However, other systems have an increasing
latency, up to 21×. For readdir, Ext4, F2FS, and Max have the
lowest latency, and AUGEFS has a stable but higher latency.
Data Performance. We design three microbenchmarks to
measure the read/write throughput and latency, and each thread
performs on a private 4GB file. We add another compared
system AUGEFS-syn, which is the same as AUGEFS but
without the asynchronous IO stack. Strata is not compared
due to fairness because it stores data in a large-capacity PM
while AUGEFS only uses small-size PMR as the WAL log
for metadata. First, single-thread write results are shown in
Fig. 10(a) and 10(b). During the test, each thread issues

append writes followed by fsync while varying the write size.
AUGEFS exhibits 40% (than AUGEFS-syn)∼2.7× (than Ext4)
higher throughput and its latency decreases by 27% (than
AUGEFS-syn)∼69% (than Ext4) on average against other
systems. Due to its userspace architecture, AUGEFS eliminates
kernel software overhead and accesses SSDs in userspace.
Additionally, AUGEFS adopts an asynchronous IO stack for
fsync operations, which parallels the direct node blocks and
data blocks writing and brings 40% higher throughput than
AUGEFS-syn. As the write size increases, the benefits become
less because more IOs are concentrated on data blocks. uFS
performs better than kernel file systems because it adopts
the userspace high-performance SPDK [94]. Second, multiple-
thread write results are shown in Fig. 10(c) and 10(d), where
multiple threads issue append write followed by fsync with
4KB block size. AUGEFS exhibits 20% (than AUGEFS-
syn)∼2.8× (than Ext4) higher throughput and its latency de-
creases by 14% (than AUGEFS-syn)∼72% (than Ext4) on av-
erage against other systems on average. AUGEFS can quickly
utilize the bandwidth of SSDs and the device IO becomes the
major bottleneck when meeting high thread counts. Ext4 has
the worst performance because it only uses a separate thread to
dispatch the journal blocks for consistency. uFS has a scalable
throughput in low thread count but meets the bottleneck after
12 threads due to its limited number of server threads. Max has
a lower throughput than AUGEFS because it suffers from ker-
nel software overhead, competitive submitting locks, and the
serialization between the node blocks and data blocks. Third,
multi-thread read results are shown in Fig. 10(e) and 10(f),
where multiple threads read their private files randomly with
4KB block size. AUGEFS achieves the best performance since
the data is served directly from userspace, while most of
the time is spent on device IO. Through Ext4, F2FS and
Max have a closer performance than AUGEFS because they
can almost fully exploit the device bandwidth. uFS scales
worse for the reasons below. First, its client cache has little
improvement for non-skew random access patterns and we
disable it for fairness. Second, the limited server threads and

 0

 100

 200

 0 4 8 12 16 20 24

T
h

ro
ug

h
pu

t
(k

op
/s

)

of Threads

Ext4 F2FS

(a) Fileserver

 0

 100

 200

 0 4 8 12 16 20 24
of Threads

Max

(b) Varmail

 0

 100

 200

 0 4 8 12 16 20 24
of Threads

uFS

(c) Webserver

 0

 300

 600

 900

 0 4 8 12 16 20 24
of Threads

AugeFS

(d) Webproxy

Fig. 11: Performance of Filebench

 0

 50

 100

rw ws wo rw ws wo

Single-Thread Multi-Thread

T
hr

ou
gh

pu
t

(k
op

s/
s)

of Workloads

Ext4 F2FS Max uFS

(a) Throughput

 0

 0.5

 1

 1.5

sw rr sw rr

Single-
Thread

Multi-
Thread

T
h

ro
ug

h
p

u
t

(m
o

p
s/

s)

of Workloads

AugeFS

(b) Throughput

Fig. 12: Throughput of Different Workloads on LevelDB

high communication overhead become the bottleneck.

B. Macrobenchmark: Filebench

We use four workloads (Fileserver, Varmail, Webserver,
and Webproxy) from the Filebench to evaluate AUGEFS.
Fig. 11 shows the results. Generally, AUGEFS performs the
best under all four workloads. AUGEFS outperforms other
file systems by 60% to 1× for Fileserver, 50% to 92% for
Varmail, 15% to 37% for Webserver, and 24% to 46% for
Webproxy. Specially, for write-intensive and fsync-intensive
workloads (Fileserver and Varmail), AUGEFS has more evi-
dent performance improvement because of its optimizations
for metadata and data scalability. For read-intensive work-
loads (Webserver and Webproxy), all scale well, except uFS
which only performs better in low thread count. AUGEFS has
a higher read performance due to all-userspace operations,
which avoids system calls and kernel IO stack overhead.

C. Real-World Application: LevelDB

Here we evaluate the performance of AUGEFS using the
real-world application LevelDB [22], which is widely used in
cloud environments. We run LevelDB’s db bench on different
file systems and issue 1 million operations with a value
size of 1 KB for each thread. We choose five workloads:
random write (rw), write sync (ws), overwrite (wo), sequential
write (sw), and random read (rr). We run them using one
thread (Single-Thread) and 16 threads (Multi-Thread), and the
results are shown in Fig. 12. AUGEFS achieves the highest
throughput across all file systems across all workloads. In
particular, for random write, AUGEFS outperforms 36%, 33%,
30%, and 23% than Ext4, F2FS, Max, and uFS respectively.

D. Multiple-Process Workloads

We show the ability of AUGEFS to support multi-process
sharing by letting multiple processes execute setxattr to the
same file, which requires acquiring and releasing the inode

 0.01

 0.1

 1

 10

 0 4 8 12 16 20 24T
h
ro

ug
h
p
ut

 (
m

o
p
s/

s)

of Clients

AugeFS uFS

(a) Throughput

 0.1

 1

 10

 100

 1000

 0 4 8 12 16 20 24

L
at

en
cy

 (
u
s)

of Clients

Strata F2FS

(b) Latency

Fig. 13: Cross-Process Sharing Workloads

 1

 10

 100

 1000

1 2 4 8 16 24T
hr

ou
g
hp

ut
 (

ko
p
s/

s)

of Threads

Base +PMR

(a) Mkdir With Fsync

 0

 1

 2

1 2 4 8 16 24T
h
ro

ug
h
pu

t
(m

o
p
s/

s)

of Threads

+ParaPre AugeFS

(b) Mkdir Without Fsync

Fig. 14: AUGEFS Metadata Performance Breakdown

lock. setxattr is a control plane operation by setting an ex-
tended attribute value for a file. We compare AUGEFS against
three file systems with different architectures to evaluate their
control plane overhead: Strata uses socket-based IPC for
the control plane (digest), uFS uses the shared ring buffer,
and F2FS uses syscall to execute control plane operations.
Fig. 13(a) and 13(b) show the throughput and latency results.
For Strata, its LibFS has to acquire and release the lock
by communicating with KernFS. Its control plane performs
worst as it requires two expensive IPCs and has to write
twice for metadata. As for uFS, its server processes delegate
all the operations without requiring lock, but it performs
worse because only one worker thread can handle metadata
operations, which becomes the bottleneck. Though F2FS can
enter the shared kernel address space to acquire and release
locks, it suffers from expensive kernel trapping overhead.
AUGEFS has the highest throughput and lowest latency due
to its shared address space in userspace.

E. Metadata Performance Breakdown

To evaluate the source of AUGEFS performance gains in
metadata performance, we show the throughput breakdown
in Fig. 14. Base represents using origin RocksDB. +PMR
represents only using PMR to store WAL files. +ParaPre
represents only using parallel request processing while using
multiple WAL files without PMR on SSDs. AUGEFS repre-
sents using both parallel request processing and fine-grained

 0

 0.5

 1

 1.5

0 1 2 3 4 5 10

T
h
ro

ug
h
p
ut

 (
m

o
p
s/

s)

of Latency(us)

(a) Mkdir Throughput

 0

 0.5

 1

 1.5

0.5 1 2 4 8 16 32 64 128
of PMR Size (MB)

(b) Mkdir Throughput

 0

 0.5

 1

 1.5

1 2 4 8 12 16 20
of Operations Per Thread (M)

(c) Mkdir Throughput

 1

 10

 100

 1000

 0 4 8 12 16 20 24

T
h

ro
ug

h
p

ut
 (

ko
p

s/
s)

of Threads

Auge-roc Auge-span AugeFS

(d) Mkdir Throughput

Fig. 15: AUGEFS Sensitivity Analysis of Metadata Management

 0

 0.5

 1

1 2 4 8 16 24T
hr

o
ug

h
p

ut
 (

G
B

/s
)

of Domains

(a) Write Throughput

 0

 1

 2

 0 4 8 12 16 20 24
of Threads

F2FS-90
F2FS-97

AugeFS-90
AugeFS-97

(b) Write Throughput

Fig. 16: AUGEFS Sensitivity Analysis of Data Management

parallel WAL. We select two workloads: mkdir with/without
fsync, where mkdir with fsync occurs in a strong consistency
scenario [56] by issuing fsync after each metadata operation.
For mkdir with fsync (Fig. 14(a)), only using PMR to store
WAL files brings little benefit as it suffers from the grouping
overhead severely. Meanwhile, serial WAL write is also the
bottleneck. Only using ParaPre also has little benefit as it re-
quires flushing all per-core WAL files. AUGEFS performs best
because it eliminates grouping overhead and can update WAL
persistently in parallel. For mkdir without fsync (Fig. 14(b)),
AUGEFS performs worse than +ParaPre as AUGEFS persists
the WAL due to the persistence feature of PMR, while +Para-
Pre only writes WAL files in the page cache initially. Even
without persistence, Base has a much poorer performance.

F. Sensitivity Analysis

Latency of PMR: Fig. 15(a) shows how the latency of
PMR affects the metadata performance. Note that our previous
experiments use Optane PM + latency (900ns) to emulate
PMR. Here we add more extra latency (1-10us) for per-
64Bytes and measure the mkdir with fsync throughput with
24 threads. As the added latency increases from 1us to 5us,
the throughput decreases by 14%, 29%, 40%, 49%, and 54%.
When the added latency is 10us, the throughput decreases by
70%. However, it still outperforms other file systems by at
least 3.9× (AUGEFS-roc) and up to 31× (Max).
Size of PMR: Fig. 15(b) illustrates how the size of PMR
affects the metadata performance with the same workload in
§VII-A with 24 threads. We vary the PMR data area size
from 512KB to 128MB. When only using 512KB PMR, the
throughput decreases by about 25.3%, however, it still outper-
forms other file systems by at least 11×. As its size increases,
more time for migrating WAL data to SSD is hidden, resulting
in improved metadata throughput. When the size reaches
128MB, AUGEFS reaches the highest throughput (similar to

256MB case that stores all WAL on PMR) because it nearly
does not require waiting for migrating WAL data to SSD.
Size of Metadata Workload: Fig. 15(c) shows how the size
of the metadata workload (aging the LSM-KVS) affects the
metadata performance. Here, we add more operations to each
thread (from 1M to 20M) and expand the metadata area on
SSD, and the dataset size is about from 4.6GB to 92GB. Even
for the largest dataset we used, the metadata performance only
drops less than 5%, where compactions occur frequently. We
also increase the number of compaction threads (2 by default)
in MetaDB and find it brings little performance improvement,
which indicates compaction is not the bottleneck here.
Different Kinds of LSM-KVS: We compare METADB with
one state-of-the-art LSM-KVS SpanDB [11], which uses
SPDK to accelerate the WAL writes and data IOs. We measure
the mkdir with fsync throughput with up to 24 threads.
Fig. 15(d) shows the results, where Auge-roc and Auge-
span only use RocksDB and SpanDB to replace METADB in
AUGEFS. Though Auge-span shows higher throughput (up
to 3×) than Auge-roc, it underperforms AUGEFS for below
reasons. First, while SpanDB assigns WAL writes to the spe-
cialized logger threads, it still retains the group logging mecha-
nism, suffering from thread synchronization overhead. Second,
SpanDB offers asynchronous interfaces to increase the request
depth that helps improve throughput. However, the file system
metadata operations are executed synchronously, thus gaining
limited benefit from the asynchronous request processing.
Number of Domains: Fig. 16(a) shows how the number of
domains affects the write performance in AUGEFS with the
same workload in §VII-A with 24 threads. As the number
of domains increases, its throughput scales well until 16
because the locking contention is becoming less and less. The
performance bottleneck has shifted from the FS to the device
after 16, i.e., the device bandwidth is saturated fully. Note that
AUGEFS currently focuses on building a FS on one storage
device like common local file systems [4], [10], [52].
High Volume Utilization: Fig. 16(b) illustrates how the
volume utilization affects the LFS performance. We populate
the tested file systems (F2FS and AUGEFS) with two levels of
volume utilization, 90% and 97%, and then execute a random-
write workload on them to incur frequent garbage collections.
Each thread performs 4KB random overwrites to its own file,
followed by an independent fsync operation. At 90% utiliza-
tion, AUGEFS outperforms F2FS, benefiting from its domain-
based file organization that enhances the scalability of data
operations. However, at 97% utilization, AUGEFS experiences

a performance drop due to insufficient free space to support
all domains. In this scenario, AUGEFS can also outperform
F2FS due to its better scalability.

G. Recovery Time

Different from F2FS, AUGEFS deploys per-domain recov-
ery, which requires recovering for each domain. However, the
sizes of each checkpoint for roll-back recovery and the roll-
forward data are smaller as each domain is responsible for its
own data. After the execution of the multiple-thread append
workloads (each thread writes 1GB data with 24 threads), as
in Fig. 10(c), we inject an immediate crash and measure the
recovery time when remounting the file systems. The time
of F2FS and AUGEFS are 2.6s and 393ms, respectively. The
recovery procedure of F2FS is executed serially, requiring a
longer time. AUGEFS could execute the recovery procedure in
parallel because each domain is independent. Compared with
F2FS, the recovery of AUGEFS has to compare the versions
on node blocks and per-CPU core due to the asynchronous IO
stack, however, it brings little overhead because the compari-
son only costs several CPU cycles.

VIII. RELATED WORK

Userspace File Systems. Many userspace file systems for
NVMs (including SSD and persistent memory) are proposed,
such as Moneta-D [7], Aerie [87], Arrakis [76], Strata [42],
DevFS [37], ZoFS [17], SplitFS [33], EvFS [95], uFS [59],
Simurgh [66], ArckFS [99]. EvFS [95] is a library FS lacking
multi-process support. The trio architecture of ArckFS is
specifically designed for persistent memory. It only maps the
data pages of one file into the application’s address space
for isolation and relies on the page table to restrict PM
accesses for protection, which is not applicable to SSDs.
uFS, ZoFS, and Simurgh are the most related architecture
to AUGEFS. uFS brings additional CPU overhead, and its
shared-memory-based IPC is less efficient than AUGEFS.
ZoFS and Simurgh map PM into the address space of each
application and do not duplicate data or metadata by caching
it in DRAM [66]. Simurgh provides high security for PM
with the hardware modification and cannot be directly applied
to SSDs. Both AUGEFS and ZoFS use MPK to prevent stray
writes, however, their file system architectures are different.
ZoFS only maps the PM and requires the leases or locks on
the slow PM for concurrency between processes. AUGEFS is
more likely to the kernel address space and multiple processes
share AUGEFS like sharing kernel address space. Thus, we
can implement the concurrency control, page cache, and
background threads in AUGEFS directly.
SSD File System Metadata Optimization. ReconFS [63],
Otter [60], and BlzFS [78] aim to improve the efficiency of
metadata operations. Though ReconFS and BlzFS can mitigate
the metadata write amplification by recording metadata in a
temporary area, they still face the amplification when applying
metadata to block devices (i.e., SSDs). TableFS [34] first
proposes building a file system on the key-value store, and it
simply uses LevelDB and does not consider the performance

issues. KVFS [85] is based on a transactional variation of
LSM-KVS, called VT-Tree, and it still uses the group updating
mechanism. BetrFS [89] is an in-kernel file system to take
advantage of Bε-tree. However, it has heavy software overhead
because it is a stacked file system built on Ext4. KEVIN [40]
improves file system performance by offloading indexing
capability to the storage hardware based on an LSM-tree based
KVSSD. However, the computer power in SSD is weak.
LSM-KVS WAL Optimization. SpanDB [11] enables multi-
ple concurrent WAL writes. However, it still keeps the group
updating mechanism. p2KV S [65] partitions the global KV
space into a set of independent subspaces. However, it suffers
from grouping overhead in the single subspace and requires
flushing all WALs for metadata persistence, which brings
write amplification of WAL. SineKV [48] leverages the CMB
feature of SSDs to store WAL for crash consistency, but it
ignores the grouping overhead.
SSD File System Data Optimization. AIOS [44] proposes an
asynchronous IO stack to accelerate read and write operations.
SpanFS [35] distributes files and directories to partitions for
scalability. However, they are for the journaling FS, and
SpanFS has to solve the metadata consistency across partitions.
Max [52] is the state-of-the-art kernel LFS but suffers from
poor metadata performance and submitting lock contention.
IPLFS [39] reduces the garbage collection of F2FS, and
exF2FS [71] enhances transaction support of F2FS. They are
orthogonal to AUGEFS and can be applied to AUGEFS. [14]
gives an analysis for the performance degradation of fsync in
F2FS. There are also works building LFS on ZNS SSDs [23],
[43], [77], and our techniques can also be applied to ZNS
SSDs. [43] leverages the write pointer of the ZNS SSD to
design the order-preserving recovery mechanism.

IX. CONCLUSION

This paper presents AUGEFS, a high-performance and scal-
able userspace log-structured file system targeting modern
SSDs. Building a userspace LFS on modern SSDs faces
three challenges: inefficient control plane, limited metadata
scalability, and underutilized device bandwidth. Correspond-
ingly, AUGEFS proposes three techniques to address these
challenges: protected and shared address space for file systems,
a scalable LSM-tree based metadata store, and domain-based
file organization with an asynchronous IO stack for fsync op-
eration. We compare AUGEFS against six file systems. The
evaluation results show the high efficiency of AUGEFS to
achieve both metadata and data scalability.

ACKNOWLEDGMENT

We thank our shepherd, Yu Hua, and the anonymous review-
ers for their constructive comments and insightful suggestions.
This work is supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences under grant
No. XDB44030200, the Major Research Plan of the National
Natural Science Foundation of China (Grant No. 92270202).

REFERENCES

[1] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,
Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. Flatflash: Exploit-
ing the Byte-Accessibility of Ssds Within a Unified Memory-Storage
Hierarchy. In Proc. of ACM ASPLOS, 2019.

[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory
R. Ganger, and George Amvrosiadis. File Systems Unfit as Distributed
Storage Backends: Lessons from 10 Years of Ceph Evolution. In Proc.
of ACM SOSP, 2019.

[3] ARM. Developer guide: Arm memory domains, 2001. http://infocent
er.arm.com/help/.

[4] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-
ger, Alex Tomas, and Laurent Vivier. The New Ext4 Filesystem: Current
Status and Future Plans. In Proc. of the Linux Symposium, 2021.

[5] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,
Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2B-SSD: The Case
for Dual, Byte-and Block-Addressable Solid-State Drives. In Proc. of
ACM/IEEE ISCA, 2018.

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-
hankar Chandhiramoorthi, and Diego Didona. SILK: Preventing Latency
Spikes in Log-Structured Merge Key-Value Stores. In Proc. of USENIX
ATC, 2019.

[7] Adrian M Caulfield, Todor I Mollov, Louis Alex Eisner, Arup De, Joel
Coburn, and Steven Swanson. Providing Safe, User Space Access to
Fast, Solid State Disks. In Proc. of ACM ASPLOS, 2012.

[8] Chan, Helen HW and Li, Yongkun and Lee, Patrick PC and Xu, Yinlong.
Hashkv: Enabling Efficient Updates in KV Storage via Hashing. In Proc.
of USENIX ATC, 2018.

[9] Yun-Sheng Chang and Ren-Shuo Liu. OPTR : Order-Preserving Trans-
lation and Recovery Design for SSDs with a Standard Block Device
Interface. In Proc. of USENIX ATC, 2019.

[10] Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho.
F2FS: A New File System for Flash Storage. In Proc. of USENIX FAST,
2015.

[11] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu.
SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid
Storage. In Proc. of USENIX FAST, 2021.

[12] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Optimistic Crash
Consistency. In Proc. of ACM SOSP, 2013.

[13] Vijay Chidambaram, Tushar Sharma, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Consistency without ordering. In Proc. of
USENIX FAST, 2012.

[14] Gyeongyeol Choi and Youjip Won. Analysis for the Performance
Degradation of fsync () in F2FS. In Proc. of ACM IC4E, 2018.

[15] Jonathan Corbet. Memory protection keys, 2015. https://lwn.net/Articl
es/643797/.

[16] Daejun Park and Dongkun Shin. iJournaling: Fine-Grained Journaling
for Improving the Latency of Fsync System Call. In Proc. of USENIX
ATC, 2017.

[17] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and Protection in the ZoFS User-Space NVM File System.
In Proc. of ACM SOSP, 2019.

[18] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. Evolu-
tion of Development Priorities in Key-value Stores Serving Large-scale
Applications: The RocksDB Experience. In Proc. of USENIX FAST,
2021.

[19] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
Software for Persistent Memory. In Proc. of ACM EuroSys, 2014.

[20] Facebook. RocksDB. http://rocksdb.org/.
[21] Filebench. Filebench 1.4.9.1. https://github.com/filebench/filebench.
[22] Google. LevelDB. https://github.com/google/leveldb.
[23] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang.

ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage
Zone Compaction. In Proc. of USENIX OSDI, 2021.

[24] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. A File is Not a File: Understanding the
I/O Behavior of Apple Desktop Applications. In Proc. of ACM SOSP,
2011.

[25] Mohammad Hedayati and Spyridoula Gravani. Hodor: Intra-Process
Isolation for High-Throughput Data Plane Libraries. In Proc. of USENIX
ATC, 2019.

[26] IBM. Power isatm version 3.0 b, 2017.
[27] Intel. Intel and Micron Produce breakthrough Memory Technol-

ogy. https://newsroom.intel.com/news-releases/intel-and-micron-produ
ce-breakthrough-memory-technology/.

[28] Intel. Intel Optane SSD P4800X Specification. https://www.intel.com/
content/www/us/en/products/sku/129969/intel-optane-ssd-dc-d4800x-s
eries-375gb-2-5in-pcie-2x2-3d-xpoint/specifications.html.

[29] Intel. Intel-SSD-DC-P4510-Review. https://www.storagereview.com/re
view/intel-ssd-dc-p4510-review.

[30] Intel. Intel® Optane™ SSD P5800X Series. https:
//www.intel.com/content/www/us/en/products/docs/memory-storage/sol
id-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html.

[31] Intel. Intel(R) Optane(TM) DC Persistent Memory.
//https://www.intel.com/content/www/us/en/architecture-and-technol
ogy/optane-dc-persistent-memory.html, 2019.

[32] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. Improving SSD Lifetime with Byte-Addressable Metadata.
In Proc. of ACM MEMSYS, 2017.

[33] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. SplitFS: Reducing Software
Overhead in File Systems for Persistent Memory. In Proc. of ACM
SOSP, 2019.

[34] Kai Ren, Garth Gibson. TABLEFS: Enhancing Metadata Efficiency in
the Local File System. In Proc. of USENIX ATC, 2013.

[35] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai
Ma, and Jinpeng Huai. SpanFS: A Scalable File System on Fast Storage
Devices. In Proc. of USENIX ATC, 2015.

[36] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-Suk Kee, and
Moonwook Oh. Durable Write Cache in Flash Memory SSD for
Relational and NoSQL Databases. In Proc. of ACM SIGMOD, 2014.

[37] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,
Yuangang Wang, Jun Xu, and Gopinath Palani. Designing a True Direct-
Access File System with DevFS. In Proc. of USENIX FAST, 2018.

[38] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDirect:
A User-space I/O Framework for Application-specific Optimization on
NVMe SSDs. In Proc. of USENIX HotStorage, 2016.

[39] Juwon Kim, Minsu Kim, Muhammad Danish Tehseen, Joontaek Oh,
and YouJip Won. IPLFS:Log-Structured File System without Garbage
Collection. In Proc. of USENIX ATC, 2022.

[40] Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee,
Bryan S Kim, and Sungjin Lee. Modernizing File System through In-
Storage Indexing. In Proc. of USENIX OSDI, 2021.

[41] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System.
https://github.com/ut-osa/strata.

[42] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System. In
Proc. of ACM SOSP, 2017.

[43] Euidong Lee, Ikjoon Son, and Jin-Soo Kim. An Efficient Order-
Preserving Recovery for F2FS with ZNS SSD. In Proc. of ACM
HotStorage, 2023.

[44] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W Lee,
and Jinkyu Jeong. Asynchronous I/O Stack: A Low-latency Kernel I/O
Stack for Ultra-Low Latency SSDs. In Proc. of USENIX ATC, 2019.

[45] Sangjin Lee, Alberto Lerner, André Ryser, Kibin Park, Chanyoung
Jeon, Jinsub Park, Yong Ho Song, and Philippe Cudré-Mauroux. X-
SSD: A Storage System with Native Support for Database Logging and
Replication. In Proc. of ACM SIGMOD, 2022.

[46] Andrew W Leung, Shankar Pasupathy, Garth Goodson, and Ethan L
Miller. Measurement and Analysis of Large-Scale Network File System
Workloads. In Proc. of USENIX ATC, 2008.

[47] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smal-
done, and Grant Wallace. Nitro: A Capacity-Optimized SSD Cache for
Primary Storage. In Proc. of USENIX ATC, 2014.

[48] Fei Li, Youyou Lu, Zhe Yang, and Jiwu Shu. SineKV: Decoupled
Secondary Indexing for LSM-based Key-Value Stores. In Proc. of IEEE
ICDCS, 2020.

[49] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and Ding
Yuan. ctFS: Replacing File Indexing with Hardware Memory Translation
through Contiguous File Allocation for Persistent Memory. In Proc. of
USENIX FAST, 2022.

[50] Xiaojian Liao. Max: A Multicore-Accelerated File System for Flash
Storage. https://github.com/thustorage/max.

http://infocenter.arm.com/help/
http://infocenter.arm.com/help/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
http://rocksdb.org/
https://github.com/filebench/filebench
https://github.com/google/leveldb
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://www.intel.com/content/www/us/en/products/sku/129969/intel-optane-ssd-dc-d4800x-series-375gb-2-5in-pcie-2x2-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/129969/intel-optane-ssd-dc-d4800x-series-375gb-2-5in-pcie-2x2-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/129969/intel-optane-ssd-dc-d4800x-series-375gb-2-5in-pcie-2x2-3d-xpoint/specifications.html
https://www.storagereview.com/review/intel-ssd-dc-p4510-review
https://www.storagereview.com/review/intel-ssd-dc-p4510-review
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
//https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
//https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
//https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/ut-osa/strata
https://github.com/ut-osa/strata
https://github.com/thustorage/max

[51] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Write dependency
disentanglement with HORAE. In Proc. of USENIX OSDI, 2020.

[52] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Max: A Multicore-
Accelerated File System for Flash Storage. In Proc. of USENIX ATC,
2021.

[53] Xiaojian Liao, Youyou Lu, Zhe Yang, and Jiwu Shu. Crash Consistent
Non-Volatile Memory Express. In Proc. of ACM SOSP, 2021.

[54] Xiaojian Liao, Zhe Yang, and Jiwu Shu. RIO: Order-Preserving and
CPU-Efficient Remote Storage Access. In Proc. of ACM EuroSys, 2023.

[55] Seung-Ho Lim, Hyun Jin Choi, and Kyu Ho Park. Journal Remap-
Based FTL for Journaling File System with Flash Memory. In Proc. of
Springer HPCC, 2007.

[56] Zhen Lin, Lingfeng Xiang, Jia Rao, and Hui Lu. P2CACHE: Exploring
Tiered Memory for In-Kernel File Systems Caching. In Proc. of USENIX
ATC, 2023.

[57] Linux. Memory Managament. https://www.kernel.org/doc/html/v5.8/
x86/x86 64/mm.html.

[58] Jing Liu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and
Sudarsun Kannan. File Systems as Processes. In Proc. of USENIX
HotStorage, 2019.

[59] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye, Sudarsun Kannan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Scale and
Performance in a Filesystem Semi-Microkernel. In Proc. of ACM SOSP,
2021.

[60] Yubo Liu, Hongbo Li, Yutong Lu, Zhiguang Chen, and Ming Zhao.
An Efficient and Flexible Metadata Management Layer for Local File
Systems. In Proc. of IEEE ICCD, 2019.

[61] Hongjun Lu, Jeffrey Xu Yu, Ling Feng, and Zhixian Li. Fully Dynamic
Partitioning: Handling Data Skew in Parallel Data Cube Computation.
Distributed and Parallel Databases, 2003.

[62] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakr-
ishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Wis-
ckey: Separating Keys from Values in SSD-conscious Storage. In Proc.
of USENIX FAST, 2017.

[63] Youyou Lu, Jiwu Shu, and Wei Wang. ReconFS: A Reconstructable File
System on Flash Storage. In Proc. of USENIX FAST, 2014.

[64] Youyou Lu, Jiwu Shu, and Jiacheng Zhang. Mitigating Synchronous I/O
Overhead in File Systems on Open-Channel SSDs. ACM Transactions
on Storage (TOS), 2019.

[65] Ziyi Lu, Qiang Cao, Hong Jiang, Shucheng Wang, and Yuanyuan Dong.
p2KVS: a Portable 2-dimensional Parallelizing Framework to Improve
Scalability of Key-Value Stores on SSDs. In Proc. of ACM EuroSys,
2022.

[66] Nafiseh Moti, Frederic Schimmelpfennig, Reza Salkhordeh, David
Klopp, Toni Cortes, Ulrich Rückert, and André Brinkmann. Simurgh:
A Fully Decentralized and Secure NVMM User Space File System. In
Proc. of ACM SC, 2021.

[67] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W Moore. Understanding PCIe
Performance for End Host Networking. In Proc. of ACM SIGCOMM,
2018.

[68] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen, and
Jason Flinn. Rethink the Sync. In Proc. of USENIX OSDI, 2006.

[69] NVMe. NVM Express. https://nvmexpress.org/.
[70] NVMe. NVMe 1.4 Spec Revision 1.4c. https://nvmexpress.org/wp-con

tent/uploads/NVM-Express-1 4c-2021.06.28-Ratified.pdf.
[71] Oh, Joontaek and Ji, Sion and Kim, Yongjin and Won, Youjip. exf2fs:

Transaction support in log-structured filesystem. In Proc. of USENIX
FAST, 2022.

[72] OHSHIMA, S. Scaling Flash Technology to Meet Application Demands.
In Keynote 3 at Flash Memory Summit, 2018.

[73] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel
MPK). In Proc. of USENIX ATC, 2019.

[74] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware Auto-
matic Database Partitioning in Shared-Nothing, Parallel OLTP Systems.
In Proc. of ACM SIGMOD, 2012.

[75] PCIe. PCI Express Base Specification Revision 3.0. https://picture.ic
zhiku.com/resource/eetop/wHiSRjtztkeJLnVc.pdf.

[76] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
Operating System is the Control Plane. In Proc. of USENIX OSDI, 2014.

[77] Devashish R Purandare, Sam Schmidt, and Ethan L Miller. Persimmon:
An Append-only ZNS-first Filesystem. In Proc. of IEEE ICCD, 2023.

[78] Wenjie Qi, Zhipeng Tan, Ziyue Zhang, Jing Zhang, Chao Yu, Ying Yuan,
and Shikai Tan. BlzFS: Crash Consistent Log-structured File System
Based on Byte-loggable Zone for ZNS SSD. In Proc. of IEEE ICCD,
2023.

[79] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. Pebblesdb: Building Key-Value Stores Using Fragmented Log-
Structured Merge Trees. In Proc. of ACM SOSP, 2017.

[80] Yujie Ren, Changwoo Min, and Sudarsun Kannan. CrossFS: A Cross-
Layered Direct-Access File System. In Proc. of USENIX OSDI, 2020.

[81] Drew Roselli, Jacob R Lorch, and Thomas E Anderson. A Comparison
of File System Workloads. In Proc. of USENIX ATC, 2000.

[82] Mendel Rosenblum and John K Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Transactions on Computer
Systems (TOCS), 1992.

[83] SAMSUNG. Samsung SZ1735a Z-SSD. https://download.semicondu
ctor.samsung.com/resources/brochure/Samsung%20SZ1735a%20U.2%
20Z-SSD.pdf.

[84] SAMSUNG. Ultra-Low Latency with Samsung Z-NAND SSD.
https://www.samsung.com/us/labs/pdfs/collateral/Samsung Z-NAND

Technology Brief v5.pdf.
[85] Pradeep Shetty, Richard Spillane, Ravikant Malpani, Binesh Andrews,

Justin Seyster, and Erez Zadok. Building Workload-Independent Storage
with VT-Trees. In Proc. of USENIX FAST, 2013.

[86] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, Efficient
In-process Isolation with Protection Keys. In Proc. of USENIX Security,
2019.

[87] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M Swift.
Aerie: Flexible File-System Interfaces to Storage-Class Memory. In
Proc. of ACM EuroSys, 2014.

[88] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu.
InfiniFS: An Efficient Metadata Service for Large-Scale Distributed
Filesystems. In Proc. of USENIX FAST, 2022.

[89] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet,
Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif
Walsh, Michael Bender, Martin Farach-Colton, Rob Johnson, Bradley
C. Kuszmaul, and Donald E. Porter. BetrFS: A Right-Optimized Write-
Optimized File System. In Proc. of USENIX FAST, 2015.

[90] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek Oh, Seongbae
Son, Jooyoung Hwang, and Sangyeun Cho. Barrier-Enabled IO Stack
for Flash Storage. In Proc. of USENIX FAST, 2018.

[91] Hobin Woo, Daegyu Han, Seungjoon Ha, Sam H Noh, and Beomseok
Nam. On Stacking a Persistent Memory File System on Legacy File
Systems. In Proc. of USENIX FAST, 2023.

[92] Kan Wu, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Towards an Unwritten Contract of Intel Optane SSD. In Proc. of
USENIX HotStorage, 2019.

[93] Zhe Yang, Youyou Lu, Erci Xu, and Jiwu Shu. CoinPurse: A Device-
Assisted File System with Dual Interfaces. In Proc. of ACM/IEEE DAC,
2020.

[94] Ziye Yang, James R Harris, Benjamin Walker, Daniel Verkamp, Chang-
peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and
Luse E Paul. SPDK: A Development Kit to Build High Performance
Storage Applications. In Proc. of IEEE CloudCom, 2017.

[95] Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii. EvFS: User-
level,Event-Driven File System for Non-Volatile Memory. In Proc. of
USENIX HotStorage, 2019.

[96] Qiang Zhang, Yongkun Li, Patrick PC Lee, Yinlong Xu, Qiu Cui, and
Liu Tang. UniKV: Toward High-Performance and Scalable KV Storage
in Mixed Workloads via Unified Indexing. In Proc. of IEEE ICDE,
2020.

[97] Shawn Zhong, Chenhao Ye, Guanzhou Hu, Suyan Qu, Andrea Arpaci-
Dusseau, Remzi Arpaci-Dusseau, and Michael Swift. MadFS: Per-File
Virtualization for Userspace Persistent Memory Filesystems. In Proc.
of USENIX FAST, 2023.

[98] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey
Tao, Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. XRP: In-Kernel Storage Functions with EBPF. In Proc.
of USENIX OSDI, 2022.

[99] Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian Zhang, Sudarsun
Kannan, and Sanidhya Kashyap. Enabling High-Performance and Secure
Userspace NVM File Systems with the Trio Architecture. In Proc. of
ACM SOSP, 2023.

https://www.kernel.org/doc/html/v5.8/x86/x86_64/mm.html
https://www.kernel.org/doc/html/v5.8/x86/x86_64/mm.html
https://nvmexpress.org/
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4c-2021.06.28-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4c-2021.06.28-Ratified.pdf
https://picture.iczhiku.com/resource/eetop/wHiSRjtztkeJLnVc.pdf
https://picture.iczhiku.com/resource/eetop/wHiSRjtztkeJLnVc.pdf
https://download.semiconductor.samsung.com/resources/brochure/Samsung%20SZ1735a%20U.2%20Z-SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/Samsung%20SZ1735a%20U.2%20Z-SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/Samsung%20SZ1735a%20U.2%20Z-SSD.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf

	Introduction
	Background and Motivation
	Modern SSDs and Userspace LFS
	Inefficient Control Plane in Userspace FS
	Poor Metadata Scalability
	Underutilized Device Bandwidth of Data Operations

	Design Overview
	AugeFS Architecture
	Efficient Control Plane in AugeFS
	Protection for Shared User Address Space
	Put It Together

	MetaDB
	Parallel Request Processing
	Fine-Grained Parallel WAL

	Data Management
	Domain-Based File Organization
	Asynchronous IO Stack for Fsync

	Evaluation
	Microbenchmarks
	Macrobenchmark: Filebench
	Real-World Application: LevelDB
	Multiple-Process Workloads
	Metadata Performance Breakdown
	Sensitivity Analysis
	Recovery Time

	Related Work
	Conclusion
	References

