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Abstract—Read reclaim (RR) is used to avoid read disturb
errors by periodically migrating all valid data pages of the RR
block to other free blocks. In order to reduce the negative
effects of RR that will block user I/O requests for a long
time, existing RR optimization schemes migrate the hot read
data pages in advance before the appearance of read disturb
errors, if there are idle intervals between two I/O requests. Such
advanced RR schemes, however, employ page-level counters for
tracking read frequency on the pages in the RR block to direct
early hot read data migrations, which must require considerable
space overhead and then impact I/O responsiveness. To address
this issue, this paper proposes a novel RR scheduling scheme,
called as PhasedRR. Instead of using page-level access counters,
PhasedRR employs working sets to track read frequency on the
data pages of the RR blocks, thus reducing the space overhead
caused by maintaining the counters. Furthermore, PhasedRR
supports phased migration for moving the data pages having
varied levels of read hotness in the RR block to another block(s)
in different phases before the hard RR threshold, meanwhile the
cold data pages are remained in the RR block until the block
read count reaches the threshold. Through a series of simulation
experiments based on several realistic disk traces, we illustrate
that our proposal can reduce the overall I/O latency by 31.3%
on average, in contrast to existing RR scheduling methods.

Index Terms—Solid-state drivers, read disturb, read reclaim ,
reliability.

I. INTRODUCTION

NAND flash memory-based solid-state drives (SSDs) have
become the mainstream storage devices, thanks to their advan-
tages of high performance and small size [1], [2]. To minimize
the per-unit price of SSDs, the feature size of flash cells is
gradually reduced to below 10nm, and flash density is then
driven to Multi-Level Cell (MLC), Triple-Level Cell (TLC) or
even Quad-Level Cell (QLC) [3]. The feature size shrinking of
flash cells results in the flash memory being more vulnerable
to its inherent noises, such as programming interference noise,
retention disturb and read disturb [4]. Therefore, efficiently
coping with such noises to guarantee the reliability of flash
memory-based SSDs becomes a challenging issue in both
academics [5], [6] and industry [7], [8].

Specially, read disturb is an unavoidable phenomenon that
impacts the threshold voltages of the unread pages when
performing read operation on specific pages in the same block.
With the accumulation of such side-effects, raw bit errors may
happen in the unread data pages [9], [10]. Error correction
codes (ECCs) have been applied in modern SSDs to recover
the data having raw bit errors through read retries, with the

cost of impacting I/O responsiveness of SSDs. However, ECCs
does not work if the number of raw bit errors in the original
data page surpasses the correction capacity of ECCs, indicating
the data is permanently damaged [11].

In order to avoid permanent data lost caused by accumulated
impacts of read disturb, an operation of read reclaim (RR)
has been proposed to migrate the valid data pages to another
block before they are damaged, to reset the impacts of read
disturb [12]. When the read count on the block is greater
than a preset bound, termed as the hard RR threshold, an
RR operation is triggered to avoid read disturb errors [13],
[14]. In the process of read reclaim, it first reads all valid
pages in the RR block and flush them to another block(s),
while the accumulated read count on the block approaches
the fixed RR threshold. After that, the RR block is rejuvenated
as a new block after an erase operation. Since SSD devices
cannot satisfy user I/O requests during the RR process, I/O re-
sponsiveness will be greatly affected. More importantly, high-
density flash memory (e.g. TLC or QLC) is more vulnerable to
read disturb [4]. For example, the RR threshold of SLC SSDs
is one million, whereas the threshold of TLC SSDs decreases
to 20K-40K [10], [15], [16]. In other words, high-density
SSDs require triggering RR operations more frequently, which
must impact I/O responsiveness and the lifetime of SSDs1.

A number of RR optimizations aim to mitigate negative
effects of read disturb in high-density SSDs [17], [20], [21],
[22]. Liu et al. [17] presented an innovative approach utilizing
shadow blocks to hold hot read data. Specifically, besides
holding the hot read data, the shadow blocks consist of certain
invalid data pages or free pages, since both kinds of pages are
immune to read disturb. This mechanism, however, purposely
retains certain free pages and valid pages in the shadow
blocks, which confines the improvement on read latency and
read reclaim cycles. To further reduce the negative effects
on I/O responsiveness caused by RR operations, Liao et
al. [20] constructed mathematical models to direct migrating
the hottest data pages in advance, for minimizing side-effects
of read disturb and the number of RR operations, on the basis
of their previous work [22]. In addition, Zhang et al. [21]
proposed a strategy dispersing hot read page across multiple

1The SSD devices support a limited number of erases on the block, and
every RR process is completed with an erase operation on the block after the
valid data pages have been migrated.



blocks to prevent the concentration of hot read data in few
blocks, thus reducing the number of RR operations.

We summarize that migrating the frequently accessed data
pages of the RR block in advance can reduce the impacts
of read reclaim, as page migrations can be completed in idle
intervals between two I/O requests. However, such optimiza-
tion schemes employ page-level counting to record the read
frequency of data pages, and such counters consume space
overhead on dynamic random-access memory (DRAM) of
SSDs, which must impact I/O responsiveness. This is because
the available DRAM space for caching the most frequently
accessed data is reduced. In order to minimize negative
impacts of read disturb and the expense in RR operations,
this paper proposes a counter-less RR scheduling mechanism,
called PhasedRR on the basis of recent working sets of page
access tracks. In brief, this paper makes the following three
contributions:

• We introduce a working set-based scheme for identify-
ing the hotness level of data pages in the RR block,
which does not require page-level counting to track read
frequency, thus reducing the space overhead caused by
keeping the counters to direct RR scheduling.

• We propose a phased migration scheme for moving the
data pages having varied level of hotness in the RR block
to another block(s) in different phases, meanwhile the
cold data pages are remained in the RR block. It can cut
down the ECC overhead and improve I/O responsiveness,
as the most frequently data pages are migrated to other
available block(s) in early phases.

• We perform a series of evaluation tests by using disk
traces of real-world applications. Our measurements show
that our proposal can reduce the average read latency and
erase operations by 33.6% and 6.1% on average, in
contrast to existing RR scheduling methods.

The rest of this paper is structured as follows: Section II
introduces the background knowledge and our motivations.
Section III describes the details of the proposed mechanism.
The evaluation experiments and discussions are presented in
Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND AND MOTIVATIONS

A. Flash Memory and Read Disturb

NAND flash memory is organized as two-dimensional ar-
rays of floating-gate transistors. A number of cells electrically
connected to a wordline (WL) that consists of multiple pages
in high-density flash memory and multiple WLs form a block.
Specifically, flash-based SSDs usually consist of one or more
planes, and each plane contains several blocks. A block is a
basic unit for erasing, and is composed of many pages that
are the basic units of write/read operations [23].

Read disturb is a circuit-level noise in NAND flash memory-
based SSDs, which is caused by intensive read operations [14].
Figure 1(a) shows the voltage settings of a read operation
in the TLC flash memory. As seen, a read reference voltage

of Vr is applied to the corresponding wordline (i.e., WL1,
and a pass-through voltage of Vpass that is higher than Vr,
is exerted to other victim wordlines in the same blocks. It
is true that Vpass is lower than the programming voltage, it
induces a weak programming effect on the flash cells, and
will shift their threshold voltages unintentionally. These shifts
accumulate over time, and they will become significant enough
to change the state of some flash cells, thus leading to the
occurrence of raw bit errors.

A representative example of state change in the flash cell
is shown in Figure 1(b), in which the reference voltage of
Vr1 fails to distinguish the original P1 state and the disturbed
ER state. Although modern SSDs are equipped with ECCs
to recover raw bit errors, the consequent cost of read retries
impacts I/O responsiveness of SSDs. More importantly, it will
lead to data damages of SSDs if bit errors accumulate beyond
the capacity of ECCs, which compromises the reliability and
practicability of flash memory-based SSDs.

B. Read Reclaim and Optimizations

The read reclaim (RR) strategy is proposed for avoiding
permanent data damages, through migrating data pages from
an impacted block to another free block(s) [12]. When a block
undergoes more reads than a preset upper bound on the number
of read operations allowed by the block, called the hard RR
threshold, the RR operation is consequently triggered. In an
RR operation, it first reads all valid pages in the RR block and
flush them to another block(s), termed as page moves or page
migrations, while the accumulated read count on the block
approaches the hard RR threshold. After that, the RR block
will be erased as a new block.

In fact, the page moves in RR processes correspond to
multiple pairs of read and write on the flash memory, which
block enqueued user I/O requests and then degrade I/O perfor-
mance of SSDs. For better improving read reclaim efficiency,
numerous optimization strategies have been proposed, which
can be classified into three categories:

Employing dedicated blocks for holding hot read data.
Liu et al. [17] presented read-leveling to allocate hot read
data pages to dedicated shadow blocks, which originally hold
invalid pages and free pages that are immune to read disturb.
As a result, it can minimize the frequency of RR operations
on these shadow blocks, though they hold some hot read data.
Note that, however, this approach does not perform well for
utilizing the storage space in the shadow blocks, thus limiting
the improvements on read latency and read reclaim cycles.

Similarly, Wu et al. [18] proposed an scheme of adaptive
cell bit-density with in-place reprogramming (IPR), to reduce
the total number of read reclaim. This approach reprograms
the old Most Significant Bit (MSB) pages and transforms TLC
blocks into MLC ones, by considering the read limit for trig-
gering read reclaim operations on MLC blocks is much greater
than the limit on the original TLC blocks. Consequently, the
read reclaim operations on the reprogrammed blocks can be
significantly postponed.



Vpass

Vr

WL2

WL1

WL0Vpass

BL0 BLm

Victim cells of 

read disturb

ER P1 P7

…

Vr1 Vr2 Vr7 Vpass

(a) (b)

TLC cell state changes

caused by read disturb
Read operation

Fig. 1: Read disturb in TLC flash memory. (a) Voltage settings for satisfying a read operation, including the reference voltage
of Vr and read pass voltage of Vpass. (b) The reference voltage of Vr1 cannot identify the disturbed ER state and the original
P1 state [16].

Distributing hot read pages onto multiple blocks. Zhao et
al. [19] considered SSD blocks have disparate initial attributes
of read counts and P/E cycles, and then proposed a model
to estimate the optimal read limits of blocks for optimizing
read reclaim. Specifically, it relocates data pages to the blocks
by matching read count of move-in pages and the estimated
read limit of the destination blocks when carrying out RR
operations. This approach effectively reduces the frequency of
read reclaim operations and minimizes the ECC overhead of
read data pages. In order to better conduct RR operations, Liao
et al. [20] built two mathematical models to decide the time
point of triggering RR process and the order in which pages
are migrated in the RR process.

In addition, Zhang et al. [21] proposed a strategy of dis-
persing read hot data widely across multiple available blocks,
thereby preventing the concentration of hot read data within
only few blocks. To this end, their method migrates some hot
read data pages of RR block to the blocks containing a certain
proportion of cold read data pages that are extracted from user
I/O requests. This method increases the number of destination
blocks in each RR operation, which can ultimately reduce the
frequency of RR operation.

Machine learning-based optimization on RR scheduling.
To further alleviate the impacts of RR on user I/O requests,
Li et al. [22] incorporated reinforcement learning into read-
refresh (RR) scheduling, to direct the page moves and the erase
operation during idle intervals between I/O requests. More
clearly, it predicts idle time intervals according the history
information on I/O workloads by using the reinforcement
learning model, to help deciding the number of page moves
and whether perform an erase operation or not. This method
can minimize the side-effects of read reclaim, as RR-relevant
operations are completed in the idle intervals, without impacts
on subsequent I/O requests as much as possible.

C. Motivations

The routine RR operation migrates all valid data pages in
the RR block when its endured read accesses reaches the
hard RR threshold. It has been proven that the distribution of
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Fig. 2: The results of average I/O latency when using RR
scheduling methods of RL-RR [22] and Reallocation [20], with
(W-O) or without space overhead (W/o-O). Note we assume
both RL-RR and Reallocation do not require memory space for
holding page-level counters, to quantify the negative impacts
caused such counters.

access frequency varies across different benchmarks, and the
valid pages in the same RR block may have varied level of
access hotness [20], [21]. Consequently, some previous studies
tend to treat frequent access data specially for relieving the
impacts of read disturb, such as migrating hot read data pages
to insusceptible blocks (shadow blocks or blocks with high
optimal read count), or distributing them to a range of blocks
to avoid hot read data within only a few blocks.
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Fig. 3: High-level architectural overview of PhasedRR. Note
that ∆ is used to decide the window size at different phases
for obtaining the working set of read accesses and carrying
out page migrations. It is a parameter of read accesses on the
block, related to the configurable soft RR threshold and the
hard RR threshold.

The fundamental similarity among these advanced RR
optimization strategies lies in the identification of hot read
data. However, page-level counting is commonly used to
identify hot read data pages, which results in certain space
overhead, as the page-level counters are required to be kept
in dynamic random-access memory (DRAM). In other words,
the size of available DRAM space used for caching hot data
becomes smaller, which must impact I/O responsiveness of
SSD devices.

In order to quantify the negative effects caused by page-
leveling counting in RR optimization, we replayed some read-
intensive I/O traces of real-world applications in a SSD simula-
tor, when using two state-of-the-art RR scheduling methods of
RL-RR [22] and Reallocation [20]. In the tests, we also assume
they do not require page-level counting to identify hot read
data pages to direct RR scheduling. Section IV will present
the experimental settings and benchmark specifications.

Figure 2 illustrates the results of average I/O latency af-
ter replaying the selected benchmarks. Obviously, page-level
counters does greatly impacts I/O responsiveness by between
13.9% and 62.4%. This fact verifies page-level counters
occupy the DRAM space, indicating less DRAM space can
be dedicated for buffering hot accessed data to absorb read
and write requests, thus leading to more accesses onto the
underlying NAND flash array and worsening I/O performance
of SSD devices.

III. DESIGN AND IMPLEMENTATION OF PhasedRR

A. System Overview

The basic principle of PhasedRR is to use working sets
of read accesses for sifting hot read data pages, to support
migrating the data pages with varied hotness levels in the
different phases, after the RR process is triggered. Figure 3
illustrates the high-level architectural overview of PhasedRR.
When the access count of the given block approaches a

predefined threshold (i.e., Soft RR THR in the figure), we put
the block into the RR candidate list. After that, we generate
three working sets of read accesses (i.e. WS I-WS III) in the
following three windows. By resorting to the obtained working
sets, we can identify hot data pages and then migrate the pages
having varied levels of read hotness in advance from the RR
block at different phases, called as phased read reclaim. Note
that, we not only construct the working set of WS III, but also
identify hot read data pages in the third time window, which
is also named as Phase I.

According to the design principle of PhasedRR, the data
pages having less access frequency can remain in RR blocks
until the read count of block reaches the hard RR threshold.
As a result, it can reduce the time caused by error corrections
since the hot pages are migrated to another block(s), and then
improve I/O responsiveness for application requests.

B. Hot Data Page Identification

For the purpose of identifying hot read data pages in the RR
block without page-level read counters, when the read count
of the block reaches the pre-defined soft RR threshold, we
propose a working set-based sifting method. By referring to
the working set model in virtual memory management [24],
we define a working set of read accesses as W(t, τ ) to record
the collection of data pages that were accessed in the interval
of (t- τ , t), with respect to a given block.

By referring back to Figure 3, PhasedRR generates three
working sets successively while the read count exceeds the
pre-defined soft RR threshold, labeled as W(t1, τ1), W(t2, τ2)
and W(t3, τ3), respectively. In which, the size of τ1, τ2, and
τ3 is defined as ∆, 2∆, and 4∆. Note that ∆ is a parameter
related to the configurable soft RR threshold and the hard
RR threshold, according to the design of PhasedRR. As a
consequence, we can categorize the hot data pages of the
RR block into three types according to their read hotness,
by following Equations (1) - (3).

HTT pgs =

3⋂
i=1

W (ti, τi) (1)

HTR pgs =
3⋃

i=1,j=1
i ̸=j

(W (ti, τi)∩W (tj , τj))−HTT pgs (2)

TPD pgs =

3⋃
i=1

W (ti, τi)−HTT pgs−HTR pgs (3)

where HTT pgs, HTR pgs and TPD pgs represent hottest pages,
hotter pages and tepid pages respectively.

To be specific, the valid data pages that appear in all three
working sets are classified as hottest pages, the pages that
appear in two of working sets are classified as hotter pages,
and the pages that appear in only one of working sets will be
classified as tepid data pages. On the contrary, the data pages
that do not appear in the working sets, will be classified as
cold data pages.



C. Phased Data Page Migration

When the data pages of the RR block have been identified
as different types by using the generated working sets of
read access tracks, PhaseRR adopts migrating the data pages
having varied levels of read hotness in different phases before
reaching the hard RR threshold. As illustrated in Figure 3,
the hottest data pages will be migrated to other block(s) in
Phase I, the hotter data pages and the tepid data pages will
be migrated in Phase II and Phase III, respectively.

In order to minimize the impacts of migrating data pages,
our proposed phased migration scheme tries to move data
pages while there is an interval between two I/O requests in
the specific phase. If there are not enough idle intervals in
the given phase, the remainder of data pages that are required
to be migrated before the end of the phase, regardless of I/O
intensity of user applications.

Note that all cold data pages in the RR block are expected to
be migrated to other block(s) with a mandatory fashion, once
the read count of the block reaches the hard RR threshold.

D. Implementation Specifications

Algorithm 1 demonstrates the implementation details of
the proposed scheme, with respect to identifying hot read
data pages, and migrating the pages having varied hotness
levels in different phases. As seen, Lines 3-15 elaborate the
process of identifying the hot read data pages without page-
level read counting after the read count of the block approaches
the soft RR threshold. Then, Lines 16-28 illustrate how to
migrate data pages of the RR block based on their appearance
in the previous working sets, before the block read count
exceeds the hard RR threshold. At last, Lines 29-34 present
the specification on carrying out mandatory page moves and
the erase operation to complete the RR operation of the block
while the hard RR threshold is reached.

IV. EXPERIMENTS AND EVALUATION

A. Experiment Settings

To assess the effectiveness of our proposed scheme, we
employed the SSDsim simulator, to replay the selected disk
access traces of real-world applications. In other words, we
implemented the proposed mechanism as a part of the flash
translation layer (FTL) inside SSDsim. We use a local ARM-
based machine as SSD controllers which usually have limited
computation power and memory capacity [22]. The machine
has an ARM Cortex A7 Dual-Core with 800MHz, 128MB
of memory and 32-bit Linux (ver 3.1).

The LDPC scheme is employed to correct raw bit errors
in our configuration, as the read latency relies on the level of
LDPC soft decision [25], [26]. The initial read time is set as
0.085 ms, with an increment of 0.024 ms per read retry.
As a result, the read time will span from 0.085 ms to 1.099
ms, corresponding to seven-level of LDPC soft decisions. The
parameter settings for our tests are specifically described in
Table I, and the RR threshold is set to 25k by referring to
[27]. To reflect the impact of diminished cache space caused

Algorithm 1 Hot data identification and phased migration.

1: Input: The page num of the accessed page;
2: Output: Null;
3: if blk.rd cnt ≥ soft THR and blk.rd cnt < t1 then
4: /* Add page num to working set I*/
5: Add(page num,WS I);
6: else if blk.rd cnt ≥ t1 and blk.rd cnt < t2 then
7: /* Add page num to working set II*/
8: Add(page num,WS II);
9: else if blk.rd cnt ≥ t2 and blk.rd cnt < t3 then

10: /* Add page num to working set III*/
11: Add(page num,WS III);
12: if The visiting page appears in all WSs then
13: /* Trigger the page moves for the hottest pages*/
14: Trigger PM Idle T ime();
15: end if
16: else if blk.rd cnt ≥ t3 and blk.rd cnt < t4 then
17: if The visiting page appears in two of WSs then
18: /* Trigger the page moves for the hotter pages*/
19: Trigger PM Idle T ime();
20: end if
21: else if blk.rd cnt ≥ t4 and blk.rd cnt < hard THR

then
22: if There remain hotter pages in block then
23: /* Migrate all of the hotter pages immediately*/
24: Trigger PMs ALL();
25: else if The visiting page appears in one of WSs then
26: /* Trigger the page moves for the tepid pages*/
27: Trigger PM Idle T ime();
28: end if
29: else if blk.rd cnt ≥ hard THR then
30: /* Migrate all of the valid pages immediately */
31: Trigger PMs ALL();
32: /* Erase the RR block */
33: EraseBlock();
34: end if
35: return

by page-level counting, we set the size of each page-level
counter as 2 bytes when implementing the related work, by
following [18].

Considering read disturb generally takes place in read-
intensive workloads, our evaluation tests primarily utilized
6 read-intensive I/O traces, as well as two write-dominate
I/O traces from several I/O trace repositories. Among them,
4 traces are collected by an Enterprise Virtual Desktop In-
frastructure [28], including additional-03-2016021711-LUN3,
additional-03-2016021812-LUN0, additional-03-2016021808-
LUN0 and additional-03-2016021812-LUN6, labelled as lun1
to lun4. In addition, websearch 1 (labeled as ws 1) is from
the UMass Trace Repository [29], usr 0 and web 0 are from
Microsoft Research Cambridge [30], and alibaba 121 (labeled
as ali) is from the Alibaba center [31].

Table II presents the details on the selected 8 block I/O
traces. In which, the metric of Hot read ratio indicates the



TABLE I: Experimental settings of SSDsim

SSD parameters
(Channel, Chip) (8, 2)
(FTL, GC trigger) (Page-level, 30%)
Overprovide 25%
Transfer time per byte 5ns
DRAM capacity 64MB
Hard RR threshold 25K
Extra read-retry time 0.024ms
Maximum LDPC level 7

Chip parameters
(Die, Plane, Block, Page) (1, 2, 1280, 256)
(Page size, Cell density) (8KB, TLC)
Program latency (LSB-CSB-MSB) (0.5, 2, 5.5)ms
(Read latency, Erase latency) (0.085, 15)ms

TABLE II: Specifications on selected traces

Traces Req. # Read R Read SZ Hot R FP
ws 1 1,055,448 99.9% 15.2KB 90.8% 0.02GB
usr 0 2,237,889 40.4% 40.9KB 46.2% 2.44GB
web 0 2,029,945 29.8% 29.0KB 19.7% 7.26GB
lun1 1,728,463 69.4% 21.9KB 3.2% 26.0GB
lun2 2,683,696 72.0% 26.6KB 0.4% 38.8GB
lun3 2,162,563 81.3% 20.7KB 0.5% 38.5GB
lun4 1,896,006 79.4% 24.1KB 0.7% 31.2GB
ali 2,340,016 77.2% 17.9KB 39.2% 1.11GB

concentration level of read access addresses within the traces.
In other words, it denotes the ratio of frequently requested ad-
dresses (i.e., those are accessed not less than four times) to the
entire read address space. The Footprint metric represents the
total size of requested addresses when running the benchmark.
In order to trigger a considerable number of RR operations,
we repeat the execution of the selected block I/O traces, by
referring to [16], [20], [22].

Apart from the proposed method of PhasedRR, the follow-
ing three schemes are selected as comparison counterparts in
our evaluation.

• Baseline, which is the conventional read refresh. It moves
all valid data from the RR block to another new block
when the hard RR threshold is approached.

• RL-RR [22], which employs reinforcement learning to
predict idle time intervals between two I/O requests,
and then makes use of idle time intervals to perform
optimal (partial) read refresh operations (i.e. page moves
or erase). It can minimize the side-effects of routine RR
operations, thus enhancing I/O responsiveness.

• Reallocation [20], which utilizes a matching model to
decide where to migrate hot data pages in the RR block,
and a timing selection model to decide when to migrate
the data pages in the RR blocks.

Before carrying out this experiment, the SSD device was
warmed up by running write-intensive workloads [30], to sim-
ulate an SSD that has been used for a certain period. In other
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Fig. 4: Sensitivity analysis on the value of ∆ in PhasedRR.
Note that the numbers under the X-axis are the absolute values
in the cases of ∆ is 128.

words, all SSD blocks may exhibit varying characteristics with
regard to their P/E cycles.

B. Sensitivity Study on the Value of ∆

This section carries out sensitive tests to decide the default
value of ∆ in PhasedRR, which is directly related to the size
of time window to collect working sets of read accesses and
perform phased page migrations. In fact, ∆ is a sensitivity
parameter, and the choice means an engineering trade-off. A
small value of ∆ may fail to sift the hot read data pages
and reduce the chance of migrating pages early during idle
intervals between two I/O requests, whereas a large value will
lead to an increase on page migrations before reaching the
fixed hard RR threshold.

We have conducted sensitive tests with different values of
∆, varying from 128 to 1024. Figure 4(a) and 4(b) present
the results of average I/O latency and page moves respectively,
when using varied size of ∆ with PhasedRR. As illustrated,
it can yield the best results in most traces, while the value of
∆ is 256. Therefore, we employ 256 as the default value of
∆ in PhasedRR in this paper, implying the soft RR threshold
is 22.44K.

C. Performance Results and Discussions

To validate the effectiveness of our proposed RR scheme, we
used three primary performance measures in our experiments:
(a) I/O latency, (b) RR statistics, and (c) Erase count.
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Fig. 5: I/O performance comparison after replaying the se-
lected block I/O traces. Note that ws 1 has a small size of
footprint and all accessed data can be buffered in the cache,
so that no RR operation is triggered and all RR scheduling
schemes do not make any difference.

1) I/O latency: The I/O latency is the primary indicator of
storage’s performance, and Figure 5 shows the results of I/O
latency after running the selected block traces. We can ob-
serve that the proposed PhasedRR scheme outperforms other
comparison counterparts, in terms of average read latency
and overall I/O latency. More exactly, PhasedRR declines the
average read latency by 24.5%, 46.0%, and 30.3%, in
contrast to Baseline, RL-RR, and Reallocation respectively.
Consequently, PhasedRR can reduce the average I/O latency
by 17.1%, 46.9%, and 30.0%, when comparing to the
selected comparison counterparts.

Different from the related work of Reallocation and RL-
RR, our proposal of Phased RR does not require page-level
counting to identify hot read data to trigger early page migra-
tions, which can leave more cache space for buffering the most
frequently accessed data, thus improving I/O performance.
Besides, compared with Baseline, our proposed PhasedRR
approach migrates hot read pages from the RR block to
other available block(s), once the read count of the block
reaches the pre-defined soft threshold, so that it saves the time
overhead caused by ECCs when reading on them. Note that
such page migrations can be completed in idle intervals during
I/O processing, thus alleviating I/O blocking caused by the RR
operations, and boosting I/O responsiveness.

2) RR Statistics: The section analyzes RR operations after
running the selected benchmarks with varied RR scheduling
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Fig. 6: The number of RR operations after running the selected
benchmarks, with varied RR scheduling methods.
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Fig. 7: The number of page moves occurred in RR processes
when running the benchmarks. Note that the numbers under
the X-axis are the absolute values of Baseline.

methods, and Figure 6 presents the relevant results. We define
an RR operation as at least one data page of the RR block has
been migrated to other available block.

As read, PhasedRR reduces the number of RR operations
by 0.7%, and 3.1% on average, in contrast to Baseline and
RL-RR. This is because PhasedRR does not require keeping
page-level counters in the cache, indicating more hot accessed
data can be buffered in the cache and more read requests can
be absorbed by responding the buffered data. The noticeable
clue shown in the figure is about Reallocation yields the best
in terms of RR count. We suggest this is because Reallocation
purposely distributes hot accessed data onto multiple blocks,
which can balance read access distribution, thus decreasing
the number of RR operations, even though the total number
of read operations keep unchanged.

The measure of page moves in RR processes is another
critical performance indicator of RR scheduling schemes.
Figure 7 presents the results of page moves after running the
selected traces. Obviously, it shows a similar tendency to the
results of occurred RR operations after running the selected
traces, which verifies the fact in which the number of page
moves caused by RR operations is positively related to the
number of RR operations.

3) Erase Count: The metric of erase count induced by
garbage collection (GC) and RR operations is used to reflect
the endurance of the SSD, so that we record the number of
erase operations after running the selected benchmarks, by
using four RR scheduling approaches. As the results presented
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Fig. 8: Comparison of erase operations caused by both GC and RR operations, with varied RR scheduling schemes. Note that
the numbers under the X-axis are the absolute numbers of erase operations with Baseline.

in Figure 8, the proposed PhasedRR approach yields the
smallest number of erase operations after running all selected
benchmarks, corresponding to a reduction of erases by 4.5%,
11.3%, and 2.5% in contrast to Baseline, RL-RR, and
Reallocation.

With respect to the erase count caused by GC operations,
we see PhasedRR and Baseline perform better than RL-RR and
Reallocation. This is because RL-RR and Reallocation employ
(in-cache) page-level counters to sift hot read data pages in the
RR block and migrate them in advance, for relieving negative
effects of read disturb. In other words, less cache space can
be contributed to hold hot data, thus resulting in more flush
operations onto underlying flash array, that lead to more GC
operations after running the benchmark.

Regarding the erase count caused by RR operations, Phase-
dRR preferably migrates the frequently accessed data pages
from the RR blocks having a high read error rate, which can
minimize read retries on the RR block and then slow down
the pace to the hard RR threshold. As a consequence, it yields
a smaller number of erases resulted by RR operations.

D. Identification Accuracy and Overhead Analysis

1) Hot Data Identification Accuracy: To validate the effec-
tiveness of working set-based hot data identification adopted
by PhasedRR, we calculated the accuracy of identifying hot
read data pages in the RR block. Specifically, the identification
accuracy is defined as proportions of truly hot read pages to the
identified hot pages, including the hottest pages, hotter pages,
and tepid pages have been measured. By referring to [18], a
data page can be defined as the hot read page if its read count
exceeds the average read count of all valid pages within the
same block.

According to the results shown in Figure 9, the percentage
of hot read pages in the identified hottest pages, the hotter
pages, and the tepid pages is 91.4%, 68.1%, and 59.2%
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Fig. 9: Accuracy of identifying hot access data pages after
running the selected benchmarks with PhasedRR.

respectively. In other words, it achieves the overall accuracy
of 73.8%, indicating that the majority of genuinely hot pages
are captured. Another interesting clue is about our approach
yields a low identification accuracy when replaying the trace
of web 0. We argue this is because this benchmark has a very
small number of read requests, and a major part of hot read
data pages can be buffered in the DRAM cache. As a result,
the working set-based sifting scheme may fail to locate such
hot data pages, by only analyzing the access tracks in the
working sets.

2) Time and Space Overhead: Existing approaches com-
monly employ page-level counters to identify hot read pages
for directing RR scheduling, which must lead to non-negligible
space overhead. In our evaluation, we set each page-level
counter occupies 2 bytes, implying the space overhead of
RL-RR and Reallocation approaches becomes up to 16.0MB
according to our experimental configuration.

The proposed PhasedRR method can identify the majority
of hot read pages with less overhead, by using working
sets of read accesses. With respect to each RR block, we
maintain three block-level working sets to track read accesses.
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Fig. 10: Time and space overhead after running the selected
benchmarks with PhasedRR.

In each working set, we employ a bit to reflect whether the
relevant page has been accessed or not. Figure 10 presents
the space overhead of PhasedRR after replaying the selected
benchmarks. As seen, it consumes less than 80KB memory
space for holding the working sets of read accesses, taking up
0.11% of DRAM cache space in our testbed.

The main time overhead of PhasedRR is caused by scanning
the established working sets to categorize the hot read data
pages into three types, when the RR operation is triggered.
We record the extra time cost after running the benchmarks
on the ARM-based platform, as shown in Figure 10, PhasedRR
results in time overhead by between 0.19 and 0.86 seconds,
accounting for less than 0.05% of the overall I/O time. Thus,
we suggest that the time overhead of PhasedRR is acceptable,
even running on the computing-limited platform.

V. CONCLUSION

This paper has proposed a novel read reclaim scheduling
approach, called as PhasedRR to support migrating the most
frequently accessed data pages in advance, and then decrease
negative effects of read disturb. Different from conventional
approaches that commonly employ page-level access counting
to identify the frequently read data pages, for directing RR
scheduling, PhasedRR employs working sets to track read fre-
quency on the data pages of the RR block once the block read
count approaches our pre-defined soft RR threshold, to reduce
the space overhead caused by keeping the counters. After that,
we introduce a phased migration scheme for migrating the data
pages having varied levels of read hotness in the RR block to
another block(s) in different phases, meanwhile the cold data
pages are remained in the RR block until the block read count
reaches the hard RR threshold.

Our experimental results demonstrate that our method can
noticeably improve read responsiveness by 33.6% on average
and reduce the erase operations by up to 37.8%, in contrast
to state-of-the-art RR scheduling schemes.
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