
Fully Harnessing the Performance Potential of
DRAM-less Mobile Flash Storage

Jaesun No12

Samsung Electronics
Suwon, Republic of Korea

jaesun.no@csi.skku.edu

Gyusun Lee2

Sungkyunkwan University
Suwon, Republic of Korea

gyusun.lee@csi.skku.edu

Youngsok Kim
Yonsei University

Seoul, Republic of Korea
youngsok@yonsei.ac.kr

Jinkyu Jeong3

Yonsei University
Seoul, Republic of Korea

jinkyu@yonsei.ac.kr

Abstract—Mobile flash-based storage devices, such as universal
flash storage (UFS), provide high-performance block I/O services
in mobile systems. However, the performance of mobile flash
storage is yet limited as such devices cannot afford a large
internal DRAM due to various constraints, such as limited form
factor, power/cost budget, etc. Host Performance Booster (HPB)
has been proposed to overcome this performance limitation by
borrowing and utilizing the rich host DRAM. Nonetheless, HPB is
yet suboptimal since it accelerates only read I/Os and is oblivious
to write I/Os and flash-memory-inherent operations, such as
garbage collection (GC) and wear-leveling.

In this paper, we propose high-performance UFS (HP-UFS)
that fully harnesses the performance potential of DRAM-less
mobile flash storage devices. Unlike previous work, HP-UFS
accelerates all types of storage operations from read/write I/Os to
GC and wear-leveling. HP-UFS borrows but proactively manages
the host DRAM to accelerate all the storage operations. HP-UFS
preserves storage metadata, such as logical-to-physical mapping,
and valid page bitmap/count up-to-date in the host DRAM;
these metadata help to improve the storage performance by
reducing the overheads of accessing these metadata. Through
our experimental evaluations with various micro-benchmark
workloads, we demonstrate the superior performance of HP-
UFS in terms of random I/O and GC. With real-world workload
scenarios, the proposed HP-UFS device outperforms HPB by up
to 39% (without GC) and 88% (with GC), and shows only a
4% average performance gap compared to an ideal flash storage
device with plenty of DRAM.

Index Terms—mobile flash storage, universal flash storage, host
performance booster, garbage collection

I. INTRODUCTION

Flash memory-based mobile storage devices, such as em-
bedded MultiMediaCard (eMMC) [1] and universal flash stor-
age (UFS) [2], have driven the advancement of mobile and
embedded computing systems. As compared to traditional hard
disk drives, flash memory offers various attractive benefits
for mobile computing systems, such as high performance,
high shock resistance, low power consumption, small form
factor, etc. These benefits allow flash memory to become
the secondary storage of mobile computing systems, such
as smartphones, tablet personal computers. Mobile and tablet
devices have already surpassed desktop computers in terms of
market share [3]. Alongside smartphones, other devices like

1This work was done when he was at Sungkyunkwan University.
2These authors contributed equally to this work.
3Jinkyu Jeong is the corresponding author.

smartwatches, auto parts, and home automation devices also
utilize mobile flash storage devices.

Mobile flash storage differs from that of desktop or server
systems in that mobile flash storage is DRAM-less [1], [2], [4],
[5]. Mobile systems are limited in terms of form factor, power
consumption, and manufacturing cost. Therefore, mobile flash
storage devices are not easy to afford a large capacity DRAM
installed. Unfortunately, without DRAM, mobile flash storage
cannot deliver its full performance potential [4]–[7]. The flash
translation layer (FTL) needs to manage necessary metadata
in DRAM for high performance. Such metadata include a
logical-to-physical (L2P) mapping table and valid page bitmap
and counter [8]. These metadata are accessed frequently
while performing storage operations, such as read/write I/Os,
garbage collection (GC), and wear-leveling. When these meta-
data are stored in fast memory, such as DRAM, the storage
performance can be enhanced. However, when stored in slow
memory, such as flash memory, their access overhead can
negatively impact and thus degrade storage performance [4],
[5]. SRAM is available in most flash-based storage devices
but its benefit for metadata access is limited due to its small
capacity (e.g., a few MBs). Once the working set of metadata
exceeds the capacity of the SRAM, their access overhead
dominates the storage performance [4], [5], [9].

To address the absence of DRAM in mobile flash storage,
one compelling approach is borrowing and utilizing host
DRAM (e.g., unified memory extension (UME) [10], [11]
and host performance booster (HPB) [5], [12]). In these
approaches, the host DRAM is used to expand the cache
of L2P mappings (in-device SRAM + a portion of host
DRAM). Consequently, storage operations can be accelerated
by storing and accessing the metadata in fast memory (host
DRAM or in-device SRAM). Among the two methods, HPB
is considered practical since it does not require hardware
modification, and all of its features can be implemented in
software (the host device driver and the FTL firmware). In
practice, HPB is adopted by a commercial product, the Google
Pixel 3 smartphone in 2018 with the Linux kernel version
4.9.96 [4], [13]. In HPB, the host device driver and the FTL
firmware exchange necessary data by piggybacking those in
UFS command/response pairs [12], [13].

While HPB has demonstrated good performance with read-
intensive workloads [4], [5], it is incomplete in addressing

all of the benefits of utilizing host DRAM. Especially, HPB
is oblivious to write I/Os, GC and wear-leveling operations.
In mobile workloads, write I/Os are also important as they
affect the user latency of data persistence operations (e.g.,
fsync()) [14]–[17]. Also, slow handling of write I/Os may
affect read I/Os due to the contention in the device. In addition,
flash memory GC can cause unexpected long delays because
it can increase the latency of handling forthcoming block I/O
requests [18]–[20]. Without the support for these operations,
the use of host DRAM is suboptimal and is not able to
deliver the full performance potential of the underlying flash
memory. For example in UFS or HPB, when GC occurs, the
flash memory is busy reading L2P mappings for checking the
validness of pages. This not only delays the completion of GC
but also incurs contention with foreground activities. These
overheads ultimately lead to a degraded user experience due
to worsen responsiveness of mobile systems.

In this paper, we propose high-performance UFS (HP-UFS)
that fully harnesses the performance potential of DRAM-less
flash-based mobile storage devices. HP-UFS utilizes the host
DRAM to accelerate not only read I/Os but also write I/Os
and even GC and wear-leveling operations. To this end, the
host device driver and the FTL firmware work in harmony
to exchange necessary metadata. Especially, HP-UFS aggres-
sively caches modified L2P mappings in the host DRAM. This
allows the opportunity to save the flash memory bandwidth
which should have been used for L2P mapping persistence
operations. In addition, the aggressive caching of modified
L2P mappings allows to manage the two important metadata
structures, valid page bitmap and valid page count in the
host DRAM. This allows HP-UFS to reduce the overheads
of the flash memory GC and wear-leveling operations, once
otherwise the flash memory bandwidth should be consumed
for identifying the validness of pages involved in GC. At
the same time, HP-UFS preserves the crash consistency of
modified L2P mappings by its carefully-designed L2P map-
ping writeback mechanism. Finally, HP-UFS adopts a simple
yet effective least-recently-used (LRU) replacement for cached
L2P mappings to preserve the metadata working-set in the host
DRAM while keeping the host DRAM usage low.

We implemented the HP-UFS prototype using the FEMU
SSD emulator [21]. We configured the flash memory archi-
tecture and low-level parameters to build a UFS emulator,
which shows almost identical performance to real UFS 3.0
hardware [22]. Then, we implemented the prototype of HP-
UFS upon the UFS emulator and the HP-UFS host device
driver in the Linux kernel. The evaluation results using the
Flexible I/O tester (FIO) [23] micro-benchmark show that HP-
UFS outperforms HPB by up to 78% and 70% in terms of
random write performance without GC and with GC, respec-
tively. To measure the impact of HP-UFS on user experience,
we have tested the performance of SQLite database. HP-UFS
outperformed HPB in terms of SQL transaction latency [24];
HP-UFS has shown up to 88% latency reduction when GC
occurs, and without GC, HP-UFS still has shown up to 39%
latency reduction. The trace-driven evaluation of mobile appli-

cation workloads also has shown performance improvement by
HP-UFS. Especially, with real-world workloads, HP-UFS has
shown only 4% performance degradation as compared to an
ideal UFS device with plenty of DRAM. These results indicate
that HP-UFS almost fully harnesses the performance potential
of the DRAM-less mobile flash storage.

This paper has the following contributions:
• We identify the performance problems of existing mobile

DRAM-less storage that utilizes the host DRAM (i.e.,
UME [11] and HPB [5]).

• We propose a practical approach to accelerate all types of
storage operations (read, write, GC, and wear-leveling) in
the DRAM-less mobile flash storage.

• We demonstrate the effectiveness of the proposed scheme
by evaluating our scheme on both synthetic and real-world
mobile workloads.

II. BACKGROUND AND MOTIVATION

A. Background

Metadata in Flash-based Storage Systems. Flash memory
provides various advantages, such as high performance, high
shock resistance, etc., for realizing and improving mobile com-
puting systems. However, flash memory has inherent limita-
tions (e.g., erase-before-write and asymmetric I/O unit), which
prevents flash memory from replacing traditional disks. There-
fore, a software layer called flash memory translation layer
(FTL) plays a crucial role in aligning the storage interface
of flash memory to that of disks. FTL manages an important
metadata structure called logical-to-physical (L2P) mapping
table that translates a logical page address (LPA) seen by host
(e.g., file systems) to a physical page address (PPA). Although,
the performance and cost of L2P mapping table change greatly
depending on the mapping scheme used [8], [25]–[29], page-
level mapping [26] is a de-facto standard mapping scheme
because of its high performance on both sequential and random
workloads as well as high GC efficiency [9], [30], [31]. In
page-level mapping FTL, every 4 KB page is translated by the
L2P mapping table. This makes one important disadvantage
that the cost of the mapping table is high. For example, a
1 TB SSD requires a 1 GB mapping table (4 byte entry for
each 4 KB page).

In addition, FTL needs to manage other metadata structures,
valid page bitmap and valid page count for efficient GC and
wear-leveling operations. The valid page bitmap keeps track
of the validity of all physical pages in flash memory. Hence,
the bitmap is used to identify pages to preserve and pages to
erase during GC. Similarly, the valid page count keeps track
of the number of valid pages in each block, aiding in the
selection of a victim block for GC. These metadata structures
play a crucial role in enhancing the efficiency of GC and wear-
leveling operations thereby improving the overall performance
of flash-based storage systems [32].
Metadata Management in DRAM-less Mobile Storage. In
flash-based storage systems, managing such metadata struc-
tures in fast memory, such as DRAM, is important in storage
performance. Desktop or enterprise SSDs can afford a large

Fig. 1. Overview of L2P mapping management in DRAM-less mobile storage
(UFS and HPB).

Fig. 2. Overview of read I/O path for DRAM-less mobile storage.

capacity DRAM considering its form factor and power/cost
budgets, so they can store and access these metadata in in-
device DRAM. However, mobile flash storage devices, such
as UFS and eMMC, are DRAM-less and have only a limited-
capacity SRAM (of a few hundred kilobytes [33]). Various
constraints, such as form factor, power/cost budget, etc.,
prevent the installation of a large-capacity DRAM in mobile
flash storage.

Given the limited-size SRAM and the absence of DRAM
in UFS, storing the entire L2P mapping table in memory
is not feasible. Therefore, FTLs of UFS adopt a caching
approach, where only a portion of the mapping table is cached
in SRAM [9], [12]. Figure 1 illustrates this concept. The
L2P mapping table is divided into multiple segments, with
each segment occupying a flash memory page. Typically, each
L2P segment is 4 KB in size, accommodating 1,024 L2P
mapping entries of 4 bytes each. When FTL processes an
I/O request from the host, it checks whether necessary L2P
mapping entries are cached in SRAM. If not, the FTL needs to
fetch the missing L2P entries from the flash memory and then
handle the host requests. Therefore, the storage performance
is largely affected by the caching behavior; sequential access
shows decent performance while random access shows poor
due to high L2P mapping cache misses followed by slow flash
memory accesses [7], [22].
Borrowing Host DRAM for Mobile Flash Storage. The
state-of-the-art approach to overcoming the absence of DRAM
in mobile flash storage is utilizing the large-capacity host
DRAM. In Figure 1, a portion of host DRAM is used to
cache L2P mapping entries thereby improving the L2P cache
hit ratio. As a result, storage performance can be improved

by avoiding costly flash memory access for retrieving L2P
mappings. For UFS mobile storage, unified memory extension
(UME) [10], [11], and host performance booster (HPB) [5],
[12] have been proposed to utilize host DRAM for expanding
the L2P mapping cache of FTL. Among them, HPB is con-
sidered practical since it requires no modification of existing
hardware, and all the features can be implemented in software,
the host device driver and the FTL firmware. Therefore, in
2018, Google’s Pixel 3 was equipped with HPB-enabled UFS
with the HPB device driver in Linux kernel 4.9.96 [13].

Figure 2 illustrates how UFS and HPB handle host I/O
requests. Initially, in UFS, when the host-side UFS driver
receives an I/O request, it dispatches the request to the UFS
device (1⃝ in the figure). The FTL within the UFS device
then performs the necessary address translation of LPA to
PPA. To accomplish this, the FTL searches for the required
L2P mapping entry from the L2P segment cache stored in
SRAM (2⃝). If the L2P entry is not present in the cache, the
FTL retrieves the corresponding L2P segment from the NAND
flash memory and caches it in the SRAM (3⃝). Subsequently,
it proceeds to read the relevant NAND flash page using the
retrieved PPA (4⃝) and transmits the page to the host (5⃝).

In HPB, when the device driver receives an I/O request, it
checks the HPB host memory cache that stores L2P segments
first (A⃝). If the required L2P mapping is found, the I/O request
is tagged with the corresponding PPA and sent to the HPB
device (B⃝). The FTL then uses the received PPA to access the
NAND flash memory directly without any address translation
step (C⃝). Finally, it transfers the response back to the host
(D⃝). Consequently, HPB can avoid one (slow) flash memory
access during the read operation as compared to UFS, when
the required L2P mapping is found from L2P mapping cache
in the host memory. On the other hand, when a desired L2P
mapping is not found, the HPB driver initiates an L2P segment
read command to read and cache an L2P segment from the
(slow) flash memory. When this L2P cache miss occurs, the
read latency would be worse than the original UFS. However,
HPB may show better read performance than UFS because of
using a larger memory for the L2P mapping cache.

B. Motivation

HPB has improved the read performance significantly, by
utilizing the host DRAM, which in turn reduces L2P cache
misses [4], [5]. However, it lacks accelerating other major
storage operations, such as writes, GC and wear-leveling. In
mobile workloads, not only reads but also writes are important
for user experience [14]–[17], [34]–[38]. Moreover, when GC
occurs in flash-based storage, it significantly aggravates the
user experience due to GC-induced long latencies in storage
operations [18], [19], [39]. The idea of borrowing and utilizing
the rich host DRAM is vital for DRAM-less mobile flash
storage systems. At the same time, it is necessary to consider
and accelerate all types of storage operations.

Specifically, HPB unnecessarily pollutes flash memory
bandwidth because of its partial support of storage operations.
Whenever L2P mappings are modified, HPB invalidates the

cached L2P segment in the host memory [5], [12]. Subsequent
reads to the same LBA or adjacent LBAs within the invalidated
L2P segment experience a long delay of fetching the L2P
segment from flash memory [4]. Since L2P segment invali-
dation can occur in many ways, such as host writes, GC and
wear-leveling, it may unexpectedly affect user experience by
increasing tail latency. This extra L2P segment retrieval can be
caused by not only host write request but also any operations
modifying L2P mappings (e.g., GC and wear-leveling).

The change of L2P mappings incurs more than the L2P
invalidation-related costs in DRAM-less flash storage systems.
Whenever L2P mappings are modified, changes should be
persisted in the flash memory. Since mobile flash storage
has a limited amount of buffers for L2P mappings, L2P
segments are frequently read, modified and written back to
reflect changed L2P entries. Considering the limitation of
form factor, power/cost budgets of mobile storage, solutions
like provisioning super capacitors [40] or other non-volatile
memory are impractical [41]. HPB has exploited the rich host
DRAM but still limits the use of the host DRAM as a cache
of L2P mappings and does not accommodate modified L2P
mappings (i.e., no L2P mapping buffering). Therefore, with
write-intensive workloads, the flash memory bandwidth can be
largely consumed by the read-modify-write of L2P segments.

Finally, DRAM-less flash storage systems experience the
hardship of performing GC and wear-leveling operations.
These operations are designated to keep the flash memory
healthier and to adhere to the erase-before-write characteristic.
Their essential internal operation is identifying the validity of
pages. Without DRAM, it is impractical to manage valid page
bitmap per each flash block because this metadata size overfits
the available SRAM of mobile flash storage. For example, a
1 TB SSD requires 128 MB of valid page bitmap, assuming
one bit per 4 KB page. It cannot fit in a few hundred KBs
SRAM of mobile flash storage [33]. As an alternative, the
GC operation identifies the validity of pages by inspecting the
spare area of flash page and the L2P mapping table; if a flash
page is valid, its PPA should be the value of the corresponding
LPA in the L2P mapping table. The problem in DRAM-less
flash storage system is that the L2P mapping is not in fast
memory but in slow flash memory. Therefore, GC and wear-
leveling operations incur significant overhead of reading L2P
segments from flash memory.

Consequently, borrowing and utilizing the rich host DRAM
is a reasonable approach to overcoming the limitation of
DRAM-less mobile storage devices. However, current so-
lutions support only read operations and lack supporting
write and GC/wear-leveling operations, therefore cannot fully
harness the performance potential of all the flash memory
hardware installed.

III. DESIGN OF HP-UFS
A. Overview

We propose HP-UFS (high-performance UFS) that fully
harnesses the performance potential of mobile flash-based
storage devices. Similar to previous work, HP-UFS borrows

and utilizes the rich host DRAM. However, different from
previous approaches that have focused only on improving
read performance, HP-UFS accelerates all I/O operations in
mobile flash-based storage devices, hence achieving high
performance.

HP-UFS utilizes the host DRAM in a more proactive way
than the previous work [5]. In the previous work, whenever an
L2P mapping is modified due to flash memory writes by host
write request, GC or wear-leveling, the cached L2P segment
is invalidated from host memory. Then, any forthcoming I/O
requests require additional (slow) flash memory access to
retrieve the invalidated L2P segment again, which not only
prolongs the latency of I/O requests but also incurs bandwidth
contention on flash memory chip/channels. However in HP-
UFS, whenever L2P mappings are changed by flash memory
writes, the changed L2P mapping information is actively
propagated to the host DRAM. Consequently, the host can
have its cached L2P mappings up-to-date and therefore, can
avoid costly L2P mapping retrieval from flash memory [5].

HP-UFS’s proactive L2P mapping management not only
reduces overheads associated with invalidating and fetching
up-to-date L2P mappings but also allows new opportunities
to manage valid page bitmap and valid page count in the
host DRAM. Since the valid page bitmap is too large to
fit in the SRAM of mobile flash storage, the FTL had no
choice but to perform GC and wear-leveling inefficiently as
explained in Section II-B. In HP-UFS, however, whenever L2P
mappings are changed, the changed information is proactively
propagated from the flash storage device to the host DRAM.
Consequently, the host DRAM can also manage valid page
bitmap and valid page count by utilizing the L2P change
information received from the storage device. By using these
two metadata structures, GC and wear-leveling operations can
be performed with low cost; flash memory accesses are unnec-
essary during the page validity identification. As a result, HP-
UFS can perform GC as fast as the flash-based storage systems
with plenty of DRAM (e.g., desktop or enterprise SSDs).
Therefore, the tail latency of user experience can be greatly
reduced because of reduced GC/wear-leveling operation time.

To achieve the benefits mentioned above, HP-UFS faces two
important challenges: (1) preserving the consistency of L2P
mappings between the host DRAM and the storage device
while keeping the performance high, and (2) allowing nec-
essary data exchange between the host device driver and the
storage device under the limitations of the UFS protocol [2].
The first challenge is crucial because if any mapping changes
made in the storage device are synchronously propagated to
the host driver, the consistency is kept high but the storage
performance will be degraded due to waiting times enforced
by synchronous data exchange. Hence, it is necessary to allow
the host driver and the storage device to perform independently
while preserving the consistency of L2P mappings. HP-UFS
carefully address this by introducing a sequence number. All
new L2P mappings are assigned a sequence number and
relevant data structures also inherit this. The sequence number
is used to identify up-to-date L2P mappings or other metadata.

Fig. 3. The overall design and sequences of host write request in HP-UFS.

This allows buffering and out-of-order transmission of L2P
modification information.

The second challenge is also important in devising a scheme
for mobile storage systems. The UFS protocol is a de-facto
standard mobile storage interface providing high-performance
non-volatile storage with low power consumption and form
factor [10]. It is not advisable to implement a radical shift in
storage hardware or protocols. Hence, the proposed scheme
can be implemented upon the exploitation of the existing pro-
tocol (i.e., UFS) while expanding the ability to utilize the host
DRAM for accelerating storage operations. HP-UFS exploits
the piggybacking of information in the command/response
of the UFS protocol, which is already exploited in previous
work [4], [5]. HP-UFS introduces only a few more commands
to facilitate the metadata exchange between the device driver
in the host and the device FTL firmware.

B. Handling Host Write Request

When a write I/O request arrives at the HP-UFS driver, it
first checks whether the associated L2P segment is cached
in the L2P segment cache. If not, the driver issues an L2P
segment read command first, and then sends the actual write
command to the device (1⃝ in Figure 3). Here, the driver
does not wait for the read of the L2P segment since write
commands do not need PPAs. When the HP-UFS device
controller receives a write command, it allocates a new PPA for
the write and assigns a new sequence number. Then, it issues
a NAND flash page write (2⃝). After the write completes, it
inserts the new L2P entry (i.e., a modified L2P mapping) into
an L2P log buffer, which buffers modified L2P segments in in-
device SRAM until those are sent to the host DRAM (3⃝). In
the example in the figure, LPA 1 is assigned new PPA C and its
sequence number is 20. After that, the controller relays the L2P

entry to the host driver by piggybacking it in an I/O response
(4⃝). When the host receives the L2P entry, the entry is staged
temporarily in an L2P reorder buffer. The L2P reorder buffer
is a staging area of L2P entries transferred from the HP-
UFS storage device. L2P entries in the reorder buffer are not
processed immediately because L2P entries can be reordered
by FTL due to load imbalance between flash chips/channels, or
because an L2P segment to which a modified L2P mapping
entry should be applied is not cached in the L2P segment
cache yet. The L2P change entries are processed in the order
of sequence number and are reflected to cached L2P segments
(5⃝). Hence, each L2P entry is applied to the associated L2P
segment, valid page bitmap and valid page count. In the figure,
the L2P segment 0 modifies its mapping of LPA 1 from B to C.
The valid page bitmap and count are also modified accordingly
(C is the fourth page of block 0, B is the first page of block
1). At last, the host sequence number is updated to that of the
latest L2P entry processed in the host driver. In the figure, the
host sequence number is changed from 19 to 20 since the L2P
mapping related to the new sequence number is applied to its
L2P mapping cache.

Each host write request might be expected to be accom-
panied by its response with a piggybacked L2P entry, hence
having 1-to-1 relationship which eases the synchronous update
of L2P segment in the host DRAM for every host writes.
However, the synchronous L2P segment update is impossible
because a lot more L2P changes are made for several reasons
and their transfer to the host DRAM can be backlogged if the
response-piggybacking method is solely used.

The reason for having a lot more L2P changes is twofold:
FTL-induced bulk flash writes and host write requests that
span on multiple flash blocks. The former is intuitive in that
these operations produce many L2P entries. The latter is made
by one host write request with a large I/O size and if a
current block cannot host the entire write request, another flash
block is assigned and in this case the PPA for the host write
becomes non-contiguous. Therefore, one host write request
requires two L2P entries. HP-UFS utilizes all response types
of request commands to piggyback L2P entries. However, it is
not guaranteed to transfer all L2P entries in time to the host
HP-UFS driver. Consequently, the L2P entry transfer can be
backlogged.

To this end, HP-UFS introduces multi L2P entry transfer
command, a new command that fetches multiple L2P entries at
once. In our prototype, this command fetches new L2P entries
in batch. When the storage firmware experiences back logging
in its L2P log buffer, it sets a hint for the host driver to issue
the multi L2P entry transfer command. This approach helps
improve the speed of L2P transfer from the storage device to
the host driver.

C. Handling Host Read Request

HP-UFS handles the host read request by utilizing the
cached L2P mappings in the L2P segment cache (1⃝ in
Figure 4). When an L2P entry for a desired logical block is
cached in the host memory, its PPA is used to issue an HPB

Fig. 4. The sequences of host read request in HP-UFS.

read I/O command to the storage device, which is identical to
the previous work [5], [12]. In the case of an L2P segment
miss, the host driver initiates an L2P segment read command
to fetch a missing L2P segment. After reading the segment,
the driver proceeds with the host read I/O request.

When the HP-UFS storage device receives a read command
with piggybacked PPA found in L2P segment cache (2⃝), it
checks whether the PPA is up-to-date. To achieve this, in HP-
UFS, every read command also contains the host sequence
number, which identifies the latest L2P entry the host driver
has processed (Section III-B). The host sequence number
identifies the age of the host L2P segment cache. Thus, when
the HP-UFS storage controller processes a read request, it
compares the host sequence number with those of L2P entries
in the L2P log buffer (3⃝). If an L2P entry of identical LPA of
the read command is found, the controller replaces the PPA
with the latest one from the L2P entry and then processes
the read command (4⃝), finally transmitting the data to the
host (5⃝). Consequently, even if an L2P entry propagation is
backlogged, the storage device can process the read command
with the correct PPA. It is important to note that this scanning
operation takes place in SRAM L2P log buffer, which is much
faster than the L2P segment invalidation followed by (slow)
L2P segment read in the previous work (i.e., HPB [5]).

Another usage of the host sequence number supplied during
read command processing is to determine which L2P entries
in the L2P log buffer can be safely discarded. The firmware
can identify the L2P entries in the log buffer that have been
updated in the host L2P segment cache. These entries can then
be safely removed from the L2P log buffer.

D. L2P Segment Writeback

In HP-UFS, new L2P mappings are stored in the host L2P
mapping cache, which is volatile DRAM. Whenever an L2P
mapping is changed, its L2P segment should be eventually
written in flash memory. HP-UFS reduces the frequency of
writing L2P segments since it can buffer plenty of new L2P

Fig. 5. The sequences of L2P segment writeback in HP-UFS.

mappings in the host DRAM. This characteristic is different
from that of UFS or HPB where whenever the internal SRAM
is full of new L2P mappings, they need to update L2P
segments by performing read-modify-write of L2P segments.
Hence, HP-UFS performs fewer L2P segment writes than
UFS or HPB. Nevertheless, it is necessary to write new L2P
mappings in the flash memory for the persistence of L2P
mappings.

HP-UFS supports the writeback of dirty L2P segments by
introducing an L2P segment writeback command. An L2P seg-
ment is considered dirty when it contains new L2P mappings
that are modified from those in the flash memory. Dirty L2P
segments are written back to flash memory in two ways: when
the L2P segment cache in the host memory shrinks due to
memory shortage [4], [5] or when the FTL transfers a hint
of dirty L2P segment writeback to the HP-UFS host driver.
Either way, the L2P segment writeback command is used;
one command writes one L2P segment in the flash memory.
The actual operation is similar to the host write request. The
command is accompanied by the host sequence number to
indicate the age of this L2P segment. When the L2P segment
is written on the flash memory media, its host sequence
number is also stored and is cached in SRAM. Storing the
host sequence number with an L2P segment is important to
avoid writing of stale L2P mappings.

In a normal scenario, the FTL firmware initiates the write-
back of dirty L2P segments. Figure 5 illustrates this operation
in detail. HP-UFS identifies flash blocks whose relevant L2P
mappings are not persisted in flash memory. This can be done
by recording flash blocks that have hosted new flash page
writes recently. These flash blocks are called log blocks. Each
log block has two fields, L2P segment bitmap that describes
L2P segments relevant to the flash pages in this log block,
and log block sequence number that identifies the latest L2P
mapping entry this block contains.

The device checks an L2P segment bitmap per log block
to identify L2P segments that need to be written to flash
memory (1⃝ in the figure). This check starts from the oldest
log block and examines the L2P segment bitmap to find the
L2P segments that require writing. The device firmware checks
whether the L2P segment on the flash memory is newer than
the log block by comparing their sequence numbers (2⃝). If the
L2P segment on the flash memory is newer than the log block,
the firmware skips this L2P segment. Otherwise, the firmware
sends the id of the L2P segment to the host driver (3⃝) to make
the host perform the L2P segment writeback command. This is
the case presented as the example in Figure 5. Log block 0 has
the sequence number of 20 which is newer than the sequence
number of L2P segment 0. Since L2P segment 0 is set in the
bitmap of log block 0, the FTL firmware asks the host driver
to perform the L2P segment writeback. When the host driver
issues an L2P segment writeback command, the L2P segment
is augmented with the host sequence number to indicate its
age (4⃝). The device writes the received L2P segment to the
NAND flash memory (5⃝) and updates the sequence number
of the L2P segment with the received host sequence number
(6⃝); the sequence number of L2P segment 0 is changed from
10 to 20 in the figure. This update ensures that the sequence
number of the L2P segment is synchronized with the host and
reflects the latest modification.

The L2P segment writeback is also triggered when the host
L2P segment cache needs to shrink [4], [5]. There may exist
situations where the host is under memory pressure. In this
case, the victim L2P segment is selected based on the memory
management policy [4], [5]. Then, the L2P segment writeback
command is issued if the victim segment is dirty, hence having
up-to-date L2P mappings that are not written on the NAND
flash memory. After the writeback, the victim L2P segment
is discarded to secure free memory. Notably, this writeback
operation skips processes 1⃝, 2⃝, and 3⃝ in the figure.

E. GC and Wear Leveling

In HP-UFS, we address this issue by managing valid page
bitmaps and valid page count in the host memory. When
the device needs to trigger GC, it requests the necessary
information from the HP-UFS host driver, allowing for more
efficient management of valid pages and avoiding unnecessary
flash memory accesses.

Managing the two data structures correctly is a challenging
issue. In HP-UFS, whenever there is a change in an L2P
mapping, the relevant information is encoded in an L2P entry
and transferred to the host driver. Upon processing a new L2P
entry in the host driver, the valid page bitmap and valid page
count are updated prior to reflecting the new L2P entry in
the cached L2P segment. The change of an L2P mapping
involves moving an LPA from a previous PPA to a new PPA.
The previous PPA, which is already stored in the cached
L2P segment, is used to clear the corresponding bit of the
valid page bitmap and decrease the valid page count. After
that, the new PPA in the L2P entry is used to update both
data structures. When the host driver is missing a cached

L2P segment, the new L2P entry is temporarily staged in the
reorder buffer. Once the cached L2P segment is retrieved from
the device, the host driver performs the necessary operations
to update the data structures.

When the device firmware runs out of free blocks, it triggers
GC. First, the device embeds a hint within the response. The
hint is to request the valid page bitmap of a block with the
lowest valid page count. When the host driver receives such
a hint, it sends a block number with its valid page bitmap.
When the device firmware receives them, the device performs
GC. Meanwhile, for wear-leveling the device firmware sends
the hint in a response with a particular block number. This
is because the device internally manages the program-erase
cycle of each block so as to be able to pick a flash block
for wear-leveling. In this case, the host driver sends the valid
page bitmap of the specified block. Then, the two operations
identify valid pages and copy them to a new flash block (i.e.,
log block) using the received valid page bitmap.

An important issue when the device uses the valid page
bitmap received from the host is that the bitmap may not be
accurate due to concurrent page write handling in the storage
firmware. This can affect the device performing GC on invalid
pages by potentially forwarding incorrect L2P entries to the
host driver. In general, when concurrent host writes occur for
the same LPA, the sequence number of each L2P entry can be
used to identify the order of the operations. When a host write
and GC occur almost concurrently for the same LPA, if host
write occurs after GC, this situation has no problem because
the sequence number of the host write is newer than that of
GC. However, if GC occurs after host write, this situation can
be misinterpreted as the latest logical page is at the PPA GC
has made. This is incorrect since the latest logical page is
at the PPA the host write has made. This problem happens
when GC has copied an invalid page whose invalidity is not
transferred to the host driver on time.

To address this problem, HP-UFS includes the source block
number field in the L2P entry. This field is set when the L2P
mapping is changed by GC or wear-leveling. When the host
receives and processes such L2P entries, the host driver checks
the source block number and verifies whether the source block
number matches the block number of the current cached L2P
segment. If they match, the L2P entry is reflected in the L2P
segment cache. Otherwise, the L2P entry is discarded; the
L2P change of the host write is already reflected in the L2P
segment and this PPA is the correct one. Hence, even though
the sequence number of the GC-induced L2P entry is later than
the host-write-induced L2P entry, the newer one is discarded
not to override the L2P mapping host write has made.

F. L2P Segment Cache Management

Modern mobile systems, such as smartphones, are equipped
with a substantial amount of DRAM. For instance, flagship
smartphones come with more than 12 GB of memory [42],
and mid-range phones feature 4–8 GB of memory [43].
Although these devices have a large amount of installed
DRAM, borrowing and utilizing host memory should be done

with careful consideration of its minimal impact on mobile
system workloads [4], [5].

In mobile systems, a large portion of memory is not used
by foreground applications, but rather for caching background
applications [44]–[46]. In this regard, borrowing a small
additional amount of memory may not significantly impact
the performance of foreground applications. The amount of
memory required to accelerate mobile storage I/O is relatively
small, ranging from a few to tens of MBs. This is due to the
fact that the typical I/O footprint of mobile workloads is on the
order of up to a few GBs [47], necessitating only a few MBs
for L2P mappings. Consequently, borrowing and utilizing up
to a few tens of MBs of DRAM is unlikely to cause immediate
performance degradation in foreground applications. Thus, we
believe that using a small amount of host memory to enhance
mobile storage I/O is more beneficial than allocating it for
caching background applications.

In addition, various techniques can be augmented to improve
the memory efficiency of HP-UFS. Basically, in HP-UFS,
the size of the L2P segment cache in the host memory is
configurable and the least-recently-used (LRU) replacement
is applied. Hence, when the L2P segment cache is full, the
least recently used L2P segment is evicted to secure space.
Moreover, timer-based eviction [5], [13] can also be applied,
which evicts unnecessary L2P segments eagerly to secure
more space. Finally, application or system-level hints can be
exploited for efficient L2P segment cache management as
well as the foreground application performance [4]. These
approaches are complementary to HP-UFS since the main
goal of HP-UFS is accelerating both read and write I/Os by
utilizing the host memory; in our experiment, only the LRU
replacement is applied.

G. Crash Consistency of L2P Mappings

It is important to provide the crash consistency of L2P map-
pings. HP-UFS stores new L2P mappings in volatile memory
as much as possible; a new L2P mapping is transferred from
the storage device to the host memory and is written back
when the L2P segment writeback is performed. Keeping new
L2P mappings in volatile memory is not the sole problem of
HP-UFS but the problem of UFS as well. In UFS, new L2P
mappings are buffered in SRAM. Hence, when a sudden power
failure happens, these new L2P mappings are lost. Therefore, it
is necessary to prepare a method to recover lost L2P mappings.

UFS recovers these lost L2P mappings by recording log
blocks and replaying L2P mapping changes made by log
blocks. As described in Section III-D, log blocks are flash
blocks that have recently hosted flash writes. Hence pages
in log blocks have their new L2P mappings. The UFS FTL
records log blocks in a meta block in flash memory. Therefore,
when a sudden power failure occurs, log block information in a
meta block can be used to identify log blocks and replay L2P
mapping modifications in log blocks [48], [49]. Please note
that a flash page has its LPA in its spare area; hence necessary
information for replaying is stored in the flash memory.

TABLE I
FLASH MEMORY CONFIGURATION.

SLC [51] TLC [52]
Page read latency 25 usec 60 usec

Page program latency 150 usec 550 usec
Page: 16 KB, Pages per block: 64

Blocks per chip: 8 K, Chips: 8, Plane: 2
Controller SRAM size: 1.5 MB, Over-provisioning: 15%

TABLE II
HINTS EMBEDDED IN I/O RESPONSE IN HP-UFS.

Type field in I/O response (Device → Host)
L2P segment write request Section III-D

Multi L2P entry transfer request Section III-E
Valid page bitmap transfer request Section III-E

HP-UFS also utilizes this method of recovering L2P map-
pings. In HP-UFS, it is challenging to limit the number of
log blocks since virtually HP-UFS has an unlimited amount of
memory for buffering new L2P mappings (in the host DRAM).
Instead, HP-UFS keeps the number of log blocks limited
considering the recovery time. The UFS protocol specification
defines a maximum duration for device initialization [2],
[50]. Therefore, in order to adhere to this time limit, HP-
UFS implements a restriction on the number of log blocks
that have not yet flushed their L2P segments to the NAND
flash memory. Once this limit is reached, the HP-UFS device
firmware enforces the writeback of L2P segments from the
oldest log block (Section III-D). When all the dirty L2P
segments associated with a log block are written back on the
flash memory, the log block becomes a normal block. This
ensures that the recovery process can be completed within the
specified time frame while not losing any L2P mappings. In
our evaluation, we set the number of maximum log blocks to
8; we found this is small enough to bound the device recovery
time assuming the worst case (see details in Section IV).

IV. EVALUATION

A. Methodology

As it is practically infeasible to modify the UFS firmware
of commercial off-the-shelf SSDs, we developed the prototype
of HP-UFS using FEMU [21]. The FEMU emulator is an
accurate, scalable and widely-used flash emulator capable
of emulating various types of flash-based storage systems;
more than 34 papers [53] have used FEMU to prototype
and evaluate their ideas. We carefully configured the low-
level flash parameters to make it perform like a real UFS
3.0 device [22]. Our UFS emulator consists of eight parallel
flash chips that can be accessed in parallel through two planes
and eight channels. Single-level cell flash chips are used to
store flash memory metadata, such as L2P segments. Triple-
level cell [52] flash chips are used to store user data blocks.
Table I shows the detailed parameters used in the emulator.
The UFS emulator is configured to have a 1.5 MB SRAM.
Furthermore, we modified FEMU to support demand loading-
based FTL and HPB protocols to demonstrate the effectiveness
of the HP-UFS. The SRAM is used as shared memory that is
dynamically allocated to the write buffer, L2P segment buffer,

Fig. 6. Random write performance with varying write ranges (I/O unit: 4 KB,
total I/O size: 1 GB, I/O depth: 8) (unlimited in the figure denotes a case
wherein all L2P mappings for UFS are cached in the host DRAM).

GC buffer and so on. As a result, FTL repeatedly allocates and
releases 4 KB of shared memory depending on the workload.

Since the FEMU emulator uses the non-volatile memory
express (NVMe) protocol [54], we modified the submission
and completion queues to accommodate the UFS/HPB/HP-
UFS command/response sets. The command submission entry
is modified to include 8 bytes of extra data as in HPB [5], [12].
HP-UFS uses 8 bytes to transfer PPA and host sequence num-
ber to the storage device. The completion queue entry includes
an additional 16 bytes of fields for implementing HP-UFS.
This matches the unused 16 bytes of the command response
packet of the UFS Protocol Information Unit (UPIU) [2], [50],
[55]. The extra fields in the completion entry contain 4 byte
LPA, 4 byte PPA, 2 byte source block number, 1 byte length,
and 1 byte type. The LPA, PPA, source block number and
length fields are used to transfer an L2P entry to the host
device driver. The type field is used to piggyback a hint that
triggers the reaction by the HP-UFS device driver. The list of
hints and the reaction of the device driver is summarized in
Table II. In the HP-UFS host memory, the L2P reorder buffer
has 2K 16 B entries, the valid page bitmap is 4 MB, the valid
page count is 32 KB. The size of the L2P segment cache is
configurable and the LRU replacement is applied 1.

We compared our scheme with the following schemes:
• UFS that is the baseline DRAM-less mobile flash storage.
• HPB that is the previous work that utilizes the host DRAM

but accelerates only block reads [5].
• Ideal that is an ideal flash storage device with plenty of

DRAM, hence showing no L2P mapping-related overheads.

B. Micro-benchmark Workload

We measured the basic I/O performance using the flexible
I/O tester (FIO) microbenchmark suite [23].
Random write performance. First, we evaluated the write
performance according to the size of the write range. Figure 6
shows the random write performance of each scheme, along
with the performance patterns of HP-UFS depending on the
cache size limit in host DRAM. HPB does not cache L2P
mappings for writes. HP-UFS improves the write performance
close to Ideal by leveraging DRAM to accelerate block writes,

1The source code is available at https://github.com/s3yonsei/hpufs public.

Fig. 7. Random write performance under GC (I/O unit: 4 KB, write range:
16 GB, total I/O size: 1 GB, I/O depth: 8).

and it shows a throughput improvement of up to 77% com-
pared to HPB when the write range is 16 GB. As the write
range expands, our scheme results in an increased number of
L2P segment writebacks, leading to a decrease in performance.
Furthermore, when the write range approaches the reach of
L2P cache (e.g., 20 MB cache can cover up to 20 GB of SSD
I/O range), the performance begins to decrease. However, our
scheme shows maximum efficiency as if there are no memory
constraints (HP-UFS in the figure), even when the cache size is
only 20 MB and the I/O range is 16 GB, which is large enough
to cover typical I/O footprint of mobile workloads [47].
When considering a mobile device with approximately 4GB
of DRAM [43], it suggests a performance enhancement for
datasets up to 16 GB, achieved by borrowing only 0.5% of
DRAM.
Garbage Collection (GC) performance. Next, we measured
the I/O performance under GC. To create a situation where
GC occurs, we performed a random write of 100 GB to the
storage in advance. Then, we measured the performance for
each 1 GB random write iteration and depicted the results in
Figure 7. In the first iteration, no GC takes place, leading to
maximum throughput for each scheme. The throughput has
decreased and remains stable from the second iteration due to
GC taking place in all schemes.

When GC occurs, HPB loads and retrieves L2P segments
from NAND flash memory for searching valid pages. On the
other hand, HP-UFS has no cost for searching valid pages
since it retrieves the valid page bitmap from the host HP-
UFS driver. Therefore, the throughput of HP-UFS outperforms
that of HPB by up to 70%. Unfortunately, HP-UFS cannot
reach the result of Ideal due to the interference caused by
creating new L2P mapping entries with GC and performing
L2P segment writeback operations to send them to the host.

C. Real-world Workload

To evaluate the impact of HP-UFS on user experience,
we tested the performance of HP-UFS with two real-world
workloads: SQLite and mobile application usage. We use
Mobibench [24] for evaluating the SQLite [56] workload.
For the mobile application usage workload, we collect the
traces of block I/O operations while using smartphones under
various application use scenarios, and then replay the traces.
We collected the I/O traces on a real smartphone, Google
Pixel 4 [57] using the F2FS file system [18]. When we

https://github.com/s3yonsei/hpufs_public

(a) Without GC

(b) With GC

Fig. 8. Comparison of SQLite performance for each query operation (normalized to results in UFS).

collected the I/O traces, we aged the file system to mimic
real storage usage [58]. The two real-world workloads, Mo-
bibench and replaying block I/O traces of real application
usage are performed on the flash storage device using the
FEMU emulator. We evaluated the performance under two
conditions, without GC and with GC. With GC, 97% of the
FEMU storage device is occupied with dummy files to make
the FTL perform GC. The L2P segment cache size set to
20 MB (assuming 0.5% of 4 GB DRAM) for HP-UFS and
HPB. Please note that, the fsync/fdatasync-related I/O
commands are faithfully implemented. Hence, when the flush
command is issued, the FEMU emulator flushes its internal
write buffer. The FUA command is also implemented so as to
perform writes bypassing the write buffer. Please note that
these commands do not cause the writeback of dirty L2P
segments in UFS, HPB and HP-UFS since the L2P mappings
are crash-consistent as explained in Section III-G.
SQLite performance. We evaluate SQLite performance by
comparing the latency for each query operation within the
SQLite database. Figure 8 shows both the average and tail
latency. One thing to note is that we implement the SELECT
query operation into the Mobibench SQLite benchmark to
comprehensively measure the SQLite performance.

When there is no GC, the latency difference between HPB
and HP-UFS is caused by write I/Os. Write I/Os cause
two types of overheads in HPB, invalidation of cached L2P
segment and the write-back of L2P segment to flash memory
due to mapping changes. However, in HP-UFS, the two types
of overheads are effectively eliminated due to the propagation
of L2P mapping changes from the device to the host memory
and the delayed writeback of L2P segments. Therefore, the
performance improvement is observed on the workloads with
writes, i.e., INSERT, UPDATE and DELETE. Our scheme
shows significant performance improvement, especially in tail

TABLE III
APPLICATIONS (ABBREVIATION) AND USE SCENARIOS FOR EACH CASE.

Application Use Scenarios Read/Write
(MB)

Clash Royale (CR) Play a stage 7 / 90
Genshin Impact (GI) Play a quest 168 / 11

Facebook (FB) Browse & read posts 0.8 / 180
Instagram (IN) Browse & read posts 3 / 236

X (X) Browse & read posts 14 / 83
Google Maps (GM) Find & navigate place 27 / 93

Chrome (CH) Browse multiple tabs 38 / 26
Youtube (YT) Watch videos 5 / 111

Camera-picture (Cp) Take pictures 2 / 86
Camera-video (Cv) Record a video 13 / 1729

Camera-play-video (Cpv) Play a video 1782 / 17

latency, reducing up to 39% in the 99.9th percentile latency
for INSERT queries when compared to HPB.

In experiments where GC occurs, HP-UFS notably reduces
query latency compared to previous schemes. As mentioned
in Section III-E our scheme manages the valid page bitmap
in host memory, leading to no additional cost for searching
valid pages during GC. In comparison to HPB, we observe a
decrease of up to 37% in average latency in INSERT queries,
and up to 88% in tail latency in the same queries.
Application performance. We collected the I/O patterns of
several application use scenarios on a Google Pixel 4 device
mounted with an F2FS file system and replayed them on the
emulator. Table III shows the applications employed in our
evaluation and their respective use scenarios. Additionally,
we composed AppInstall workload for sequentially installing
applications from CR to YT in the table, and AppUpdate
workload for sequentially updating them after installation.

We compare the performance across different schemes for
each workload, as shown in Figure 9. Without GC inside
the device (Figure 9(a)), HP-UFS improves the performance

(a) Without GC

(b) With GC

Fig. 9. Comparison of real-world application performance (normalized to results in UFS).

of real-world applications by up to 7% in YT, and 4% in
geometric mean compared to HPB. This modest performance
improvement is attributed to the small write range despite most
of these workloads being write-intensive. Figure 10(a) shows
the breakdown of the overheads incurred at each scheme in
the same workload as Figure 9(a), especially for representative
read or write-intensive workloads. In comparison to HPB, HP-
UFS demonstrates a reduction in both L2P segment write
overhead and L2P segment read overhead. These findings are
consistent across the remaining workloads.

Furthermore, when GC occurs during the workload (Fig-
ure 9(b)), the performance of HP-UFS exhibits a significant
improvement over HPB. Compared to HPB, HP-UFS shows
performance improvements by up to 40% in Cv, and 26% in
geometric mean. During GC, there is not only the cost for
searching valid pages (Valid Page Search in Figure 10(b)) but
also an increase in the L2P segment write for the updated L2P
segment, which affects the overall performance of the work-
load. As shown in the figure, HPB shows about 21-27% of
valid page search overhead for GC among the write-intensive
workloads. However, our HP-UFS eliminates that overhead
by managing valid page bitmaps in host memory. Moreover,
the L2P segment write overhead, which accounted for about
4-13% on HPB, decreased to about 1-6% on HP-UFS. We
verified that HP-UFS effectively reduced L2P segment write
overhead by observing 37-80% lower latency compared to
HPB. In the context of read-intensive workloads (e.g., GI, Cpv
in Table III), the removal of valid page search overhead has
had a minimal impact on overall latency, resulting in only
modest performance improvements as shown in Figure 9(b).

D. L2P Mapping Table Recovery Overhead

When the L2P mapping table is recovered during boot
time due to unexpected situations (e.g., power failure), two
major factors affect the overall recovery latency: the number

of recovered L2P segments and the number of data page scan
counts required for the recovery process. These factors can be
larger on our HP-UFS than HPB because our scheme caches
L2P entries in host memory, which may cause L2P segment
writes to be delayed. As a result, the number of L2P segments
to be recovered may increase, and the overall recovery time
may also increase.

UFS devices must complete the recovery process within
the specified time limit, with a maximum device boot time
of 1.5 seconds [2], [50]. Our evaluation demonstrates that
our system does not exceed this limit even under worst-
case recovery conditions. Figure 11 shows the latency for
the recovery process according to the limit value of the two
factors. The number of recovered L2P segments significantly
impacts overall recovery latency more than the number of data
page scan counts. This is because L2P segments require both
read and write operations for recovery, while data page scans
involve only read operations. In our evaluation, the maximum
number of L2P segments that can have is 32,768; the total
8 log blocks (each 16 MB block) can make 32,768 distinct
L2P entries (each 4 KB page) each of which belongs to a
distinct L2P segment. Even when the number of recovered
L2P segments reaches the maximum (32,768 L2P segments),
which is the worst-case recovery condition in our experimental
setup, the recovery process takes about 300 ms.

Our evaluation emphasizes the importance of managing
and minimizing the number of L2P segments involved in the
recovery process to achieve efficient recovery and meet the
specified boot time limit. While reducing the number of data
page scans is also beneficial, it may have a relatively smaller
impact on the overall recovery latency.

V. RELATED WORK

Caching Mapping Tables in Host Memory. Recent studies
have explored caching mapping tables in host memory to

(a) Without GC (b) With GC

Fig. 10. A breakdown of the latency overhead for real-world workloads (each overhead represents the time taken by each operation within the total I/O time
in NAND flash memory.).

(a) Varying # of recovered L2P seg-
ments

(b) Varying # of data page scan
counts

Fig. 11. Latency breakdown of L2P mapping table recovery process (fixed
32,768 data page scan counts for (a) and fixed 4,096 recovered L2P segments
for (b)).

enhance the storage performance in various storage protocols,
including SCSI [59], HMB with NVMe [6], [60], and HPB
with UFS [12]. Motivated by the scarcity (or absence) of
DRAM within a storage device, they concentrated solely on
enhancing I/O performance using host resources, regardless of
whether both read and write operations were involved. Among
them, HPB [5] is the first commercialized work based on UFS.
HPB simplifies the host system architecture by only requiring

the management of mapping tables on the host side without
requiring additional hardware design. HPBvalve [4] focuses on
improving read I/O performance by prioritizing and managing
the mapping address table entries in the HPB memory around
foreground applications. However, despite the significant im-
pact of write, GC and wear-leveling performance in mobile
environments, there has been relatively little attention given to
leveraging host memory to improve the performance of these
operations.

HP-UFS takes a step further in improving mobile flash stor-
age performance. It enhances write performance by reducing
the number of writes in the mapping tables, encompassing
both sequential and random writes, through the utilization
of host memory. Additionally, HP-UFS proposes an efficient
management technique for the valid page bitmap in host
memory, minimizing the cost of valid page search overhead
and thereby improving GC and wear-leveling performance. By
leveraging host memory effectively, HP-UFS optimizes read,
write, GC and wear-leveling operations, offering a compre-
hensive solution for mobile flash storage systems.

Small-Footprint Mapping Tables. One possible solution
to mitigate the limited internal SRAM capacity of mobile
storage is to reduce the size of the mapping table. Block-level
mappings [25] are a plausible design choice for reducing the
mapping table sizes; however, they achieve poor performance
due to their high write amplification during random writes
and GC. As a result, page-level mappings [9], [26], [61]–
[63], which incur larger mapping tables with lower write
amplification, have become the de-facto for flash storage.
Aimed at further reducing the mapping table sizes, prior
studies utilized machine learning techniques to overcome the
space-consuming one-to-one L2P mappings. For example,
LeaFTL [32] leveraged linear regression to replace the one-
to-one mappings with learned index segments. Unfortunately,
the size of the learned index segments still remains DRAM-
scale and cannot fit in SRAM, which hinders their adoption
in mobile storage.

VI. CONCLUSION

In this paper, HP-UFS is proposed to show almost full
performance potential of flash-based mobile storage devices.
HP-UFS overcomes the limitation of DRAM-lessness of mo-
bile storage systems by borrowing and utilizing the host
DRAM. While prior work like HPB has utilized host DRAM
to improve the read performance, HP-UFS further accelerates
all the storage operations, such as write, GC and wear-leveling.
This can be achieved since the host device driver and the
FTL firmware work in harmony to exchange necessary data
while performing flash memory writes followed by the change
of L2P mappings. Through extensive evaluation of our thor-
oughly implemented HP-UFS prototype, we demonstrate that
HP-UFS outperforms both UFS and HPB in micro-benchmark
workloads and real-world workloads.

VII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable comments. This work was supported partly
by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government
(MSIP) (No.2021-000773, Research on Edge-Native Oper-
ating Systems for Edge Micro-Data-Centers), and by the
National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (RS-2023-00321688) and
by Samsung Electronics.

REFERENCES

[1] J. Standard, “Embedded Multi Media Card (eMMC)
mechanical standard. JESD84-C43,” 2007. [Online]. Avail-
able: https://www.jedec.org/standards-documents/technology-focus-
areas/flash-memory-ssds-ufs-emmc/e-mmc

[2] ——, “Universal Flash Storage (UFS), version 4.0. JESD220F,”
2022. [Online]. Available: https://www.jedec.org/document search?
search api views fulltext=jesd220f

[3] statcounter, “Desktop vs mobile market share worldwide,” https:
//gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/,
2023.

[4] Y. Kim, I. Choi, J. Park, J. Lee, S. Lee, and J. Kim, “Integrated
Host-SSD mapping table management for improving user experience
of smartphones,” in 21st USENIX Conference on File and Storage
Technologies (FAST 23). Santa Clara, CA: USENIX Association,
Feb. 2023, pp. 441–456. [Online]. Available: https://www.usenix.org/
conference/fast23/presentation/kim-yoona

[5] W. Jeong, H. Cho, Y. Lee, J. Lee, S. Yoon, J. Y. Hwang, and D.-G.
Lee, “Improving flash storage performance by caching address mapping
table in host memory,” in HotStorage, 2017.

[6] J. Dorgelo and M. C. Chen, “Host memory buffer (hmb) based ssd
system,” Flash Memory Summit, 2015.

[7] U. Saleem, “Advanced SSD Buying Guide – NAND types, DRAM
Cache, HMB Explained,” https://appuals.com/ssd-buying-guide/, 2021.

[8] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for compactflash systems,” IEEE Transactions on
Consumer Electronics, vol. 48, no. 2, pp. 366–375, 2002.

[9] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings,” Acm Sigplan Notices, vol. 44, no. 3, pp. 229–240, 2009.

[10] K. Watanabe, K. Yoshii, N. Kondo, K. Maeda, T. Fujisawa, J. Wadat-
sumi, D. Miyashita, S. Kousai, Y. Unekawa, S. Fujii et al., “19.3 66.3
KIOPS-random-read 690MB/s-sequential-read universal Flash storage
device controller with unified memory extension,” in 2014 IEEE In-
ternational Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). IEEE, 2014, pp. 330–331.

[11] J. JESD220-1A, “Universal Flash Storage(UFS) Unified Memory Exten-
sion, Version 1.1.” https://www.jedec.org/document search?search api
views fulltext=jesd220-1a, 2016.

[12] J. Standard, “JESD220-3A, Universal Flash Storage (UFS) Host
Performance Booster (HPB) Extension, Version 2.0,” 2020. [Online].
Available: https://www.jedec.org/standards-documents/docs/jesd220-3a

[13] G. A. O. S. Project, “Google pixel 3 ker-
nel source - drivers/scsi/ufs/ufshpb.c,” 2018. [On-
line]. Available: https://android.googlesource.com/kernel/msm/+/
23d68f4b84c3c6a309512f9fef6d80072fb8364a

[14] D. Jeong, Y. Lee, and J.-S. Kim, “Boosting {Quasi-Asynchronous}{I/O}
for better responsiveness in mobile devices,” in 13th USENIX Conference
on File and Storage Technologies (FAST 15), 2015, pp. 191–202.

[15] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/o stack optimization
for smartphones,” in 2013 {USENIX} Annual Technical Conference
({USENIX}{ATC} 13), 2013, pp. 309–320.

[16] W.-C. Tsai, S.-M. Wu, and L.-P. Chang, “Learning-assisted write latency
optimization for mobile storage,” in 2019 IEEE 25th International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA). IEEE, 2019, pp. 1–6.

[17] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smart-
phones,” ACM Transactions on Storage (TOS), vol. 8, no. 4, pp. 1–25,
2012.

[18] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2fs: A new file system for
flash storage.” in FAST, vol. 15, 2015, pp. 273–286.

[19] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in nand ssds,” ACM Transactions on Storage
(TOS), vol. 13, no. 3, pp. 1–26, 2017.

[20] W. Kang, D. Shin, and S. Yoo, “Reinforcement learning-assisted
garbage collection to mitigate long-tail latency in ssd,” ACM Trans.
Embed. Comput. Syst., vol. 16, no. 5s, sep 2017. [Online]. Available:
https://doi.org/10.1145/3126537

[21] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and
H. S. Gunawi, “The CASE of FEMU: Cheap, accurate, scalable and
extensible flash emulator,” in 16th USENIX Conference on File and
Storage Technologies (FAST 18), 2018, pp. 83–90.

[22] Samsung, “Samsung Electronics Doubling Current Smartphone
Storage Speed as it Begins Mass Production of Industry-
First 512GB UFS 3.0,” 2019. [Online]. Available:
https://semiconductor.samsung.com/news-events/news/samsung-
electronics-doubling-current-smartphone-storage-speed-as-it-begins-
mass-production-of-industry-first-512gb-eufs-3-0/

[23] J. Axboe, “fio - flexible i/o tester,” 2022. [Online]. Available:
https://fio.readthedocs.io/en/latest/fio doc.html

[24] E. LABORATORY, “Mobibench,” https://github.com/ESOS-
Lab/Mobibench, 2013.

[25] A. Ban, “Flash file system,” Apr. 4 1995, uS Patent 5,404,485.
[26] ——, “Flash file system optimized for page-mode flash technologies. us

patent, no. 5,937,425,” 1999.
[27] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash

translation layer for nand flash memory,” in Proceedings of the 6th ACM
& IEEE International conference on Embedded software, 2006, pp. 161–
170.

[28] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 6, no. 3, pp. 18–es, 2007.

[29] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “Last: locality-aware sector
translation for nand flash memory-based storage systems,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 6, pp. 36–42, 2008.

[30] D. Ma, J. Feng, and G. Li, “A survey of address translation technologies
for flash memories,” ACM Computing Surveys (CSUR), vol. 46, no. 3,
pp. 1–39, 2014.

[31] ——, “Lazyftl: A page-level flash translation layer optimized for nand
flash memory,” in Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, 2011, pp. 1–12.

[32] J. Sun, S. Li, Y. Sun, C. Sun, D. Vucinic, and J. Huang,
“Leaftl: A learning-based flash translation layer for solid-state drives,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 442–456. [Online].
Available: https://doi.org/10.1145/3575693.3575744

[33] J.-H. Kim, S.-H. Kim, and J.-S. Kim, “Utilizing subpage programming
to prolong the lifetime of embedded nand flash-based storage,” IEEE
Transactions on Consumer Electronics, vol. 64, no. 1, pp. 101–109,
2018.

[34] S. S. Hahn, S. Lee, I. Yee, D. Ryu, and J. Kim, “Fasttrack: Fore-
ground app-aware i/o management for improving user experience of
android smartphones,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 15–28.

[35] C. Ji, L.-P. Chang, R. Pan, C. Wu, C. Gao, L. Shi, T.-W. Kuo, and
C. J. Xue, “Pattern-Guided File Compression with User-Experience
Enhancement for Log-Structured File System on Mobile Devices,” in
19th USENIX Conference on File and Storage Technologies (FAST 21),
2021, pp. 127–140.

[36] C. Ji, L.-P. Chang, L. Shi, C. Gao, C. Wu, Y. Wang, and C. J.
Xue, “Lightweight data compression for mobile flash storage,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 5s,
pp. 1–18, 2017.

[37] C. Wu, C. Ji, and C. J. Xue, “Reinforcement learning based background
segment cleaning for log-structured file system on mobile devices,”
in 2019 IEEE International Conference on Embedded Software and
Systems (ICESS). IEEE, 2019, pp. 1–8.

[38] Y. He, C. Yang, and X.-F. Li, “Improve google android user experience
with regional garbage collection,” in Network and Parallel Computing:
8th IFIP International Conference, NPC 2011, Changsha, China, Octo-
ber 21-23, 2011. Proceedings 8. Springer, 2011, pp. 350–365.

[39] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[40] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and S. Cho,
“Barrier-Enabled IO stack for flash storage,” in 16th USENIX
Conference on File and Storage Technologies (FAST 18). Oakland,
CA: USENIX Association, Feb. 2018, pp. 211–226. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/won

[41] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Performance Trade-
Offs in Using NVRAM Write Buffer for Flash Memory-Based Storage
Devices,” IEEE Transactions on Computers, vol. 58, no. 6, pp. 744–758,
2009.

https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/document_search?search_api_views_fulltext=jesd220f
https://www.jedec.org/document_search?search_api_views_fulltext=jesd220f
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/
https://www.usenix.org/conference/fast23/presentation/kim-yoona
https://www.usenix.org/conference/fast23/presentation/kim-yoona
https://appuals.com/ssd-buying-guide/
https://www.jedec.org/document_search?search_api_views_fulltext=jesd220-1a
https://www.jedec.org/document_search?search_api_views_fulltext=jesd220-1a
https://www.jedec.org/standards-documents/docs/jesd220-3a
https://android.googlesource.com/kernel/msm/+/23d68f4b84c3c6a309512f9fef6d80072fb8364a
https://android.googlesource.com/kernel/msm/+/23d68f4b84c3c6a309512f9fef6d80072fb8364a
https://doi.org/10.1145/3126537
https://semiconductor.samsung.com/news-events/news/samsung-electronics-doubling-current-smartphone-storage-speed-as-it-begins-mass-production-of-industry-first-512gb-eufs-3-0/
https://semiconductor.samsung.com/news-events/news/samsung-electronics-doubling-current-smartphone-storage-speed-as-it-begins-mass-production-of-industry-first-512gb-eufs-3-0/
https://semiconductor.samsung.com/news-events/news/samsung-electronics-doubling-current-smartphone-storage-speed-as-it-begins-mass-production-of-industry-first-512gb-eufs-3-0/
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/ESOS-Lab/Mobibench
https://github.com/ESOS-Lab/Mobibench
https://doi.org/10.1145/3575693.3575744
https://www.usenix.org/conference/fast18/presentation/won

[42] L. Tung, “Samsung’s new mighty 12GB DRAM: This is
chip you’ll see in next-gen smartphones,” 2019. [Online].
Available: https://www.zdnet.com/article/samsungs-new-mighty-12gb-
dram-this-is-chip-youll-see-in-next-gen-smartphones/

[43] “Smartphones Beat DRAM Drum to Meet Performance Demand,”
https://www.counterpointresearch.com/insights/smartphones-dram-
trends-2019-2020/, 2021.

[44] “Low Memory Killer Daemon,” https://source.android.com/devices/tech/
perf/lmkd.

[45] “Asap: Fast mobile application switch via adaptive prepaging,” in 2021
USENIX Annual Technical Conference (USENIX ATC 21), S. Son, S. Y.
Lee, J. Bae, Y. Jin, J. Jeong, T. J. Ham, J. W. Lee, and H. Yoon, Eds.,
., 2021, pp. 365–380.

[46] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang, “End the
senseless killing: Improving memory management for mobile operating
systems,” in 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, Jul. 2020, pp. 873–887. [Online].
Available: https://www.usenix.org/conference/atc20/presentation/lebeck

[47] D. Zhou, W. Pan, W. Wang, and T. Xie, “I/o characteristics of smart-
phone applications and their implications for emmc design,” in 2015
IEEE International Symposium on Workload Characterization, 2015, pp.
12–21.

[48] Y.-M. Chang, P.-H. Lin, Y.-J. Lin, T.-C. Kuo, Y.-H. Chang, Y.-C. Li,
H.-P. Li, and K. Wang, “An efficient sudden-power-off-recovery design
with guaranteed booting time for solid state drives,” in 2016 IEEE 8th
International Memory Workshop (IMW). IEEE, 2016, pp. 1–4.

[49] J.-H. Park, D.-J. Park, T.-S. Chung, and S.-W. Lee, “A crash recovery
scheme for a hybrid mapping ftl in nand flash storage devices,” Elec-
tronics, vol. 10, no. 3, p. 327, 2021.

[50] Google, “Android open source project. android common kernel’s ufs,”
2023. [Online]. Available: https://android.googlesource.com/kernel/
common/+/refs/heads/android13-5.15/drivers/scsi/ufs/ufs.h

[51] Y. Lim, J. Lee, C. Campes, and E. Seo, “Parity-Stream Separation and
SLC/MLC Convertible Programming for Life Span and Performance

Improvement of SSD RAIDs,” in 9th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 17), 2017.

[52] H. Maejima, K. Kanda, S. Fujimura, T. Takagiwa, S. Ozawa, J. Sato,
Y. Shindo, M. Sato, N. Kanagawa, J. Musha et al., “A 512gb 3b/cell
3d flash memory on a 96-word-line-layer technology,” in 2018 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 2018,
pp. 336–338.

[53] FEMU, “Research papers using femu,” 2023. [Online]. Available:
https://github.com/vtess/FEMU/wiki/Research-Papers-using-FEMU

[54] “NVM express,” https://nvmexpress.org.
[55] S. O. Source, “Galaxy s23 kernel source - drivers/scsi/ufs/ufs.h,” 2023.

[Online]. Available: https://opensource.samsung.com/uploadSearch?
searchValue=S911NKSU1AWBD

[56] “SQLite,” https://www.sqlite.org/index.html.
[57] GSMarena, “Google pixel 4,” https://www.gsmarena.com/google pixel

4-9896.php, 2019.
[58] C. Ji, L.-P. Chang, L. Shi, C. Wu, Q. Li, and C. J. Xue, “An Empirical

Study of File-System Fragmentation in Mobile Storage Systems,” in
8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), 2016.

[59] E. Budilovsky, S. Toledo, and A. Zuck, “Prototyping a high-performance
low-cost solid-state disk,” in Proceedings of the 4th Annual International
Conference on Systems and Storage, 2011, pp. 1–10.

[60] S. Yang, “Improving the design of dram-less pcie ssd,” Flash Memory
Summit, 2017.

[61] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “A two-level caching mechanism
for demand-based page-level address mapping in nand flash memory
storage systems,” in 2011 17th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium. IEEE, 2011, pp. 157–166.

[62] W.-H. Lin and L.-P. Chang, “Dual greedy: Adaptive garbage collection
for page-mapping solid-state disks,” in 2012 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 117–122.

[63] I. Shin, “Hot/cold clustering for page mapping in nand flash memory,”
IEEE Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1728–
1731, 2011.

https://www.zdnet.com/article/samsungs-new-mighty-12gb-dram-this-is-chip-youll-see-in-next-gen-smartphones/
https://www.zdnet.com/article/samsungs-new-mighty-12gb-dram-this-is-chip-youll-see-in-next-gen-smartphones/
https://www.counterpointresearch.com/insights/smartphones-dram-trends-2019-2020/
https://www.counterpointresearch.com/insights/smartphones-dram-trends-2019-2020/
https://source.android.com/devices/tech/perf/lmkd
https://source.android.com/devices/tech/perf/lmkd
https://www.usenix.org/conference/atc20/presentation/lebeck
https://android.googlesource.com/kernel/common/+/refs/heads/android13-5.15/drivers/scsi/ufs/ufs.h
https://android.googlesource.com/kernel/common/+/refs/heads/android13-5.15/drivers/scsi/ufs/ufs.h
https://github.com/vtess/FEMU/wiki/Research-Papers-using-FEMU
https://nvmexpress.org
https://opensource.samsung.com/uploadSearch?searchValue=S911NKSU1AWBD
https://opensource.samsung.com/uploadSearch?searchValue=S911NKSU1AWBD
https://www.sqlite.org/index.html
https://www.gsmarena.com/google_pixel_4-9896.php
https://www.gsmarena.com/google_pixel_4-9896.php

	Introduction
	Background and Motivation
	Background
	Motivation

	Design of HP-UFS
	Overview
	Handling Host Write Request
	Handling Host Read Request
	L2P Segment Writeback
	GC and Wear Leveling
	L2P Segment Cache Management
	Crash Consistency of L2P Mappings

	Evaluation
	Methodology
	Micro-benchmark Workload
	Real-world Workload
	L2P Mapping Table Recovery Overhead

	Related Work
	Conclusion
	Acknowledgments
	References

