Dolphin: A Resource-efficient Hybrid Index on
Disaggregated Memory

Hang An, Fang Wang*, Dan Feng, Zefeng Liu
Wuhan National Laboratory for Optoelectronics,

Key Laboratory of Information Storage System, Ministry of Education,
Engineering Research Center of data storage systems and Technology, Ministry of Education,
Huazhong University of Science and Technology, Wuhan, China,

Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
{anhang, wangfang, dfeng, zefengliu} @hust.edu.cn

Abstract—The Disaggregated Memory (DM) architecture en-
ables cloud providers to achieve unparalleled resource utilization
and scalability. The clients operate on Compute Servers (CS) and
access data on Memory Servers (MS) through DM-based indexes.
However, due to inherent limitations in perspectives, existing
DM-based indexes struggle to strike a balance between memory
consumption, read performance (including Scan), and write
performance. Some schemes even deviate from the original intent
of reducing memory waste in pursuit of higher performance.

In this paper, we present Dolphin, a DRAM-friendly and
high-performance hybrid index on DM. To reduce memory
consumption, Dolphin employs a hybrid architecture consisting
of Adaptive Radix Tree (ART) internal nodes and B+-tree leaf
nodes. It constructs a mapping between 1 index cache item and
N remote data items, thereby reducing the number of index
cache items. To quickly locate the target leaf nodes, Dolphin
leverages a Hybrid-Index-friendly pathfinding algorithm, laying
the foundation for improved read and write performance. To mit-
igate the synchronization overhead of write operations, Dolphin
utilizes the features of RDMA_WRITE and proposes an MS-
RNIC (RDMA Network Interface Card) Writing Synchronization
mechanism, achieves high concurrency of Update operation and
reduces the round trip time (RTT) of Update operation from 3 to
2. Compared to the state-of-the-art DM-based indexes, Dolphin
achieves optimal performance across all metrics. Experimental
results show that Dolphin reduces memory consumption by
1.44x-16.25x, achieving 1.16x-3.26 x higher throughput under
synthetic and real-world workloads. We will release the open-
source codes for public use in GitHub.

Index Terms—Index structures,
RDMA, Memory consumption

Disaggregated Memory,

I. INTRODUCTION

In modern data centers, the overall cost of DRAM stands
as notably exorbitant, encompassing approximately 50% of
the hardware expenditure [1]. Unfortunately, reports from
industry giants like Google, Microsoft, and Alibaba indicate
the existence of substantial memory underutilization within
their data centers [2]-[4]. Consequently, academia and cloud
providers have dedicated considerable efforts in recent years to
investigate the realm of DM architectures [24], [25], [29], [34],
[35], [38]. DM re-consolidates the CPU and DRAM resources
to form Compute Servers (CS) and Memory Servers (MS).
CSs and MSs are connected by fast networks (i.e., RDMA
and CXL). The clients on CSs access data in MSs via a DM-
based indexing system.

Building efficient index structures in DM is promising to
offer high performance for in-memory databases. Current DM-
based indexing systems prioritize optimizing either read or
write operations, necessitating a sacrifice between the two
and overlooking the optimization of memory consumption.
Similarly, the ’RUM Conjecture” states that we cannot have all
three of read, update, and space optimized for a data structure
[5], [6]. The issue is exacerbated further as half of the available
memory of a DBMS might be consumed by index structures
[7]. Consequently, achieving high performance while reduc-
ing memory consumption becomes imperative. However, this
target poses significant challenges for write optimizations as
conventional write synchronization mechanisms, such as the
exclusive lock or CAS-based lock-free scheme, may not be
applicable. In essence, designing DM-based indexes should
strive to address the following challenges:

e High Memory Overhead. To quickly obtain the pointers
to remote target leaf nodes without the need for remote
index traversal, all DM-based indexes [15]-[18] need to build
a key-pointer cache in CSs. However, existing DM-based
indexes either cache remote pointers for all data items or
cache complete keys, squandering precious DRAM in CSs.
Furthermore, organizing data items independently is beneficial
for enhancing concurrent write performance or alleviating read
amplification, but it introduces additional metadata (data item
pointer, checksum, etc.), exacerbating memory consumption.

e Compromised Read (Scan) Operations. To achieve high
concurrency, some indexes [18], [19] adopt the out-of-place
update scheme, connecting data items to the index via indirect
pointers, thereby mandating at least two RTTs for read oper-
ations. Some indexes [17] organize leaf nodes by data item
granularity to reduce read amplification, causing consecutive
key-value pairs to lose spatial locality. Both schemes necessi-
tate copious RDMA_READs for Scan operations, leading to
a significant degradation in performance.

e Tricky Remote Write Synchronization. Existing solutions
predominantly leverage CAS-based exclusive locks or CAS-
based lock-free schemes to address write-write conflicts.
Unfortunately, they either incur expensive synchronization
overhead [16] or result in additional memory consumption
[18]. Additionally, they unavoidably elevate the RTT for write

operations, consequently inducing higher latency.

To address the above challenges, we propose Dolphin!,
a resource-efficient hybrid index tailored for DM. Dolphin
extensively amalgamates the advantages of ART and B+-tree
while leveraging RDMA features for efficient in-place updates.
Dolphin’s primary objective is to strike a delicate balance be-
tween memory overhead, read performance (including Scan),
and write performance, thereby providing support for systems
based on DM.

To curtail DRAM consumption in CSs and MSs, Dolphin
provides a hybrid architecture comprising ART internal nodes
and B+-tree leaf nodes. CSs cache ART internal nodes, without
storing complete keys. Data items reside in B+-tree leaf nodes,
yielding two benefits: (1) a 1-N mapping between index cache
item and remote data items, reducing the count of index cache
items, and (2) shared metadata for data items in leaf nodes,
thereby reducing metadata consumption in MSs.

To support high-performance Read (Scan), Dolphin stores
data items in B+-tree leaf nodes and proposes a pathfinding
algorithm conducive to the hybrid index. The clients in CSs
can accurately and swiftly locate the remote pointers of the
target leaf node, enabling the retrieval of leaf nodes within
one RTT and reading tens of data items in a single sweep,
ensuring optimal Read and Scan performance.

To reduce the synchronization overhead of remote write,
we leverage two RDMA features: (1) RDMA_WRITEs are
guaranteed to be performed in increasing address order; (2)
Data atomicity per cacheline is guaranteed by RNIC [24].
Dolphin directly employs a single RDMA_WRITE, overwrit-
ing the target data items within leaf nodes. This approach
is attributed to the first feature, ensuring the eventual result
of concurrent updates is consistent. The second feature guar-
antees consistency in read-write results within a cacheline.
Hence, we utilize RNIC on MSs to synchronize concurrent
update operations instead of remote atomic operations (i.e.,
RDMA_CAS). Furthermore, we effectively address other types
of write-write conflicts and read-write conflicts for objects
larger than a cacheline.

Specifically, this paper mainly makes the following contri-
butions:

e We propose a hybrid index amalgamating ART and B+-
tree, which effectively reduces memory consumption in both
CSs and MSs.

e We design a pathfinding mechanism tailored for our
hybrid index, facilitating precise traversal to target leaf nodes
and enabling efficient operations on these nodes.

e Leveraging RDMA features to implement the MS-RNIC
Writing Synchronization mechanism, effectively mitigating
synchronization overhead of write operations.

e We implement Dolphin® and evaluate it using synthetic
and real-world workloads [8], [42]. The evaluation results
demonstrate the low memory consumption and efficiency of
Dolphin.

'We hope Dolphin to be as intelligent, energetic, and friendly as the dolphin.
2The source code is available at https:/github.com/hust-anhang/Dolphin

o) 4)
[
>
3
[
5
Q.
g
o \L J _ J
romA | | romA | |
| | | |
w
]
>
3
e
[]
£
(7]
s

<—> child pointer & reverse pointer
O inner node . leaf node (KV entry)

Qinnernode —> child pointer
@© leafnode —> sibling pointer

(a) Sherman structure (b) SMART structure

Fig. 1. Two typical DM-based indexes.

II. BACKGROUND AND MOTIVATION
A. Disaggregated Memory

In the Disaggregated Memory architecture, CPUs are cen-
tralized within CSs, while DRAM is consolidated within MSs.
These CSs and MSs are interconnected using high-speed
communication protocols (i.e., RDMA, CXL), collectively
constituting pools of compute and memory resources. Cloud
providers allocate compute and memory resources according
to user demands, enhancing resource utilization and lowering
hardware costs. CSs typically feature a limited amount of
DRAM, serving as a cache for MSs, while MSs are equipped
with a small amount of CPU to handle control requests
(connection establishment and memory allocation) from CSs.

Given the current non-commercialization status of CXL,
the majority of DM-based approaches utilize RDMA for
inter-server communication. Despite a performance gap of
10x, RDMA and CXL share some functional similarities:
byte addressability, atomic operations, and cacheline atomicity.
Our work integrates the characteristics of DM architecture
and RDMA to optimize resource utilization while upholding
system performance. Although CXL_WRITEs may not be
performed in increasing address order, hybird index structure
and pathfinding algorithm of Dolphin are also applicable to
CXL-based systems. The index cache aids in increasing system
throughput (local memory bandwidth + CXL memory band-
width). Furthermore, CXL may encounter issues similar to
RDMA: conducting atomic operations across multiple servers
towards a single server might still lead to performance collapse
3. Our exploration of RDMA atomic operations may provide
some guiding insights for future CXL-based work.

B. Index Cache

The index cache in DM differs from the conventional cache
issues. Traditional cache serves read-intensive workloads, stor-

3Private communication with authors of Sherman

TABLE I
COMPARISONS AMONG DOLPHIN AND STATE-OF-THE-ART DM-BASED INDEXES. (IN THE TABLE, v INDICATES GOOD PERFORMANCE, AND ” X"
INDICATES BAD PERFORMANCE.)

Memory Consumption Read Performance Write Performance
mechanism consumption mechanism performance mechanism performance
RACE Hash Hash v Indirect Read X Lock-free v
Sherman B+-tree leaf node v Read leaf node v Exclusive lock X
Marlin Independent data items X Indirect Read X Lock-free-like v
SMART Independent data items X Read leaf node | v (X for Scan) ‘Write-combination v
Dolphin B+-tree leaf node v Reaf leaf node v MS-RNIC synchronization v

ing hot data items. However, the index cache typically stores
internal nodes of tree indexes, thus reducing remote index
traversal and exhibiting structural correlation among index
cache items. Hence, the index cache is directly associated with
index structure design. Current index cache schemes primarily
fall into two categories, exemplified by Sherman [16] and
SMART [17], as shown in Figure 1.

Sherman caches the highest two levels of nodes (including
the root) and the upper layer of internal nodes on the leaf
node. Similar to the traditional B+-tree, Sherman’s internal
nodes store keys and remote pointers to leaf nodes. To expedite
locating the upper-level internal nodes, Sherman constructs a
skip list based on the key range represented by the internal
nodes.

SMART endeavors to cache as many ART internal nodes as
possible and constructs a local ART in CSs. The internal nodes
in SMART contain a byte of the key and remote pointers to
the next-level nodes. The last layer’s internal nodes consist of
the remote pointers pointing to leaf nodes in MSs.

Based on our observation, the essence of the index cache
constitutes a mapping relationship of one cached leaf node
pointer to a leaf node and n data items (1-1-n). A B+-tree
leaf node typically contains dozens of data items, whereas an
ART leaf node stores only one data item. With equivalent data
volumes, a B+-tree inherently requires fewer cached leaf node
pointers. However, for a B+-tree, the index cache needs to
store complete keys to identify the key range in the leaf node.
On the other hand, ART requires only a byte for each cached
node pointer because it employs a byte-by-byte comparison
path for representing complete keys. Hence, ART’s upper-level
structure conserves memory space more effectively.

C. Performance-Resource Balance

Several DM-based indexes aim to either avoid performance
collapse caused by CAS-based exclusive locks, enhance write
concurrency, or reduce read amplification. Although they
achieve their specific objectives well, they often lead to a
decrease in other system metrics. We will analyze each of
them individually.

RACE Hash [19] is a DM-based lock-free hash. It caches
directories of hash in CSs, while MSs’ buckets store pointers
to the latest data items. It uses RDMA_CAS for updating
data item pointers and relies on RDMA_CAS’s atomicity to
resolve the conflicts of concurrent write operations. During
subtable resizing, it employs RDMA_CAS to migrate data

items individually, enabling concurrent execution of requests
within subtables. Overall, its lock-free implementation relies
on RDMA_CAS. Thus, data items are stored independently
rather than within buckets. When the clients retrieve the target
data item at MS, they require reading the bucket first, obtaining
the data item pointer from the bucket, and then fetching the
data item based on the pointer.

Sherman [16] is a DM-based B+-tree. It uses CAS-based ex-
clusive locks to address write-write conflicts. To prevent blind
retries of the exclusive lock that could result in performance
collapse [15], it introduces a hierarchical lock mechanism,
reducing the frequency of exclusive lock acquisition in CSs.

Marlin [18] optimizes Sherman’s concurrency of write op-
erations. It presents an FAA-based ternary-state node lock to
address concurrent conflicts between Structure Modification
Operations (SMOs) and Insert, Delete, Update (IDU) opera-
tions. And achieving lock-free-like IDU operations. Similar
to RACE Hash, it stores pointers to the latest data items in
its leaf nodes and employs RDMA_CAS to update data item
pointers.

SMART [17] constructs a DM-based ART to avoid read
amplification caused by B+-tree leaf nodes. It caches leaf
node (containing a data item) pointers in CSs. Additionally, to
reduce redundant I/Os, it designs write-combining and read-
delegation mechanisms.

Overall, Marlin and SMART have relatively high memory
consumption. The former requires additional storage for data
item pointers and data item metadata in MSs, while the
latter needs to cache a substantial number of leaf node (data
item) pointers in CSs. The independent storage of data items
in RACE Hash, Marlin, and SMART results in very poor
range query capabilities. The first two additionally require
two RTTs to retrieve data items. Sherman exhibits poor write
concurrency due to its reliance on the inefficient exclusive lock
mechanism.

III. DESIGN

Before describing the specifics of our design, we’d like to
outline the following goals for Dolphin:

e Reduce the memory overhead of the index cache in CSs
and the memory consumption of the index in MSs.

e Devise an efficient pathfinding algorithm to retrieve the
target data item within 1 RTT.

e Minimize synchronization overhead of write operation
while ensuring consistency.

Client Threads Client Threads

| SIS || 595SsSS
ﬁ;f;& Of@g‘jz%

RDMA]
-

I:I]]]]] leaf node

<———— child pointer & reverse pointer O inner node

Fig. 2. Dolphin Structure.

To achieve these goals, we provide a detailed description
of Dolphin’s design and implementation in this chapter, (1)
Dolphin’s structural design, (2) pathfinding algorithm, and
basic operations, as well as (3) read/write concurrency control.

A. The Dolphin Structure

Dolphin is a hybrid index comprising ART internal nodes
and B+-tree leaf nodes. Similar to other DM-based tree
indexes, Dolphin caches the upper layers of the index in CSs.
The structure of Dolphin is shown in Figure 2. Our structural
modifications are primarily focused on the B+-tree leaf nodes,
allowing them to adapt to the upper-level ART’s pathfinding
algorithms while enabling more efficient write operations.

1) Internal Node: The internal nodes of Dolphin are classic
ART internal nodes [9]. Each node stores partial keys and
child pointers, linking the child nodes logically by byte-by-
byte comparisons. This entire path from root to leaf node
constitutes a complete key, thereby saving memory space for
storing keys. To verify the invalidation of the index cache,
we drew inspiration from the design of reverse pointer in
SMART [17]. If a node splits and generates a new parent
node, the reverse pointer will then point to the new parent
node, indicating the invalidation of the reverse pointer in the
index cache.

Dolphin’s internal nodes possess a ’depth’ attribute, indicat-
ing the position of the stored byte within the key. This attribute
is crucial, and its usage will be explained in the pathfinding
algorithm section (III-B).

2) Leaf Node: As shown in Figure 3, Dolphin’s leaf nodes
consist of rev_ptr [17], min, max, Key array, Value array,
and lock. The rev_ptr points to the leaf node’s parent node,
validating the cache’s validation. The min and max represent
the range of keys contained in the current leaf node as [min,
max). When initializing a leaf node due to the insertion of Key
A, min is set to ((A>>8)<<8), and max is set to (A|255).
Thus, data items sharing the same prefix as A (excluding the

8B 88
Rev_ptr | min | max [[[[{[[{[[[[]TII]] tock

Keys[n] Values[n]

Fig. 3. The leaf node of Dolphin

last byte) can be inserted into the current leaf node. Keys[n]
represents the array of keys, typically 8 bytes in size. During
data item insertion, RDMA_CAS is used to modify the target
empty slot in the Key array. Values[n] represent the array of
values. RDMA_WRITE is employed to update the value. If
the value size is less than 64 bytes, RDMA_WRITE ensures
atomicity and consistency of the value. For values larger than
64 bytes, Values[n] is combined with cacheline version [24]
to verify the value’s consistency. Dolphin adopts the ternary-
state node lock of Marlin, resolving SMO and IDU operation
concurrency conflicts with minimal overhead, allowing high
concurrency for IDU operations.

Separating keys and values into two arrays has two advan-
tages: (1) When dealing with value sizes larger than 64 bytes,
it avoids the cacheline version affecting offsets of Key([i] (i.e.,
i=1,2,3...) because RDMA_CAS requires the target address to
be 8-byte aligned. (2) For Update operations, clients read the
leaf nodes, except for the Value array. Because the Key array
provides the offset of the target value. The read amplification
is reduced.

It’s crucial to distinguish that PACTree [11], an ART and
B+-tree hybrid index based on persistent memory. It organizes
leaf nodes as a doubly linked list to ensure data recovery
upon unexpected server crashes. This structure necessitates
modifications to two sibling nodes during SMO operations,
incurring substantial overhead. To mitigate SMO as a scala-
bility bottleneck, it asynchronously updates the upper index.
In contrast, Dolphin synchronously modifies the upper index,
ensuring client visibility of the latest data. This decision stems
from two reasons: (1) Dolphin avoids maintaining doubly
linked pointers between leaf nodes, minimizing the complexity
of SMO operations and eliminating expensive RDMA_CAS
traffic introduced by remote pointer modifications. (2) Even
if a client accesses old leaf nodes due to concurrent SMO,
Dolphin’s backtracking algorithm (III-C) swiftly locates the
target leaf node, rather than accessing the sibling node via the
doubly linked pointer.

B. Pathfinding Algorithm and Basic Operations

1) Pathfinding Algorithm: While the approach of combin-
ing ART with B+-tree seems straightforward, the complexity
arises from the fact that ART conducts precise searches for
the target leaf node by byte-by-byte comparison, whereas B+-
tree searches for potential leaf nodes containing the target data
items based on the range of keys. Merging these two traver-
sal methods is quite challenging. Additionally, the potential
invalidation of the index cache may introduce uncertainties,
leading to wrong paths in the upper layers.

Therefore, we attempt to employ precise byte-by-byte com-
parisons as much as possible in the upper layers of the

Root

Root
Depth
Partial Key Node A

Update K1
<
N

Node A Insert K3

| A] |

/
/

[BEE FLLLL] e

Node B

(Rt

(a) Insert K2. Green nodes are leaf

Node B

min [0x1234FFO0
max [0x1234

—

Node C

min
max

min [0x12345600 |
mlax L'mmm;l ’

/
/

nodes, yellow nodes are internal nodes (b) Insert k3 (c) Update K1
Root Root
Node A Node A
|[E2Ed e 111 | [Ed e 11 |
o Node B Node D
A PP 117 | [o P [l] | [FIEET ook

Node E Node C
min

max

K1:0x1234FF01

(d) Leaf split. Before inserting K4, leaf node
C has only one empty slot left.

K2:0x1234FF71

[0x12345600 |
| o R L] |
K3:0x12345604

(e) Leaf split. Before inserting K5, leaf node

Node E

min [0x12345624 |
max [0x12345677 |

|
) [EEEmL

K5:0x12345698

K4:0x12345624

E has only one empty slot left.

Fig. 4. Basic operations of Dolphin.

index. We introduce a ”special” internal node at a depth
of Length(Key)*, which integrates both byte comparison and
range search methods. The internal node at a depth of
Length(Key) represents at least Length(Key)-1 bytes of the
key. Even if a wrong leaf node is accessed due to node splitting
and cache invalidation, we can swiftly backtrack to locate the
correct leaf node instead of restarting the search from the root.
Premature use of range search could potentially continue down
the wrong path, discovering the error only upon reaching the
leaf node. In this situation, the clients lose context information,
and require a full re-traversal from the root, leading to an
unacceptable cost.

In Dolphin specifically, a node at depth of Length(Key) is
not a leaf node but a specialized internal node (i.e., Node D
in Figure 4 (d)). Its format remains consistent with an ART
internal node but with an empty Partial Key. Each byte within
this node is accompanied by a pointer directing to the leaf
node (i.e., Node C/E in Figure 4 (d)). The leaf nodes store a
subset of data items greater than min and less than max. The
calculation method for min and max is explained in the leaf
node design section. Furthermore, when a leaf node splits, the
min and max of the new and old leaf nodes will be reset like
B+-tree leaf node splitting.

Through the transition of Length(Key) layer internal nodes,
we merge the ART traversal approach with the B+-tree traver-
sal method. This ensures accurate targeting of the desired
leaf node, which consists dozen data items. Consequently,
it reduces the total memory consumption of leaf nodes and
significantly reduces the number of remote pointers in the
index cache.

In particular, the core of our pathfinding algorithm involves
“special” internal nodes. These nodes assist Dolphin in ad-
dressing the challenges posed by distributed cache consistency

“In key-value storage systems, keys are typically encoded to ensure a
consistent length.

issues. The ”’special” internal nodes ensure that the target leaf
node obtained by the client shares the same prefix. This sup-
port enables the effectiveness of the backtracking algorithm in
special cases and reduces the complexity of SMO operations.
However, PACTree can be considered as a traditional ART.
The B+-tree leaf nodes of PACTree are merely subservient to
ART leaf nodes, representing partial data items greater than
the Key represented by ART leaf nodes. Such an approach
raises a challenging issue in DM: inconsistent prefixes within
a leaf node complicate SMO operations, introduce additional
network overhead, and ultimately result in SMO operations
becoming a performance bottleneck.

In the subsequent Concurrency Control section (III-C),
we will discuss various special cases caused by concurrent
operations and how we efficiently address them.

2) Basic Operations: Like other indexes featuring index
cache, Dolphin accesses the index cache in CSs before per-
forming any read or write requests. To reduce round trips for
remote index traversal, Dolphin uses the Hybrid-Index-friendly
pathfinding algorithm to reach the ancestors of the leaf nodes
as closely as possible. In the following, we present the details
of several basic operations: Get, Scan, Insert, Update, Delete,
and SMO:

Get: Benefiting from an efficient pathfinding algorithm,
when a client’s Get operation reaches the target leaf node, it
initiates an RDMA_READ operation directly, retrieving the
desired data items from the leaf node. In the case of leaf
node splits where the index cache hasn’t updated promptly,
potentially leading to the retrieval of an old leaf node. In this
situation, the client first reads the leaf node’s rev_ptr pointing
to the parent node (i.e., Node D in Figure 4 (d)). Then, it
locates the pointer to the newly split leaf node (i.e., Node E
in Figure 4 (d)) from the parent node, and finally initiates an
RDMA_READ to access the leaf node containing the desired
data item. This process is known as backtracking.

Scan: Similar to the B+-tree Scan operation, the client
queries the index cache, obtaining pointers to all nodes (includ-
ing internal and leaf nodes) within the specified range. These
pointers are divided into groups based on the MSs they point
to, and through Batched RDMA_READ, the client reads the
target nodes into CS. For leaf nodes, the client records data
items within the target range. For internal nodes, the client
initiates Batched RDMA_READ to the next-level nodes until
all target leaf nodes have been read.

Insert: The Insert operation consists of two scenarios. In
the first, when the client locates the target leaf node with a
common prefix, as shown in Figure 4 (a), it directly reads the
target leaf node (Node B). Then, it searches for an empty slot
(Keys[1]), using RDMA_CAS to set Keys[1] to the target key.
Finally, the client uses RDMA_WRITE to overwrite Values[1].
It should be noted that to reduce the size of the Figure 4, we
do not show the Values[n] in the leaf nodes. In the second
scenario, there is no leaf node in the index representing the
first Length(Key)-1 bytes of the target key. As depicted in
Figure 4 (b), the client locates the internal node Node A with
the longest common prefix and inserts a new child leaf node.
For simplicity, we illustrate using 4-byte keys in Figure 4,
while standard 8-byte keys are used in evaluation.

Update/Delete: As shown in Figure 4 (c), the client first
locates the leaf node containing the target key, then searches
for Keys[x] that matches the target key. The client uses
RDMA_WRITE to set Values[x] to the target value. The
Delete operation is similar to Update: upon finding the target
Keys[x], it uses RDMA_WRITE to clear both Keys[x] and
Values[x]. Unlike Sherman and SMART, Dolphin achieves
Update/Delete requests with only two RTTs by leveraging the
characteristics of RDMA WRITE.

SMO: In scenarios where leaf nodes are full or empty,
requiring splitting or merging, the process is termed SMO.
Take the example of a split when inserting a new key into a
leaf node with only one empty slot. Depending on whether
the leaf node’s parent is a “special” internal node, SMO is
divided into two cases. (1) When the parent node is not a
”special” internal node, as shown in Figure 4 (d), it first evenly
distributes the data items in the leaf node Node C, placing the
larger portion into the new leaf node (Node E). Then, it writes
Node E and a ”’special” internal node (Node D) to target MS.
Node D contains pointers to its two child leaf nodes. After
that, the client modifies the original pointer pointing to Node
C to point to Node D. Finally, the client updates the original
leaf node (Node C), modifying its rev_ptr and data items. (2)
When the parent node is a “’special” internal node, as shown
in Figure 4 (e), the client writes the new leaf node (Node
F), inserts a pointer (pointed to Node F) into Node D, and
modifies the old leaf node (Node E).

C. Coordinated Concurrency Control

In terms of index structures, addressing write-write conflicts
and read-write conflicts is crucial to ensure consistency. Ex-
isting methods to solve write-write conflicts primarily include
CAS-based exclusive locks and CAS-based lock-free schemes.

T1 (Update) T2 (Update)

|
|
|
T 1 |
o [TIII=] | ==
: t1 >
T3 (Insert) T4 (Insert) I
| Ees
|
o Lo IR ¢ ™ e
Keys[n] Values[n] ; t1 -

FAA & Read . Write & FAA [CAS] CAS Keys|[] Retry next empty Keys|]

Fig. 5. Update-Update conflict and Insert-Insert conflict (The right part shows
the timeing diagram of Dolphin.).

The logic for write operations based on exclusive locks
generally follows a sequence of (1) lock, (2) read node, and
(3) RDMA_WRITE & unlock. The process requires at least
3 RTTs and offers poor concurrency. CAS-based lock-free
schemes support higher concurrency but entail separating data
items and index, introducing substantial memory overheads in
the form of node address pointers, validation bytes, etc.

Excitingly, we discover that RDMA_WRITE exhibits two
features: (1) RDMA_WRITEs are guaranteed to be performed
in increasing address order. (2) Data atomicity per cacheline
is guaranteed by RNIC. Leveraging these characteristics, we
designed the MS-RNIC Writing Synchronization mechanism,
resolving write-write conflicts with minimal network overhead.
Next, we explain the mechanism by addressing various write-
write conflict scenarios.

Update-Update conflicts: In frequent updates to hot data,
Dolphin only needs RDMA_WRITE to overwrite the target
value. If the target value size is smaller than the cacheline
size (64 bytes), the remote RNIC ensures the atomicity of
RDMA_WRITE, ensuring consistency in all reads and writes
to the target value. Even for values larger than the cacheline
size, Dolphin ensures consistency of update operation because
RDMA_WRITEs are performed in increasing address order.
Consequently, the final target Value is always the expected
value from the last update operation.

Insert-Insert conflicts: During insertion, the client selects
an empty slot and uses RDMA_CAS to modify the empty
Keys[x] from null to the target key. RDMA_CAS being atomic
resolves Insert-Insert conflicts, where failed Insert operations
retry inserting into a new empty Keys|[y].

Update-Delete conflicts: The Delete operation sets both the
target key and value to null in sequence, rendering the target
data item invalid. If a concurrent Update operation considers
the target Keys[x] still valid, it only sets the value field to the
target value without modifying the Keys[x]. Therefore, Delete
synchronizes with Update by manipulating the target Key[x].

SMO-IDU conflicts: SMO operations entail modifying the
entire leaf node, while IDU operations only modify data
items, rendering them exclusive. We implemented the Spear,
a ternary-state node lock proposed by Marlin, to enforce
exclusion between SMO and IDU operations. Spear essen-

tially functions as a read-write lock, with SMO operations
resembling write operations and IDU operations resembling
read operations. It synchronizes SMO and IDU operations and
allows high-concurrency execution of IDU operations, enhanc-
ing the effectiveness of our MS-RNIC Write Synchronization
mechanism. Unlike Marlin, to prevent erroneous modifications
to Spear, we solely use RDMA_FAA operations to modify
Spear. While SMO requires RDMA_WRITE to overwrite old
leaf nodes, RDMA_WRITE does not encompass the memory
area where Spear resides.

The resolution for Update-Update conflicts and Insert-Insert
conflicts is illustrated in Figure 5. Update and Insert op-
erations are performed under the protection of Spear with-
out introducing additional RTT. As shown in Figure 5 (a),
concurrent Updates achieve synchronization when modifying
the target Value[x], and the synchronization process occurs
in the RNIC of MS, resulting in minimal synchronization
overhead. Concurrent Insert operations synchronize through
RDMA_CAS operations on the target Keys[x]. Failed Insert
operation will choose a new empty Keys[y] to retry the
RDMA_CAS operation.

As previously outlined, if the size of Values[x] is smaller
than the cacheline size, the read and write operations to
Values[x] are atomic. However, when the size of Values[x]
is larger than the cacheline size, read operations may retrieve
an inconsistent state caused by concurrent write operations.
Additionally, during concurrent SMO operations, read opera-
tions may access old leaf nodes, making them fail to locate
the target data item.

WRITE-READ conflicts: If the size of the value is larger
than the cacheline size, we append the cacheline version
mechanism [24], embedding a version field in each cacheline.
While reading the target value, the cacheline version field is
verified for equality. If equal, it signifies a consistent read of
the value.

READ-SMO conflicts: During SMO processes, the client
allocates the target data item to the new leaf node potentially,
concurrent read operations may access the old leaf nodes.
Fortunately, leaf nodes of Dolphin store min and max keys
in their first cacheline, allowing read operations to identify
whether the target data item is in the current leaf node or not.
These read operations then adopt a backtracking approach to
locate the correct leaf nodes.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Testbed. We run all experiments on a cluster with 4
Compute Servers and 4 Memory Servers, and each server
is equipped with 128 GB DRAM, a 100 Gbps Mellanox
ConnectX-5 IB RNIC, and two 10-core Intel Xeon CPUs ES5-
2640. All RNICs are connected to a 100 Gbps Mellanox IB
Switch. During the initialization, we register a large amount of
RDMA Memory with huge pages in MSs in advance to avoid
the performance impact of the memory registration process.
All CSs run with 18 threads by default.

Workloads. We use YCSB [42] with both uniform and
Zipfan distributions to evaluate the performance, which con-
tains 5 workloads, including (1) YCSB A (50% read and
50% update), (2) YCSB C (100% read), (3) YCSB LOAD (
100% insert), (4) range-only (100% scan accessing up to 100
items), (5) range-write (50% scan and 50% insert). Skewed
workloads follow the Zipfian request distribution (8 = 0.99),
which is commonly observed in production environments.
Unless otherwise stated, we warm up the tree with 512 million
items 50% full, except for the LOAD test. Apart from these
workloads, we also evaluate the performance with cluster8
workloads (write-intensive) and cluster9 workloads (read-only)
in Twitter cache trace [8]. For all experiments, we set the size
of the leaf nodes is 1 KB, except for SMART. The default
value size is 8 bytes, which is consistent with prior work [10],
[12], [14], [16], [17].

Comparisons. We compare Dolphin with three state-of-the-
art DM-based indexes. Specifically, Sherman [16] is a write-
optimized B+-tree based on DM. Marlin [18] is the latest
concurrency-optimized B+-tree based on DM. SMART [17] is
the first DM-based ART, which reduces the read amplification
and redundant I/Os. Sherman and SMART are open-sourced.
And we get the source code from the author of Marlin. For a
fair comparison, we allocated the same compute and memory
resources for the four indexes in each experiment.

B. Index Cache Size Analysis

To investigate the adaptability of different indexes when
the memory resources of CSs are insufficient, we allocated
the size of the index cache ranging from 50 MB to 800 MB
for different indexes. The efficacy of index cache remains
consistent across all operations, hence, we utilize the YCSB
A workload (50% read and 50% update) which can effectively
demonstrate both read and write optimizations simultaneously.
Marlin uses the same index cache scheme as Sherman and
is primarily optimized for concurrent write operations. In
our experiment, there is little performance difference between
Marlin and Sherman, and we do not separately present the
results for Marlin.

Specifically, as shown in Figure 6 (a), in the case of
skewness=0.99 where data is highly skewed, a small amount of
index cache can hit most of the hot internal nodes. Therefore,
the throughput of all schemes rapidly increases as the index
cache size grows from O to 200 MB. Beyond 200 MB, the
throughput of Dolphin and Sherman plateaus since they have
fully cached the internal nodes of the index. Ultimately, at
an index cache size of 800 MB, the throughput of SMART
continues to rise slowly because many internal nodes are
still not loaded into the index cache. In this scenario, the
throughput of Dolphin is 1.51x-1.32x higher than that of
Sherman and SMART, respectively. This is because the Update
of Dolphin only requires 2 RTTs, while other schemes require
3 RTTs. From another perspective, in Figure 6 (a), to achieve
the same throughput, Dolphin requires less than 50 MB of
index cache, while Sherman and SMART need 200 MB, which
is 4 times that of Dolphin.

—e-Sherman =e=SMART Dolphin —e-Sherman =e=SMART Dolphin —e-Sherman =+=SMART Dolphin
_14 _ 14 _ 14
%12 §12 %12
o 10 o 10 o 10
2 8 SRS rrrrrre 23 Z 3
5 6 36 36
Q. Q. Q.
5 4 5 4 5 4 —
3 2 3 2 3 2
£ 0 £ 0 £ 0
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Cache Size (MB)
(a) skewness = 0.99

Cache Size (MB)
(b) skewness = 0.9

Cache Size (MB)
(c) skewness =0

Fig. 6. The performance comparison of tree indexes on DM under different index cache sizes.

o—=P50 P99 [Throughput o=P50 P99

I Throughput =@=P50 P99 [Throughput
% 64 =
3 7 o
10 3
=3 16 = 2
= IS
2 5] o
® 4 8 §
=] =]
[4
£ 0 1 =
Sherman Marlin SMART Dolphin Sherman Marlin

(a) YCSB A

o]

()}

Latency (us)
D
Latency (us)

N

Throughput (M ops/s)

o

Sherman Marlin
(c) YCSB LOAD

SMART Dolphin
(b) YCSB C

SMART Dolphin

Fig. 7. The performance comparison of tree indexes on DM under YCSB workloads (index cache size = 2000 MB).

As shown in Figure 6 (b) and (c), the throughputs of
Dolphin remain the highest. Additionally, the throughput of
Sherman increases because the data becomes less skewed,
reducing write-write conflicts. In Figure 6 (c), the throughput
of SMART noticeably decreases compared to Figure 6 (a)
because the workloads are uniform. The effectiveness of the
index cache is directly determined by the number of cached
objects (internal nodes). We calculate that caching all internal
nodes of SMART requires at least 4600 MB of DRAM, which
far exceeds our testing range.

Overall, at an index cache size of 200 MB, Dolphin’s
throughput is 1.16x-3.26x higher than other schemes. This
indicates that Dolphin can save valuable cache space and
achieve higher performance.

C. Overall Performance in YCSB

To comprehensively analyze the performance of different
schemes in terms of update, read, and insert operations, we
use three YCSB workloads and test throughput, P50 latency,
and P99 latency. Considering that the index cache of SMART
requires a large amount of DRAM, we set the index cache
size for all tests to 2000 MB.

As shown in Figure 7 (a), Dolphin’s throughput is 1.25x-
1.45x higher than other schemes, with a P50 latency of 5.5 us,
which is 1.4-2.5 pus lower than other schemes. This is because
Dolphin’s Update operation only requires 2 RTTs, while other
schemes require at least 3 RTTs. The P99 latency of Sherman
is higher, attributed to its use of inefficient RDMA_CAS-
based exclusive lock to resolve write-write conflicts. Marlin
implements lock-free-like IDU operations, hence having lower

P99 latency. Dolphin employs the MS-RNIC Write Synchro-
nization mechanism to resolve concurrent conflicts of Update
operations, achieving lower P99 latency as well.

The performance of read operations (YCSB C) is shown
in Figure 7 (b), where Sherman and Dolphin exhibit the best
performance as they both require only one RTT to fetch the
target data items from leaf nodes. The P50 latency of Marlin is
2.4 ps higher than Sherman and Dolphin. After obtaining the
target leaf node, Marlin needs to read the data items from MS
based on the data item pointers in the leaf node. Additionally,
the P99 latency of SMART is around 10 ps higher than other
schemes, as even with an index cache size of 2000 MB,
there are still internal nodes not cached, necessitating remote
traversal of the index.

When a storage system initializes, a large amount of data
needs to be loaded into the index. As shown in Figure 7
(¢), Sherman, Marlin, and Dolphin have similar performances
because their insert operations all need 3 RTTs. However,
the throughput of SMART is approximately 1.54 x lower than
other schemes, as each insert operation in SMART inserts a
new leaf node pointer into the internal node, causing the cache
invalidation of that internal node in CSs. The clients in CSs
need to repeatedly evict invalidated internal nodes from the
index cache and load the valid internal nodes into the index
cache. This results in a P50 latency for SMART that is 8
s higher than other schemes, with a noticeable decrease in
throughput.

B Sherman EMarlin @SMART @O Dolphin

n IHD

10
range-only

Throughput (M ops/s)

o N B O

range-write

Fig. 8. Performance of Scan operation.

D. Range Query Performance

In this experiment, we use uniform workloads and con-
ducted experiments for range-only and range-write operations
with a range size of 100. The index cache size is set to 2000
MB. As shown in Figure 8, in the range-only experiment, the
throughputs of Dolphin and Sherman are close and higher than
that of Marlin and SMART by 4.38x-22.4x. This is because
the B+-tree leaf nodes of Sherman and Dolphin provide spatial
locality for adjacent data items, allowing a client in the CS
to use a single RDMA_READ to read dozens of data items.
However, Marlin and SMART store individual data items
separately, requiring one RDMA_READ per data item. When
scanning 100 data items, Sherman and Dolphin may only
need 2-3 RDMA_READs, while Marlin and SMART need at
least 100 RDMA_READs. Furthermore, Marlin’s performance
is 5.11x higher than that of SMART. Marlin can retrieve
a target leaf node (containing the addresses of dozens of
target data items) through one index cache lookup and one
RDMA_READ, then use dozens of RDMA_READs to read
the target data items. For SMART, each leaf node has a
different path, so obtaining 100 data items requires 100 index
cache lookups and 100 RDMA_READs. Therefore, SMART
requires more index lookup operations compared to Marlin.
We obtained that the time for an additional index cache lookup
is approximately 1-2 us. Thus, besides lacking spatial locality,
SMART’s unique path traversal in ART also results in poor
scan performance.

Additionally, in the range-write test, the performance of
Marlin, SMART, and Dolphin slightly increases. Only Sher-
man slightly decreases due to its inefficient update operation.

@ Sherman @ Marlin @SMART @O Dolphin

1]

cluster8

[
o

[y
(%]

wv

Throughput (M ops/s)
=
o

o

cluster9

Fig. 9. Performance under real-world workloads.

E. Performance Under Real-world Workloads

In addition to synthetic workloads, we also utilized real-
world workloads [8], which describe the traces from Twitter’s
in-memory caching clusters. Cluster8 workloads represent
write-intensive workloads, while cluster9 represents read-only
workloads. As shown in Figure 9, in the cluster8 experiment,
Dolphin exhibits optimal performance, which can be attributed
to our efficient pathfinding algorithm and the MS-RNIC Write
Synchronization mechanism. In the cluster9 experiment, Sher-
man achieves slightly higher throughput, possibly influenced
by the distribution of keys in the workloads.

TABLE II
THE DRAM CONSUMPTION ON ONE CS AND ALL MSs.
CS (MB) MS (GB)
Sherman 460 12
Marlin 460 26
SMART 5200 156
Dolphin 320 14

F. Memory Consumption Analysis

To analyze the memory overhead in CSs in detail, we
measured the index cache sizes required by different schemes
to achieve optimal performance. We load 512 million data
items into the indexes and then conduct the statistics. As
shown in Table II, Dolphin requires a 1.44x-16.25x smaller
index cache compared to other schemes. This indicates that
Dolphin can significantly save valuable DRAM in CSs. More-
over, we measured the total DRAM size needed to store
complete indexes in MSs. As shown in Table II, We find that
SMART requires at least 156 GB of DRAM, possibly due to
issues with memory management. The memory consumption
of Marlin is about 2x higher than Sherman and Dolphin. In
addition, Dolphin has a slightly higher memory consumption
than Sherman in MSs. However, we believe saving precious
DRAM in CSs is more crucial.

V. RELATED WORK

Disaggregated Memory. The DM architecture is widely
discussed recently [20], [21], [24]-[26], [29], [34], [35].
Existing schemes provide solutions for DM from various
perspectives, including operating system [30]-[32], hardware
architecture [20]-[22], [26], [27], [36], [37], database [23],
[33], [38], [39], distributed lock [40], and transaction [29],
etc. Legoos [32] mainly focus on efficient research in resource
management based on DM, providing a foundation for run-
times running on DM. Hardware-related research, such as Clio
[36], explores how hardware components like SmartNIC, pro-
grammable switch, and CXL can be organized and applied in
DM-based systems. Polardb [38] practices DM in commercial
databases. FUSEE [28] designs a fully DM-based key-value
store that introduces disaggregation to metadata management.
Ford [29] proposes an efficient DM-based transaction system.
ROLEX [41] proposes a scalable RDMA-based learned key-
value store that separates model retraining from data mod-
ification operations. Citron [40] provides distributed range

locks suitable for DM, supporting range query operations in
databases. Dolphin focuses on the DM-based index that is
orthogonal to these studies.

RDMA-based Tree Indexes. With the popularity of RDMA
in data centers, there are increasing studies focusing on
RDMA-based tree indexes [12], [13], [15]-[18]. Some of them
utilize RDMA-based remote procedure calls (RPCs) for com-
munication between servers. However, these indexes are not
suitable for DM since the MSs lack sufficient CPU resources
to provide RPC services. Sherman [16] employs local locks to
reduce unnecessary retries of exclusive locks. Marlin [18] uses
customized read-write locks to address concurrency conflicts
between SMO and IDU, enhancing the concurrency of IDU
operations. SMART [17] leverages the advantage of ART
where leaf nodes contain only the target data items, solving the
read amplification problem. SMART also introduces software
techniques such as write-combination and read-delegation to
improve peak throughput. In contrast, Dolphin addresses the
challenge of balancing memory overhead, read performance,
and write performance while utilizing fewer memory resources
to achieve higher throughput.

VI. CONCLUSION

This paper systematically analyzes the strengths and weak-
nesses of existing DM-based indexes and summarizes the
performance bottlenecks they encounter in terms of memory
overhead, read performance, and write performance. In re-
sponse, we propose Dolphin, a resource-efficient DM-based
hybrid index. Dolphin achieves a well-balanced trade-off
between read and write performance, introducing a hybrid
index structure with ART internal nodes and B+-tree leaf
nodes to reduce memory overhead in CSs and MSs. We
also design efficient pathfinding algorithms and low-overhead
MS-RNIC Write Synchronization mechanism, enabling ef-
ficient READ/WRITE/Scan operations. Experimental results
show that, under synthetic and real-world workloads, Dolphin
reduces memory overhead by 1.44x-16.25x and improves
throughput by 1.16x-3.26x compared to the state-of-the-art
DM-based indexes.

ACKNOWLEDGEMENT

This work was supported by NSFC (No. U22A2027,
61832020 and 61821003), Project of Shenzhen Technology
Scheme (JCYJ20210324141601005). We are grateful to our
anonymous reviewers for their constructive comments and
suggestions.

REFERENCES

[1] CXL And Gen-Z Iron Out A Coherent Interconnect Strategy.
https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-a-
coherent-interconnect-strategy/, 2020.

[2] M. Tirmazi, A. Barker, N. Deng, Md E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter and J. Wilkes, "Borg: the next generation,” in
Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys ’20), New York, NY, USA, 2020, pp. 1-14.

[3]

[4

=

[5]

[6]

[7

—

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M.
Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura and
R. Bianchini, ”Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS 2023), New York, NY, USA, 2023, pp.
574-587.

J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao and Y. Bao, "Who
limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces,” in 2019 IEEE/ACM 27th International Symposium on
Quality of Service (IWQoS), Phoenix, AZ, USA, 2019, pp. 1-10.

M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos,
A. Ailamaki and M. Callaghan, “Designing Access Methods: The
RUM Conjecture,” in International Conference on Extending Database
Technology (EDBT 2016), 2016, pp. 461-466.

C. Anneser, A. Kipf, H. Zhang, T. Neumann and A. Kemper, ”Adaptive
Hybrid Indexes,” in Proceedings of the 2022 International Conference
on Management of Data (SIGMOD ’22), New York, NY, USA, 2022,
pp. 1626-1639.

H. Zhang, G. Chen, B. C. Ooi, K. -L. Tan and M. Zhang, “In-Memory
Big Data Management and Processing: A Survey,” in I[EEE Transactions
on Knowledge and Data Engineering (TKDE), 2015, pp. 1920-1948.
J. Yang, Y. Yue, and K. V. Rashmi, ”A Large-scale Analysis of Hundreds
of In-memory Key-value Cache Clusters at Twitter,” in /4th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 191-208.

V. Leis, A. Kemper and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), Brisbane, QLD, Australia,
2013, pp. 38-49.

A. Kalia, M. Kaminsky and D. G. Andersen, "Datacenter RPCs can be
general and fast,” in /6th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2019), Boston, MA, February 26-28,
2019, pp. 1-16.

WH. Kim, R. M. Krishnan, X. Fu, S. Kashyap and C. Min, "PACTree:
A High Performance Persistent Range Index Using PAC Guidelines,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21), New York, NY, USA, 2021, pp. 424-439.

C. Mitchell, K. Montgomery, L. Nelson, S. Sen and J. Li, “Balancing
CPU and network in the cell distributed B-tree store,” in 2016 USENIX
Annual Technical Conference (USENIX ATC 2016), Denver, CO, USA,
June 22-24, 2016, pp. 451-464.

A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos, A. Drago-
jevi¢, D. Narayanan and M. Castro, "Fast General Distributed Transac-
tions with Opacity,” in Proceedings of the 2019 International Conference
on Management of Data (SIGMOD ’19), New York, NY, USA, 2019,
pp. 433-448.

X. Zou, W. Fang, D. Fen, J. Chen, C. Liu, F. Li and N. Su, "THMEH:
write-optimal extendible hashing for hybrid DRAM-NVM memory,” in
Proceedings of the 36rd International Conference on Massive Storage
Systems and Technology, MSST, 2020.

T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca and T. Kraska, ”"Designing
distributed tree-based index structures for fast rdma-capable networks,”
in Proceedings of the 2019 International Conference on Management of
Data, Amsterdam, Netherlands, 2019, pp. 741-758.

Q. Wang, Y. Lu and J. Shu, ”Sherman: A write-optimized distributed b+
tree index on disaggregated memory,” in Proceedings of the 2022 Inter-
national Conference on Management of Data (SIGMOD), Philadelphia,
PA, USA, 2022, pp. 1033-1048.

X. Luo, P. Zuo, J. Shen, J. Gu, X. Wang, M. R. Lyu and Y. Zhou,
”"SMART: A High-Performance Adaptive Radix Tree for Disaggregated
Memory,” in the 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2023), July 10-12, 2023, pp. 553-571.

H. An, F. Wang, D. Feng, X. Zou, Z. Liu and J. Zhang, “Marlin:
A Concurrent and Write-Optimized B+-tree Index on Disaggregated
Memory,” in Proceedings of the 52nd International Conference on
Parallel Processing (ICPP ’23), New York, NY, USA, pp. 695-704.

P. Zuo, J. Sun, L. Yang, S. Zhang and Y. Hua, "One-sided RDMA-
Conscious Extendible Hashing for Disaggregated Memory,” in 2021
USENIX Annual Technical Conference (USENIX ATC 21), 2021, pp.
15-29.

Eric Hooper. Intel rack scale design: Just what is it?
https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-
design-just-what-is-it, 2018.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

HP Labs. The machine: A new kind of computer.
https://www.hpl.hp.com/research/systems-research/themachine, 2014.
S.-S. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong and A. Bhattachar-
jee, "MIND: In-network memory management for disaggregated data
centers,” in 28th Symposium on Operating Systems Principles, October
26-29, 2021, pp. 488-504.

J. Wang and Q. Zhang, “Disaggregated Database Systems,” in Com-
panion of the 2023 International Conference on Management of Data
(SIGMOD °23), New York, NY, USA, 2023, pp. 37-44.

T. Ziegler, J. Nelson-Slivon, V. Leis and C. Binnig, “Design Guidelines
for Correct, Efficient, and Scalable Synchronization using One-Sided
RDMA,” in Proceedings of the ACM on Management of Data, 2023,
pp. 1-26.

I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu and
A. Kolli, "Rethinking software runtimes for disaggregated memory,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
79-92.

S. Grant and A. C. Snoeren, “In-network Contention Resolution for
Disaggregated Memory,” in Proceedings of the Workshop on Resource
Disaggregation and Serverless (WORDS), 2021.

Y. Shan, W. Lin, Z. Guo and Y. Zhang, "Towards a fully disaggregated
and programmable data center,” in Proceedings of the 13th ACM
SIGOPS Asia-Pacific Workshop on Systems, 2022, pp. 18-28.

J. Shen, P. Zuo, X. Luo, T. Yang, Y. Su, Y. Zhou and M. R. Lyu,
”"FUSEE: A Fully Memory-Disaggregated Key-Value Store,” in 2/th
USENIX Conference on File and Storage Technologies (FAST 23), 2023,
pp. 81-98.

M. Zhang, Y. Hua, P. Zuo and L. Liu, "FORD: Fast One-sided RDMA-
based Distributed Transactions for Disaggregated Persistent Memory,”
in 20th USENIX Conference on File and Storage Technologies (FAST
22), 2022, pp. 51-68.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury and K. Shin, “Efficient
memory disaggregation with infiniswap,” in /4th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), 2017, pp.
649-667.

M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S.
Novakovic, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati, R.
Venkatasubramanian and M. Wei, "Remote regions: a simple abstraction
for remote memory,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 775-787.

Y. Shan, Y. Huang, Y. Chen and Y. Zhang, “LegoOS: A Disseminated,
Distributed OS for Hardware Resource Disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 69-87.

Q. Zhang, Y. Cai, X. Chen, S. Angel, A. Chen, V. Liu and B. T. Loo,
”Understanding the effect of data center resource disaggregation on
production dbmss,” in Proceedings of the VLDB Endowment, 2020, pp.
315-344.

S. -Y. Tsai, Y. Shan and Y Zhang, “Disaggregating Persistent Memory
and Controlling Them Remotely: An Exploration of Passive Disaggre-
gated Key-Value Stores,” in 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020, pp. 33-48.

Z. Ruan, M. Schwarzkopf, M. K. Aguilera and A. Belay, "AIFM: High-
Performance, Application-Integrated Far Memory,” in [14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 315-332.

Z. Guo, Y. Shan, X. Luo, Y. Huang and Y. Zhang, ’Clio: A hardware-
software co-designed disaggregated memory system,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 417-433.
D. Gouk, S. Lee, M. Kwon and M. Jung, “Direct access, high-
performance memory disaggregation with directcxl,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22), 2022, pp. 287-294.
W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng, Z. Chen,
Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang, Z. Cheng, S. Chen,
J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai, Y. Zhang and J. Tong, ’Polardb
serverless: A cloud native database for disaggregated data centers,” in
Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 2477-2489.

D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. Miloji¢i¢ and
G. Alonso, “Farview: Disaggregated memory with operator off-loading
for database engines,” in Proceedings of Conference on Innovative Data
Systems Research, 2022.

[40]

[41]

[42]

J. Gao, Y. Lu, M. Xie, Q. Wang and J. Shu, "CITRON: distributed range
lock management with one-sided RDMA,” in Proceedings of the 21st
USENIX Conference on File and Storage Technologies (FAST’23), USA,
2023, pp. 297-314.

P. Li, Y. Hua, P. Zuo, Z. Chen and J. Sheng, "ROLEX: A scalable
RDMA-oriented learned key-value store for disaggregated memory
systems,” in 21st USENIX Conference on File and Storage Technologies,
FAST 2023, Santa Clara, CA, USA, February 21-23, 2023, pp. 99-114.
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears,
”Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing (SoCC). Indianapolis,
Indiana, USA, 2010, pp. 143-154.

