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Accelerating Al

How Modern Object Storage Transforms RAG Performance

Samsung Conference Session

Optimizing Infrastructure for Enterprise AI Workloads



Introduction to RAG (Retrieval-Augmented Generation)

The problem with LLMs: Hallucination & Static Knowledge
What RAG adds: Live retrieval for factual grounding
Why this matters for AI-powered enterprise solutions

The role of efficient retrieval in Al accuracy




RAG Technical Components

Tokenization: Converting raw text into processable units for NLP models

Embeddings: Transforming text tokens into high-dimensional numerical vectors that capture semantic

meaning

Vector Databases: Specialized systems (like Milvus/FAISS) for storing embeddings and performing

similarity searches at scale

Chunk Storage: Object storage systems that hold the actual document content for retrieval after

vector matching

Similarity Search: Mathematical operations (cosine similarity, dot product) to find semantically related

content




What You're Experiencing

» RAG systems work perfectly in development
» Production deployments struggle under real user load
» Response times degrade with concurrent users

» Infrastructure costs spiral unexpectedly

Everyone focuses on LLMs and vector databases.

The bottleneck is actually in object storage.




Retrieval Augmented Generation (RAG)

. LLM Response
User Query ] =l [ Vector Search ] — [ Retrieve Context ] — Generate answer with

"How do I configure X?" Find relevant chunks Get full text content
context

» Solves LLM knowledge limitations without expensive fine-tuning
» Enables Al to access current, proprietary information
»  Allows dynamic knowledge updates without model retraining

»  Critical for enterprise Al applications



Enterprise RAG Processing Pipeline

Enterprise CMS
Internal document

systems

SharePoint, Confluence, etc.

Text Extraction
Content parsing -
PDFplumber, OCR

Smart Chunking
500-token segments
LangChain splitters

Dual Storage
- Performance comparison
AWS 53 + DDN INFINIA

Vector

Embeddings
FAISS indexing
SentenceTransformers

Context Retrieval
Object storage fetch
TTFB measurement

Similarity Search
Query matching -
Vector similarity

LLM Response
o Nvidia Al generation
OpenAl, Nvidia, OSS

Tech Stack

Storage: DDN INFINIA vs AWS S3 » Vector DB: FAISS « LLMs: Nvidia AI, OpenAl, Open Source » Framework: LangChain, Gradio




Live Demonstration

» Complete document processing pipeline

» Actual network calls, authentication, serialization
» Same data, same conditions, different storage backends

»  Production-realistic workload patterns




Query Performance Results

Query: "How do I check NVMe drive status using DDN commands?"
Retrieved 5 chunks from both storage systems

AWS S3
0.2565 seconds

DDN INFINIA

95.6% 33x

Faster TTFB Speed Advantage
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Day in the life of a Prompt

Model Inference

CPU GPU
I'/ ______________________ ‘\: I{/ ______________________________________________ \\I
Query > Tokenization+ || ! Prefil ——— De-Code |
. Embedding i _‘
The user sends a Additional data is Process the entire input Model Generates Tokens
prompt retrieved or injected to context to generate K/V token-bv-tok i
influence model Cache oken-by-token generation
A Vectorization
Attention calculation Linear in cost
RAG Attention updated

This is quadratic in cost

Most expensive when
prompt is long 12 | oddﬂ



Key Value saved in memory to De-code only new tokens

(Q* K*T) * V computation process with caching
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Values that will be computed on this step

Walues that will be taken from cache
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KV Cache is a bottleneck for Inference

Where does the memory go?

Artificial | Intelligence | is the

future

\

2

Parameters (1%(83?;3; ) | KV Cache stores each request’s
(26GB, 65%) token embeddings:
« Each token embedding: ~1MB
" Others | ° Onerequest: several GBs

13B LLM on A100-40GB
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NVIDIA Dynamo Distributed KV Cache Manager

Dynamo Distributed KV Cache
Manager
Offloading KV cache to cost-

effective storage

Shared Network Storage

. ©Oddn



KV Cache Calculator
https://huggingface.co/spaces/gaunernst/kv-cache-calculator

= Spaces

o

kv-cache-calculator © < like Running

NOTE:

App Files

o For gated repos, you will need to provide your HF token in the box below. You can generate a new one at https://huggingface.co/settings/tokens. The token won't be stored (you can check

app.py).

o We don't take into account KV cache savings from sliding window attention (most serving frameworks don't optimize for this anyway?)

o For Multi-head Latent Attention (MLA) used in DeepSeek-V2/V3, we calculate the compressed KV cache as intended by MLA. This might not be supported on certain

framework+hardware combinations e.g. llama.cpp, MLX, which will fallback to Multi-head Attention (MHA).

model_id KV cache size (GB)

Qwen/QwQ-32B 3.36

Context length
Model config

12800 <
Key
No. of users num_layers
1 ~ max_ctx_len

num_kv_heads
KV cache dtype
head_dim
p16/bf16 -

HF token

Clear Submit

¢ Share via Link

Value

64

40960

128

Community
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What gets cached?

The cache stores:

+  Key: Token ID sequence (the matching identifier)

« Value: The computed key-value tensors from the attention layers for those tokens

So the workflow is:

1. Input text — Tokenization — Token ID sequence

2. Match token IDs against cache keys

3. On hit: Retrieve the pre-computed KV tensors for those tokens

4. On miss: Run inference and cache the resulting KV tensors with the token sequence as the key

The cached KV tensors represent the internal attention states that would have been computed if
those tokens were processed fresh - this is what enables skipping the expensive forward pass
computation for the matched prefix.

17 | Oddn



DDN KV Cache Improvement - Qwen3-32B - 2x H100 GPUs

Query round mean TTFT (s) Query round time (s)
Owen3-328 2x H100 Owen3-328 2x H100
30.0 10000 9099
) 25.3
[7s3
) 20.0 = 6000
= 15.0 o
F 10,0 £ 4o0o
= 2000
-
5.0 oa 570
0.0 0 ]
Mocache LMCache MNocache LMCache
75.6x improvement 16x improvement

Scenario:

Warm-up round: Send 100 documents of 130K tokens to the engine

Query round: Send 4 questions about each document (400 prompts in total)

Measure: mean TTFT across queries; total duration for the query round

O dan
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