

THE AI DATA COMPANY

Presenters:

IZHAR SHARON
NASIR WASIM

Our Journey

Accelerating AI

How Modern Object Storage Transforms RAG Performance

Samsung Conference Session

Optimizing Infrastructure for Enterprise AI Workloads

Introduction to RAG (Retrieval-Augmented Generation)

- ▶ The problem with LLMs: Hallucination & Static Knowledge
- ▶ What RAG adds: Live retrieval for factual grounding
- ▶ Why this matters for AI-powered enterprise solutions
- ▶ The role of efficient retrieval in AI accuracy

RAG Technical Components

- ▶ **Tokenization:** Converting raw text into processable units for NLP models
- ▶ **Embeddings:** Transforming text tokens into high-dimensional numerical vectors that capture semantic meaning
- ▶ **Vector Databases:** Specialized systems (like Milvus/FAISS) for storing embeddings and performing similarity searches at scale
- ▶ **Chunk Storage:** Object storage systems that hold the actual document content for retrieval after vector matching
- ▶ **Similarity Search:** Mathematical operations (cosine similarity, dot product) to find semantically related content

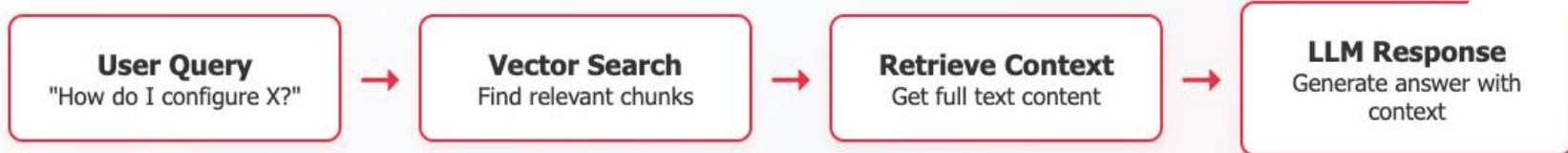
What You're Experiencing

- ▶ RAG systems work perfectly in development
- ▶ Production deployments struggle under real user load
- ▶ Response times degrade with concurrent users
- ▶ Infrastructure costs spiral unexpectedly

Everyone focuses on LLMs and vector databases.

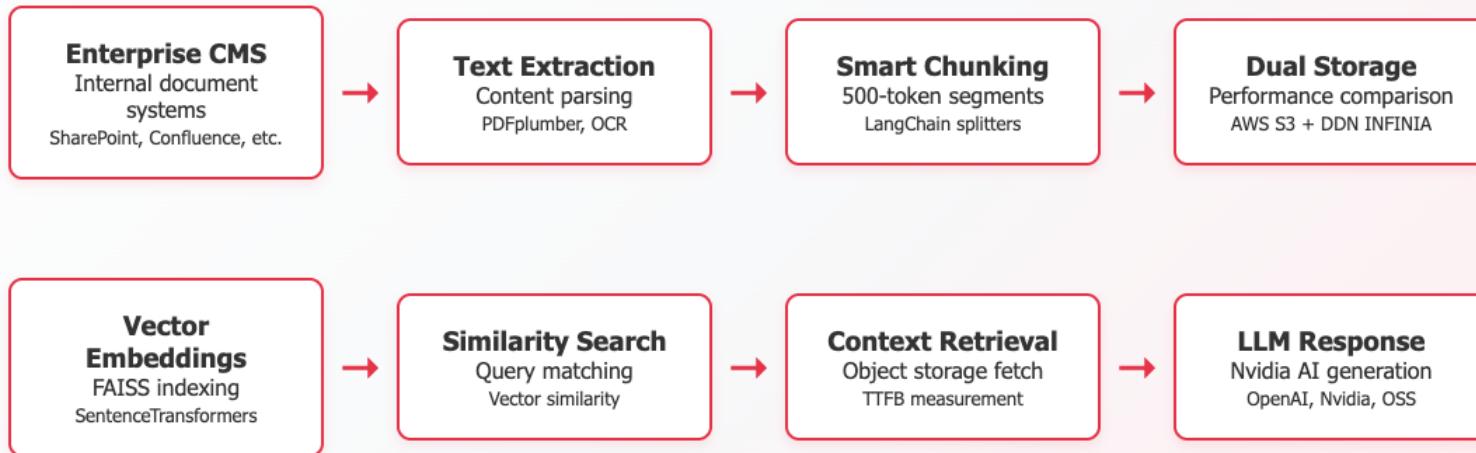
The bottleneck is actually in object storage.

Retrieval Augmented Generation (RAG)



- ▶ Solves LLM knowledge limitations without expensive fine-tuning
- ▶ Enables AI to access current, proprietary information
- ▶ Allows dynamic knowledge updates without model retraining
- ▶ Critical for enterprise AI applications

Enterprise RAG Processing Pipeline



Tech Stack

Storage: DDN INFINIA vs AWS S3 • **Vector DB:** FAISS • **LLMs:** Nvidia AI, OpenAI, Open Source • **Framework:** LangChain, Gradio

Live Demonstration

Real-World RAG Performance Test

Identical chunks stored in AWS S3 and DDN INFINIA simultaneously

- ▶ Complete document processing pipeline
- ▶ Actual network calls, authentication, serialization
- ▶ Same data, same conditions, different storage backends
- ▶ Production-realistic workload patterns

Query Performance Results

Query: "How do I check NVMe drive status using DDN commands?"

Retrieved 5 chunks from both storage systems

AWS S3

0.2565 seconds

DDN INFINIA

0.0077s

95.6%

Faster TTFB

33x

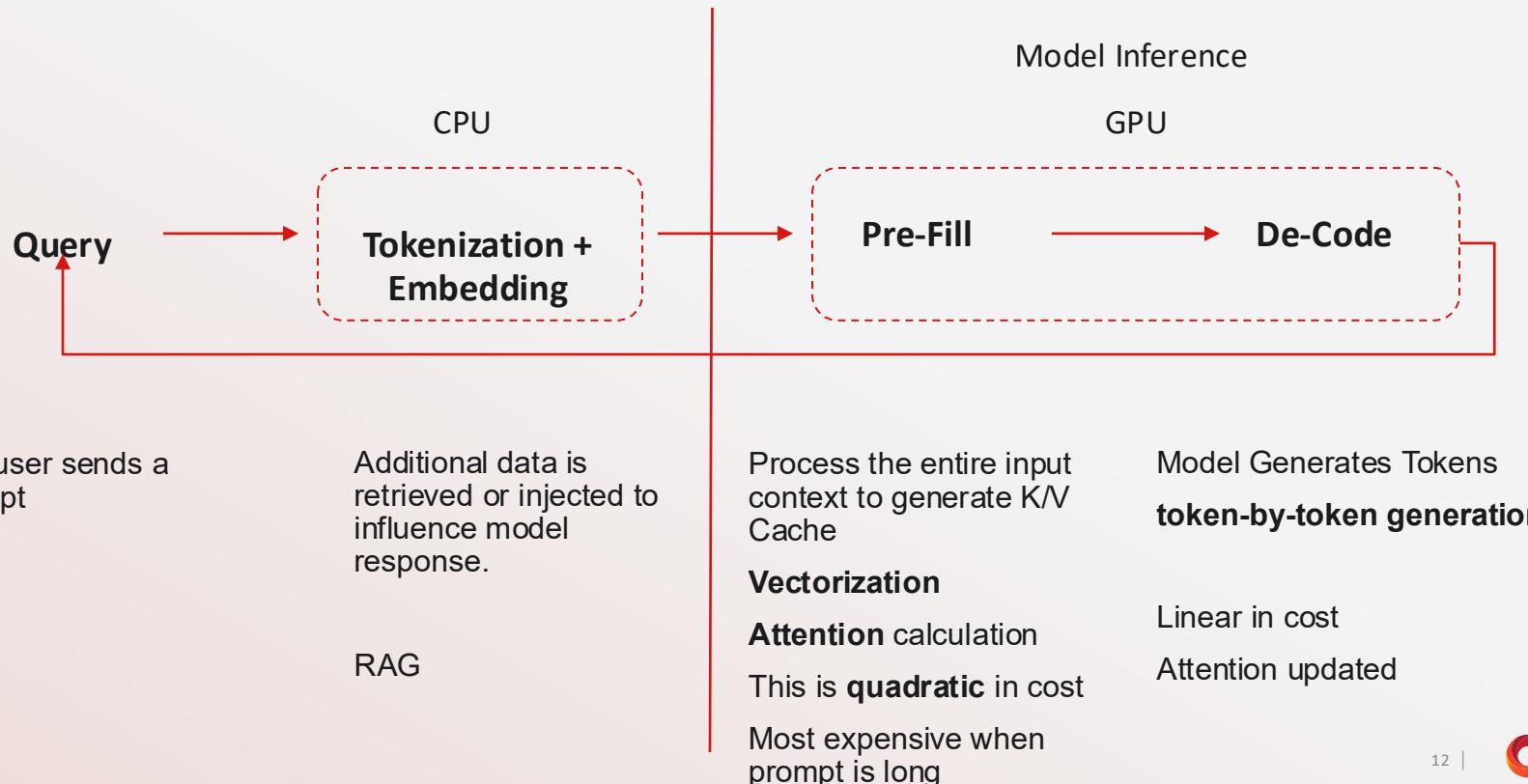
Speed Advantage

The World's Leading
Data Intelligence Platform

KV CACHE - INTRO

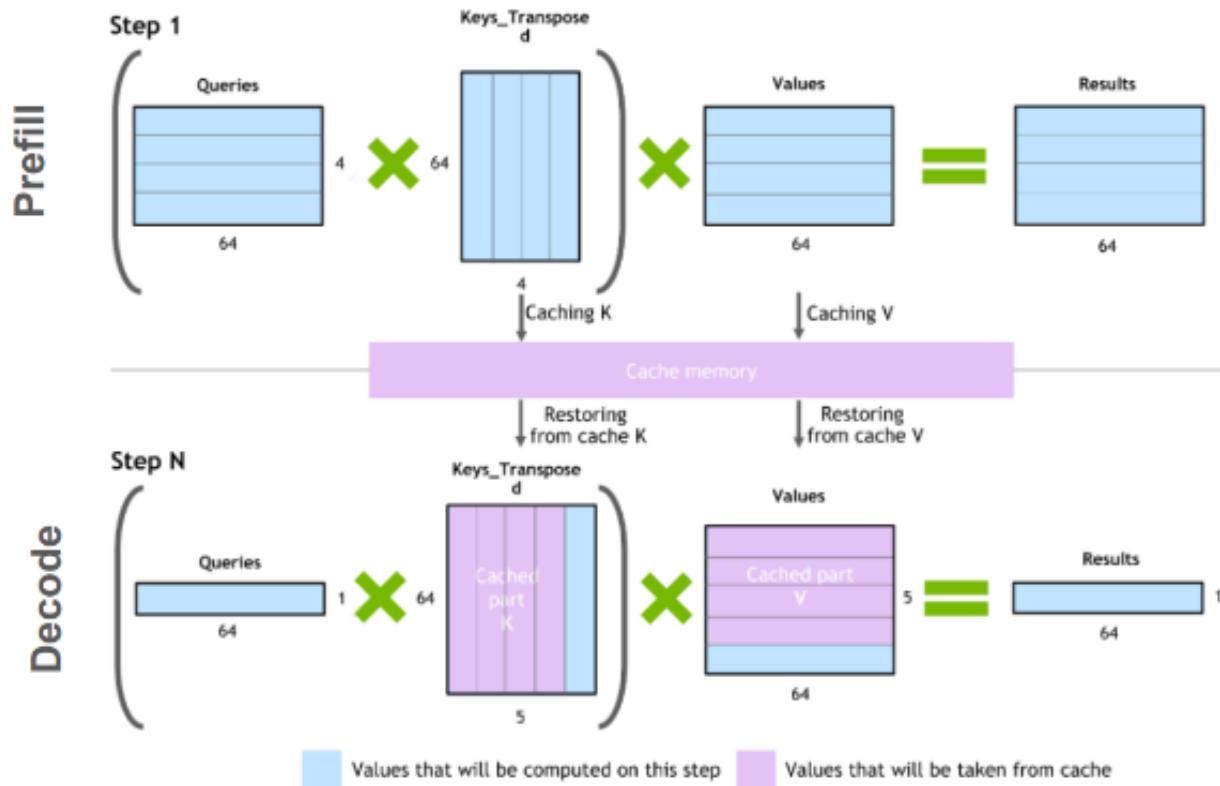
[ANY DATA] [ANY APPLICATION] [ANYWHERE]

Day in the life of a Prompt



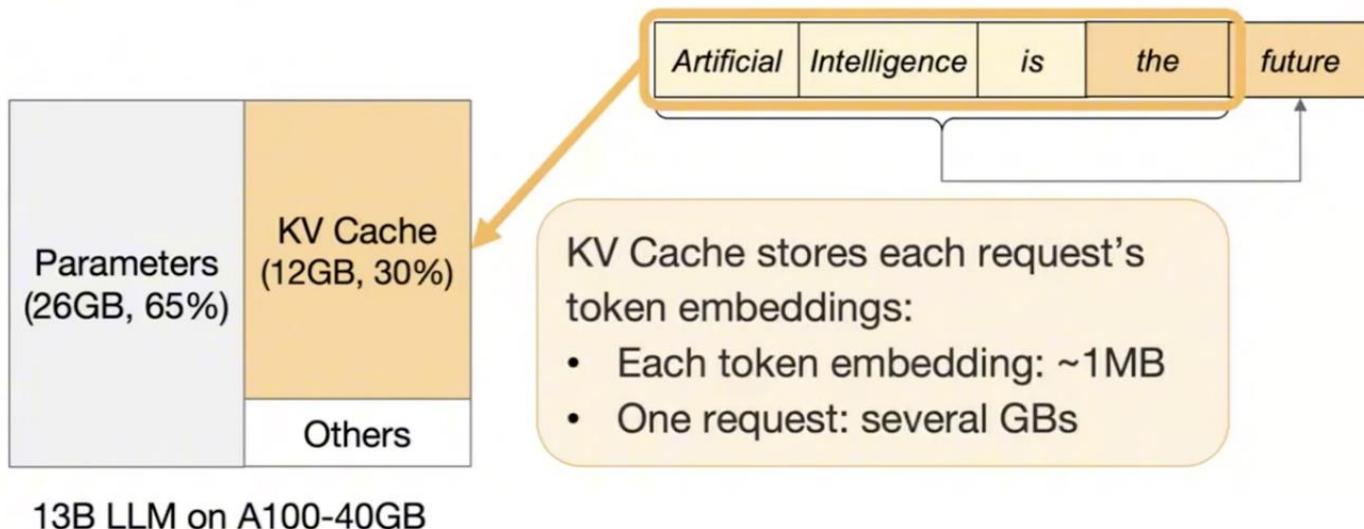
Key Value saved in memory to De-code only new tokens

$(Q * K^T) * V$ computation process with caching

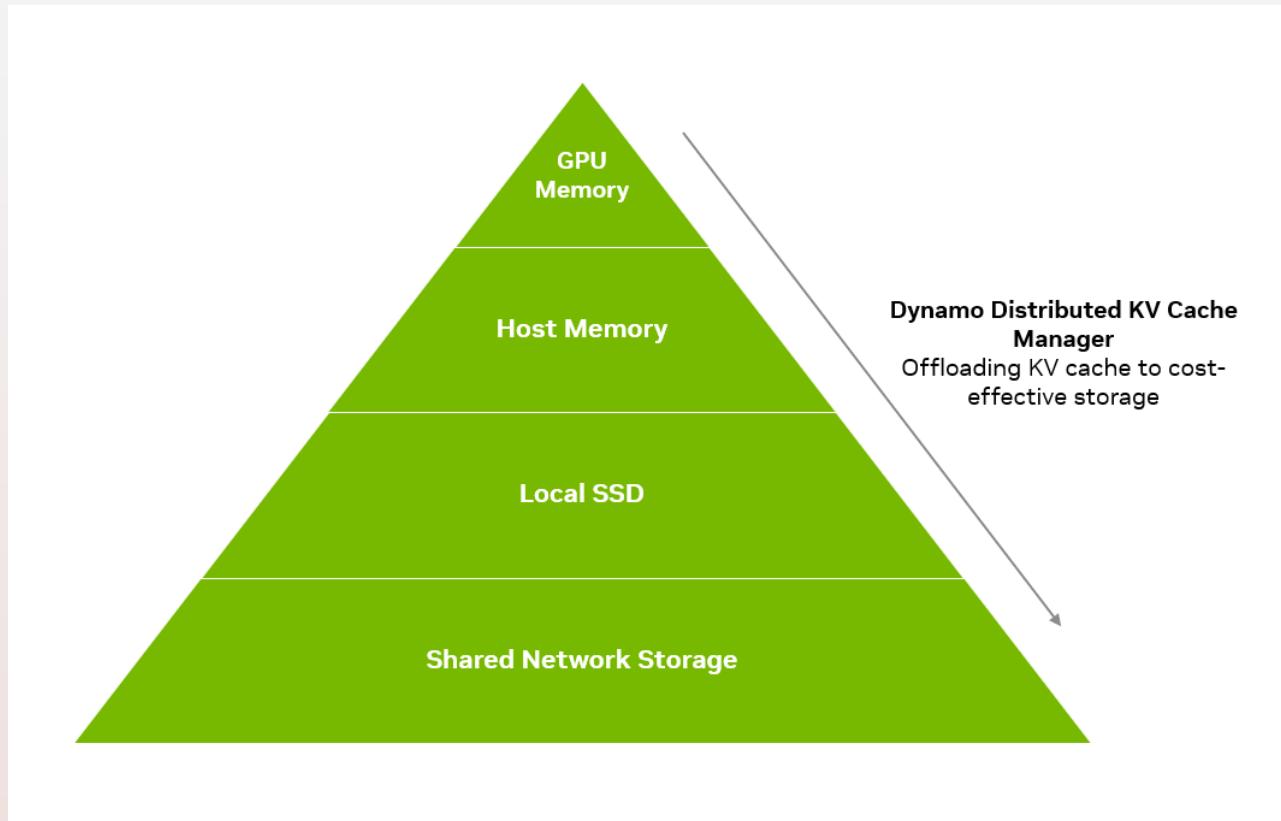


KV Cache is a bottleneck for Inference

Where does the memory go?



NVIDIA Dynamo Distributed KV Cache Manager



KV Cache Calculator

<https://huggingface.co/spaces/gaunernst/kv-cache-calculator>

Spaces gaunernst/kv-cache-calculator like 1 • Running

App Files Community

NOTE:

- For gated repos, you will need to provide your HF token in the box below. You can generate a new one at <https://huggingface.co/settings/tokens>. The token won't be stored (you can check `app.py`).
- We don't take into account KV cache savings from sliding window attention (most serving frameworks don't optimize for this anyway?).
- For Multi-head Latent Attention (MLA) used in DeepSeek-V2/V3, we calculate the compressed KV cache as intended by MLA. This might not be supported on certain framework+hardware combinations e.g. llama.cpp, MLX, which will fallback to Multi-head Attention (MHA).

model_id	KV cache size (GB)										
Qwen/QwQ-32B	3.36										
Context length	Model config										
12800	<table><thead><tr><th>Key</th><th>Value</th></tr></thead><tbody><tr><td>num_layers</td><td>64</td></tr><tr><td>max_ctx_len</td><td>40960</td></tr><tr><td>num_kv_heads</td><td>8</td></tr><tr><td>head_dim</td><td>128</td></tr></tbody></table>	Key	Value	num_layers	64	max_ctx_len	40960	num_kv_heads	8	head_dim	128
Key	Value										
num_layers	64										
max_ctx_len	40960										
num_kv_heads	8										
head_dim	128										
No. of users											
1											
KV cache dtype											
fp16/bf16											
HF token	Share via Link										

[Clear](#) [Submit](#)

What gets cached?

The cache stores:

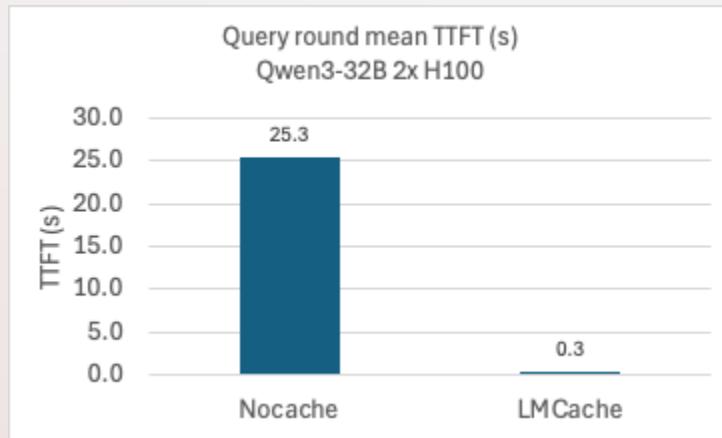
- **Key:** Token ID sequence (the matching identifier)
- **Value:** The computed key-value tensors from the attention layers for those tokens

So the workflow is:

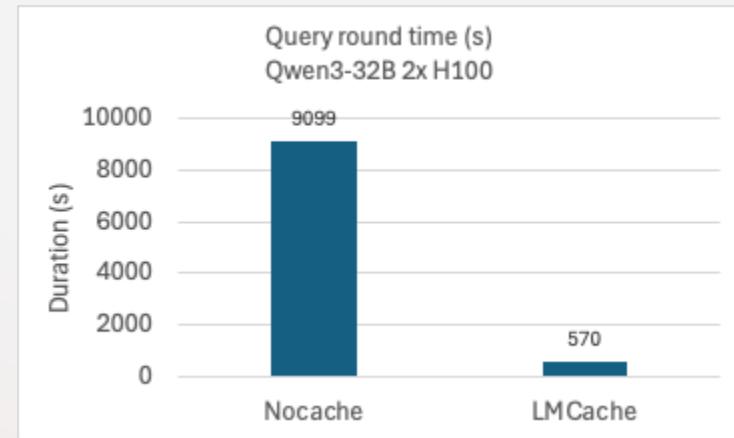
1. Input text → Tokenization → Token ID sequence
2. Match token IDs against cache keys
3. On hit: Retrieve the pre-computed KV tensors for those tokens
4. On miss: Run inference and cache the resulting KV tensors with the token sequence as the key

The cached KV tensors represent the internal attention states that would have been computed if those tokens were processed fresh - this is what enables skipping the expensive forward pass computation for the matched prefix.

DDN KV Cache Improvement - Qwen3-32B - 2x H100 GPUs



75.6x improvement



16x improvement

Scenario:

- Warm-up round: Send 100 documents of 130K tokens to the engine
- Query round: Send 4 questions about each document (400 prompts in total)
- Measure: mean TTFT across queries; total duration for the query round

ddn