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What is xiRAID

xiRAID Classic – for current HW technology
In production

• Linux kernel block device for local or parallel file systems or block 

storage appliances

• Supporting high availability (drive failures as well as server failures)

• It works on any x86 server

xiRAID Opus – overcoming the kernel limits
Released Sep 2025

• Linux user space block device for NVMe-oF and Virtual environments

• Built-in VirtIO-BLK and NVMeoF target and initiator

• It works on any x86 server as well as DPU/ARM

xiRAID aggregates local and network-attached NVMe drives at the maximum possible 

performance, to create a pool of drives protected in case of multiple drives failure.



xiRAID’s advantages

Superior performance in 
normal operation

Protects NVMe drives while delivering 
97% of their theoretical performance

Demonstrated by the 3rd fastest 
production deployment worldwide in the 
IO500 list 



Helma Storage Cluster at 
NHR@FAU

https://io500.org/submissions/view/736 

5PB HA storage cluster to serve 768 GPUs

https://io500.org/submissions/view/736


The most efficient IO500 
storage cluster significantly 
improves energy efficiency

• Helma (Lustre + xiRAID) scored 

838.99 using 20 storage 

servers. Competing high scorers 

need many more storage 

servers for lower results.

• Fewer storage servers → fewer 

PSUs, NICs, fans, and less 

cooling for a given IO500-class 

result.

# System
Solution 

(Vendor)
Score

Storage 

servers

Score / 

storage 
server

3 Helma
xiRAID + Lustre 

(Xinnor)
838.99 20 41.95

4 SSC-24
WekaFS 

(WekaIO)
826.86 40 20.67

5 Shaheen III
Lustre 

(HPE)
797.04 160 4.98

7 Leonardo
ExaScaler 

(DDN)
648.96 29 22.37

9 Miyabi-G
Lustre

(DDN)
391.60 44 8.9



xiRAID’s advantages

Superior performance in 
normal operation

Protects NVMe drives while delivering 
97% of their theoretical performance

Demonstrated by the 3rd fastest 
production deployment worldwide in the 
IO500 list 

High performance in degraded 
mode

>10-30x performance boost vs 
competitive options

Joint solution brief with Solidigm 
demonstrating 25x performance 
improvement in QLC drive rebuild time

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html


RAID Engine Rebuild time Rebuild speed
WAF 

(lower is better)

Workload speed 

under rebuild

mdraid >67 days 10.5 MB/s 1.58
Read: ~100MB/s

Write: ~45MB/s

xiRAID Classic 4.3 53h 53m
25x faster rebuild

316 MB/s
30x higher throughput

1.21
23% lower WAF

Read: 44GB/s

Write: 13GB/s

290-440x higher

QLC – Rebuild With Workload

Rebuilding 1x Solidigm D5-P5336 61.44TB QLC in RAID 5 over 9 drives

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html 
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xiRAID’s advantages

Superior performance in 
normal operation

Protects NVMe drives while delivering 
97% of their theoretical performance

Demonstrated by the 3rd fastest 
production deployment worldwide in the 
IO500 list 

High performance in degraded 
mode

>10-30x performance boost vs 
competitive options

Joint solution brief with Solidigm 
demonstrating 25x performance 
improvement in QLC drive rebuild time

No PCIe taxation

Software-only solution with minimal 
CPU load for checksum calculation.

No need for dedicated hardware, freeing 
up 16PCIe Lanes and one PCIe slot for 
additional drives or network connectivity

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html


Why do we need high performance NFS server?

We need to keep GPU busy!

The most expensive part of modern Datacenter is GPU time

Different workloads require different storage 
performance characteristics

➢ Training 

➢ Checkpointing

➢ RAG



Why NFS fits AI

➢ Ubiquity & simplicity 

➢ Ships with every Linux distribution; 

one mount command and you’re 

done

➢ POSIX semantics

➢ Great fit for some AI I/O patterns

➢ Performance features, when needed

➢ NFSv4.1/4.2 sessions & delegations; 

server-side copy (v4.2); TCP 

multistreaming; NFSoRDMA, NFS 

LOCAL_IO

➢ Operational efficiency

➢ Mature observability 

(nfsstat, mountstats, /proc/fs/nfsd), 

➢ straightforward tuning (nfsd 

threads).

➢ Security options

➢ From fast sec=sys to Kerberos 

(krb5/krb5i/krb5p) when compliance 

requires it.



xiRAID + NFS

Where NFS fits for Xinnor:

➢ For small installations: a tuned NFS 

server on top of fast local RAID/NVMe 

delivers the required throughput and 

simplicity.

➢ For large installations: modular NFS 

storage can act as a component (e.g., 

pNFS data servers) inside a broader 

architectures.

➢ For NFS-on-Demand solution for GPU 

cloud installation

Our approach

1. Presenting a high-performance RAID 

(local or composable NVMe-oF) 

2. Format correctly (XFS/EXT4, aligned)

3. Export via NFSv4.2  with either TCP + 
nconnect or RDMA to hit both 

streaming bandwidth and low tail 

latency.



Competitive advantages

• Extremely fast NFSv4 node for checkpointing

• 4x times faster than tier1 NFS vendor per node

• Plug-n-Play capability for easy installations

Xinnor NFS Solution Architecture

Performance results
https://xinnor.io/blog/saturating-infiniband-

bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/  

Step by step deployment guide 

https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-

with-xiraid-backend-and-rdma-access/ 

Reference architecture
https://xinnor.io/blog/saturating-infiniband-

bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/  
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Configuration examples

1U12 Server

• Single CPU with 32 cores

• 128+ GB RAM

• 1 x 400Gbs CX7 cards

Expected Performance (2 clients):

Sequential read: ~ 45 GB/s
Sequential write: ~ 40 GB/s

2U24 Server

• Single CPU with 48 cores

• 128+ GB RAM

• 2 x 400Gbs CX7 cards

Expected Performance (2 clients):

Sequential read: ~ 90 GB/s
Sequential write: ~60 GB/s

• 12 x 2.5” PCIe Gen5 drives 

• RAID6 with 10 drives for data

• RAID1 with 2 small drives for FS 
journal  

• 20x 2.5” PCIe Gen5 drives 

• RAID50 with 18 drives for data

• RAID1 with 2 small drives for FS 
journal  



What is xiRAID for scale-up NFS servers 

Near line-rate writes 
(streaming):
Sustains ~90–95% of backend media 

bandwidth on sequential 

write/checkpoint paths—turning 

expensive links (100–400 Gb/s) into 

useful throughput instead of headroom.

Resource isolation = no 
contention with NFSD:
Run RAID workers in dedicated NUMA-

aware cpusets. Result: RAID 

rebuild/compute and NFSD request 

handling don’t starve each other.

High performance even in 
degraded mode:
On NVMe failure, xiRAID 

maintains ~90–95% of available 

performance — so data stream 

keep feeding GPUs at speed.

Fast rebuilds → QLC-friendly:
Aggressive, parallel rebuild logic 

shrinks the vulnerable window 

and keeps tail latency flat, enabling 

adoption of large QLC drives.

What it means for AI:

• Stable checkpoint 

throughput and smooth 

P95 during training.

• Predictable performance 

under load spikes and failures.

• Capacity scaling with 

QLC, without giving up GPU 

utilization.



MLPerf Storage Benchmark

Source: ML Commons, IT Press Tour 60 



Workloads simulated by MLPerf Storage

Workload
Reference 
Network

Sample size Framework Reference Quality

Image 
segmentation 
(medical)

Synthetic – from 

KiTS19
3D-Unet 146 MB PyTorch

maximize MB/s, and # of 

accelerators with >90% 

accelerator utilization

Checkpointing
LLAMA3-

{8b,70b,405b,

1t}

502M-8.9G 

file size
PyTorch

Maximize MB/s for Checkpoint 

Save and Load operations 

Minimize  checkpoint Save and 

Load Time

Image 

classification

Synthetic – from 

ImageNet
ResNet50 150 KB Tensorflow

maximize MB/s, and # of 

accelerators with >90% 

accelerator utilization

Scientific 

(cosmology)

Synthetic – from 

CosmoFlow N-

body simulation

Parameter 

prediction
2 MB Tensorflow

maximize MB/s, and # of 

accelerators with >70% 

accelerator utilization



Test bed description

The node configuration: 
48 CPU cores, 512 GB 

RAM, 8xPCIe 4.0 NVMe 

drives

Ubuntu 24.04 with a 
customized 6.16 kernel.



3D U-Net / Checkpointing storage patterns

Source: https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf 

3D U-Net Percentage of Read at Queue Depth

Queue Depth
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3D U-Net Training I/O pattern: 
• 128 KB reads

• The io queue depth distribution is 

demonstrated at the right part of the 

slide

Checkpointing I/O pattern: 
• 128 KB writes and reads

• Utilized PyTorch save/load;

• We ran the checkpointing workload with 

the psync=true parameter set
0

1

2

3

4
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Test approach

• mlpstorage training run --hosts 127.0.0.1 --num-client-hosts 1 --
client-host-memory 512  --num-accelerators {variable} --
accelerator-type h100 --model 3D U-Net  --data-dir 3D U-Net_data 
--results-dir 3D U-Net_results --param 
dataset.num_files_train=65000  reader.odirect=true 
reader.read_threads=8 reader.prefetch_size=4  --allow-run-as-root

• mlpstorage checkpointing run -rd ch_r3 -m llama3-405b --client-
host-memory-in-gb 512 -np 36 -cf CP --allow-run-as-root --param 
parameters.checkpoint.fsync=true 
parameters.framework=pytorch  parameters.model.parallelism.pip
eline=32 parameters.model.parallelism.tensor=16

Workflow
Calculate minimum dataset size → Generate the 

dataset → Run the benchmark → Generate 

report

What is “success”: throughput 
(samples/sec) while keeping Average 
Accelerator Utilization (AU) ≥ 90% (the 

benchmark’s “passing” utilization threshold; 

results pages describe throughput at ≥ 90% AU).

We will focus on 3D U-Net model training and 

LLMA-405b checkpointing as the most storage-

intensive workloads.

During testing, we used a set of tools to monitor 

parameters and reconfigure the system.

Benchmark parameters:



NFS Perf Test Toolbox

• Client-side NFS
• nfsstat -m — negotiated vers/proto/rsize/wsize.

• nfsiostat 1 — per-mount ops/s, kB/s, avg RTT/queue

• mountstats /mnt/nfs — per-op latencies.

• rpcctl client 

• Server-side NFS 
• nfsstat -s — server op mix & retrans.

• watch -n1 cat /proc/net/rpc/nfsd — RPC queues/threads.

• cat /proc/fs/nfsd/{threads,versions,portlist,max_block_size} — live params (6.16+ max_block_size).

• rpcinfo -p | egrep '2049|20049' — TCP(2049) & RDMA(20049) services.

• ss -lntp | egrep ':2049|:20049' — listeners & bound IPs.



NFS Perf Test Toolbox

• CPU & scheduler
• mpstat -P ALL 1 — per-CPU utilization.

• pidstat -t -C nfsd 1 — per-thread nfsd usage.

• perf top / perf record -g (optional deep dive).

• Storage / FS backend
• iostat -x 1 — device util/await/avgqu-sz.

• xfs_info /mnt/fs — stripe/alignment sanity (XFS).



How easy it is to do badly



Let’s enable RDMA

We need to do some tuning to achieve 

reasonable performance 



What affects performance?

Tuning Steps:

1. ​Backend Storage (don’t forget about Degraded and Rebuild mode)

2. Filesystem format and mount options

3. NFS server options and capabilities

4. Network options (won’t be covered today)

5. NFS client options

6. Test Parameters



How to read the results

Threads=1

3D U-Net 1@98%

CPU load @ Training 49%@1

Checkpointing Save / Load 2.1 GBps / 10 GBps

CPU Load @ Checkpointing 95%@1

The results have been rounded for simplicity.

Workloads Parameters

Max count of H100 GPU @ AU

Average server CPU load generated 
by NFSd @ Number of CPU cores 
utilized
Performance





Backend storage health impact

xiRAID Normal MDRAID Normal xiRAID Degraded MDRAID Degraded

3D U-Net 14 @ 93% 13 @ 90% 14 @ 91% 1 @ 56%

CPU load 3D 
U-Net

55% @ 48 50% @ 48 52% @ 48 11% @ 48

Checkpointing 
Save / Load

17.2 GBps / 

18.5 GBps

3.2 GBps  / 

18.6 GBps

15.4 GBps / 

17.6 GBps 

2.6 GBps / 

2.3 GBps

CPU load 
Checkpointing

33% @ 48 15% @ 48 31%@48 11% @ 48

Results achieved with the Server and Client setting are described further





Filesystem format and mount options
XFS default XFS OPT EXT4 DEF EXT4 OPT

3D U-Net 18@91% 22@94% 16@95% 18@91%

Checkpointing
Save / Load 17.2 GBps / 20.3 GBps 28.1GBps / 26.4 GBps 18.5 GBps / 16.4 GBps 21.8 GBps / 20.6 GBps

FIO 1M 
sequential 
WRITE/READ

55.4 GBps / 56.4 GBps 55.8 GBps / 56.4 GBps 55.4 GBps / 56.3 GBps 55.5 GBps / 56.4 GBps

FIO 4k random 
READ async

7.5 M IOPS @ 494 us 

95 lat 

7.5 M IOPS @ 477 us 

95 lat

7.5 M IOPS @ 481 us 

95 lat

7.5 M IOPS @ 475 us 

95 lat

FIO 4k random 
READ sync

577 k IOPS @ 99 us 95 

lat

582 k IOPS @ 92 us 95 

lat

557 k IOPS @ 102 us 

95 lat

571 k IOPS @ 92 us 98 

lat

Optimal XFS Settings

➢ sudo mkfs.xfs -f  -b size=4096  -d su=64k,sw=7,agcount=128  logdev=/dev/xi_raid10 
sectsize=4096,size=1024m  /dev/xi_raid6

➢ sudo mount -t xfs -o 
noatime,nodiratime,logbsize=256k,logbufs=8,allocsize=1M,largeio,inode64,logdev=/dev/xi_raid10  /dev/xi_raid6 
/srv/nfs/



File system tuning recommendations

• End-to-end alignment reduces wasted 
stripes. Format with correct RAID hints 

(e.g., mkfs.xfs -d su=<stripe>,sw=<width>) so writes 
land on full stripes when possible.

• External log reduces checkpoint stalls. Place 

the XFS log on a fast NVMe (-l logdev=/dev/… 

,sectsize=4096,size=2–4G) to cut metadata/journal 

contention during rename()+fsync() heavy 

checkpoints.

• Parallelism from AGs. Use sensible AG 
count (e.g., -d agcount=64–128 for multi-core 

servers) to enable parallel allocators without 

excessive fragmentation.

➢ Mount options deliver performance gains. 
Prefer noatime,inode64,logdev=/dev/… (and keep 

default delayed logging). 

➢ Increase device readahead for scans (blockdev --

setra 16384–65536), and smooth write-back 
with vm.dirty_bytes / vm.dirty_background_bytes.

➢ Expected impact. Typically, +20–30% 

sustained BW and smoother tails on 

sequential I/O vs. default format/mount; CPU 

per GB written often drops as well.





NFS — What’s New (Linux 5.3 → 6.17)

• Parallelism & bandwidth: nconnect (multi-TCP per mount) and 

NFSv4.1 session trunking (multi-IP, HA) remove single-flow 

limits and fully utilize fast NICs.

• Smarter data & metadata: READ_PLUS skips sending zero-filled 

holes in sparse files; writes=eager/wait gives precise write 

semantics; fewer redundant GETATTR calls

• LOCALIO (loopback): bypass TCP/RPC for same-host 

client+server; now with O_DIRECT for near-native performance; 

visibility in sysfs (6.16+)

• NFS Inter-Server Copy: Client triggers a server-to-server copy; 

bytes flow from source NFS server → destination NFS server 

without passing through the client. 



NFS server options

[nfsd]

debug=0

threads=64

host=10.10.10.1,30.30.
30.1          

port=2049

grace-time=45

lease-time=45

udp=n

tcp=y

vers4.1=y

vers4.2=y

rdma=y                   

rdma-port=20049

nfsd threads — practical recommendations

➢ Start point: threads ≈ number of effective cores servicing the NFS NIC (think 

physical cores feeding that NIC’s RX/TX queues; don’t count SMT unless 

you’ve verified wins).

➢ Rule-of-thumb bands:

➢ Small/medium fleets: 32–64 threads.

➢ Large fan-in (100s of clients) or heavy small-IO metadata: 64–96.

➢ Going >128 rarely helps and often increases lock contention/context 

switches.

➢ Turn up when: RPC backlog > 0 under load, nfsd worker CPU < 70% but 

requests queue; 

➢ Turn down when: run-queue per core > 2, system time spikes

➢ Validate: watch /proc/net/sunrpc/nfsd (queue/threads), nfsstat -s, and mpstat -P ALL 1 during load.



Server options: number of nfsd threads

Threads=1 Threads=CPU core count Threads=Defaults (8) Threads=2 CPU core count

3D U-Net 1@98% 14@93% 7@91% 10@93%

CPU load 
3D U-Net 67%@1 60%@48 78%@8 90%@48

Checkpointing 
Save / Load 2.1 GBps / 4.2 GBps 7.3 GBps / 17.5 GBps 7.3 GBps / 17.3 GBps

7.6 GBps / 17.2  

GBps

CPU Load
Checkpointing 95%@1 15%@48 20%@24 15%@48

Fio Seq 
Writes/Reads 2.9 GBps / 5.2 GBps 26.4GBps / 41.1GBps 13.2GBps / 27.5GBps 24.7GBps / 26.7GBps

Fio Random 
Reads 4k

112k @ 628 us 95% 

lat

333k @ 190 us  95% 

lat 

236 k @ 192 us 95% 

lat

331k @ 327 us 95% 

lat

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16, 
sync, trunkdiscovery     
nfsserv:/srv/nfs/ /mnt/nfstest



NFS  server configuration recommendations

➢ Defaults aren’t enough. Out-of-the-box 

NFS/NFSD settings limit throughput; they don’t 

deliver acceptable performance for modern 

ML/AI or checkpointing workloads for large – 

scale NFS servers.

➢ Set threads ≈ cores. Adjust with awareness of 

the storage backend’s CPU demand (RAID / 

erasure coding / SPDK / checksumming) so you 

don’t starve it. Recommendations differ for TCP 

with multiple streams.

➢ More threads ≠ better performance. Increasing 

nfsd threads beyond core count typically adds 

context switches and lock contention.

➢ Threads ≈ cores ⇒ NIC-limited 
performance. With proper IRQ/NUMA locality 

and no storage bottleneck, threads near core 
count achieves maximum practical NIC 
throughput (approaches line-rate).

➢ Checkpoint is different. For large 

sequential Checkpoint operations, NFSD thread 

count has negligible effect after NFSd threads 
count > 4; observed checkpoint performance 

remains unsatisfactory under current settings.

➢ Implication. Improving Checkpoint 

requires further system-level 
tuning (filesystem/journal, write-back policy, I/O 

path, and data layout)—not just NFSD thread 

adjustments.



Export options: wdelay vs no_wdelay

wdelay no_wdelay

Checkpointing 
Save / Load 7.3 GBps /17.5 GBs 12.8 GBps /17.5 GBps

FIO
Sequential write 22.6 GBps 23.5 GBps

Since the checkpointing workload is highly synchronous and latency-

sensitive, enabling the no_wdelay parameter significantly improves 

performance.

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, 
max_connect=16,sync, trunkdiscovery     
nfsserv:/srv/nfs/ /mnt/nfstest



Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16, 
nconnect=8, async, trunkdiscovery     
nfsserv:/srv/nfs/ /mnt/nfstest

Export options: sync vs async

sync async

Checkpointing 
Save / Load 12.8 GBps /17.5 GBps 13.5 GBps /18.5 GBps

FIO
Sequential write/read 23.5 GBps / 41.2 GBps 25.3 GBps / 41.2  GBps

Async mode shows slightly better performance, but on practice it tends to 

be unstable on more powerful systems.



Conclusions: NFS Server Settings for High-
Performance AI

• Enable NFSoRDMA

• Right-size nfsd threads (≈ number of physical 
cores)

• Match threads to effective cores/NUMA (avoid 
oversubscription); 

• Advertise multiple server IPs / listen on all 
interfaces

• Present a hostname with multiple A/AAAA records and ensure 
nfsd listens on them. This enables session trunking so clients 
can spread load across paths and NIC queues.

• For SYNC workloads, prefer no_wdelay (with sync 
exports)

• Eliminates small write coalescing delays; combine with a fast 
journal/log device. (If policy allows, async yields max 
throughput—let apps fsync() at checkpoints.)

Expected impact

With correct backend and 
NIC tuning, these changes 
typically improve aggregate 
throughput and stabilize 
P95/P99 by ~2–4X over 
defaults, keeping GPUs fed 
even under heavy 
checkpoints.





NFS Client: 
What we can change for high performance

Bucket 1 — NFS module 
tunables (system-wide):

• NFS requests concurrency

Bucket 2 — Per-mount options 
(tuned per share/workload):

• Parallelism: multiple streams 
and session trunking

• Transport & version

• I/O size

• Write policy



NFS module tunables (system-wide)

Param Training / Checkpointing (Throughput) Mixed (RAG)

max_session_slots ! 128–256 128–192

max_session_cb_slots 32–64 24–48

callback_nr_threads 8–12 8–12

nfs4_disable_idmapping 1 if sec=sys & unified UID/GID; else 0 per env

nfs_idmap_cache_timeout 600–1200s 600–900s

delay_retrans -1 (default backoff) 0–1

nfs_access_max_cachesize 1M 128k–256k

enable_ino64 1 1



max_session_slots (Parallelism = Bandwidth)

• What. Maximum number of outstanding NFSv4.1 requests negotiated by the client.

• Why for AI. High concurrency is crucial for saturating fast NICs during large tensor/checkpoint I/O.

• Recommend. 128–256 for bandwidth-bound training; keep closer to 64–128 for pure low-latency 

small I/O.

• Set:

# Temporary

echo 256 | sudo tee /sys/module/nfs/parameters/max_session_slots

# Persistent (/etc/modprobe.d/nfs.conf)

options nfs max_session_slots=256

• Watch-outs

Benefits depend on server slot limits; too high can increase queuing delay.



NFS client kernel module options: 
Defaults vs Optimal parameters

Defaults Optimal (Training preset)

3D U-Net 12@92% 14@93%

Checkpointing 
Save / Load 12.8GBps / 17.5GBps 17.2 GBps / 18.5 GBps

FIO
Sequential write/read 23.6 GBps / 41GBps 29.2 GBps / 43.2 GBps

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16, 
sync, trunkdiscovery     
nfsserv:/srv/nfs/ /mnt/nfstest



Per-mount options. nconnect and max_connect

• nconnect=<1..16>: Multiple TCP/RDMA connections to one server IP for a given 

mount; boosts throughput and mitigates head-of-line blocking.

• max_connect=<1..16>: For NFSv4.1+ session trunking across multiple server IPs that 

belong to the same server; improves bandwidth & resiliency. Mount via each IP (or 

rely on trunking discovery where supported).

• Rule of thumb (TCP)

• Throughput per lane ≈ 1.5–2.0 GB/s (sync-heavy, checkpoint/recording).

• IOPs per lane ≈ 110k @4k

• Ajust a number of connections with expected performance

Other options are described in the Appendix 



TCP Multiple Streams

• Single stream = single bottleneck

• ~ 2.5 GBps Reads/ 1.6 GBps Writes per single connection 

• 110k 4k IOPS per single connection

• One TCP flow ⇒ one congestion window, one socket queue, more head-of-line blocking.

• A single receive/transmit queue pair under-utilizes RSS and CPU cores.

• nconnect: parallel lanes on one mount (one server IP)

• Opens N independent TCP connections per mount.

• Aggregates congestion windows; spreads packets across RSS queues/CPUs.

• More in-flight RPCs without fighting a single socket’s limits.

• Session trunking  scale the path to data

• NFSv4.1/4.2 session trunking fans one session across multiple server IPs (more paths, HA).
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RDMA vs TCP Multistream (nconnect option) with 
1 IP

RDMA 
Defaults

RDMA 
nconnect=16 

TCP Defaults TCP nconnect=4 TCP nconnect=8 TCP nconnect=16 

3D U-Net 7@94% 7@93% 1@64% 3@96% 5@92% 6@97%

CPU load 3D U-
Net 28%@48 28%@48 71%@1 75%@4 78%@8 74%@16

Checkpointing 
Save / Load

15.7 GBps / 

16.1 GBps 

17.1 GBps / 16.4 

GBps 

1.6 GBps / 2.1 

GBps

6.2 GBps / 8.1 

GBps 

11.7 GBps / 14.2 

GBps

13.7 GBps / 

15.6 GBps

CPU load 
Checkpointing 33% @ 48 34% @ 48 72%@1 74% @ 4 78% @ 8 82% @ 16

Fio Sequential 
Write / Read

20.9 GBps / 

22.5 GBps

23.6 GBps / 23.1 

GBps 

1.6 GBps /  2.6 

GBps

7.2 GBps  / 10 

GBps

13.2 GBps  / 

14.5 GBps

17.2 GBps  / 

18.2 GBps

Fio Random 
Reads

110k @ 545 

95 lat 

335k @ 151 us 

lat

49k @ 1.3 ms 95 

lat

160k @ 570 us 

95 lat 

260k@ 337 us 

95 lat

279k @ 288 us 

95 lat

mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, nconnect={variable}, sync,
nfsserv:/srv/nfs/ /mnt/nfstest

Client mount parameters:



nconnect
count of NFSd 
threads

NFSoRDMA NFSoTCP

1 1
1@98%

2.9 GBps / 4.8 GBps

1@64%

1.6 GBps /  2.6 GBps

1 48
7@94%

20.9 GBps / 22.5 GBps

1@58%

1.6 GBps /  2.3 GBps

4 4
5@93%

10.5 GBps / 23.7 GBps 

3@96%

7.2 GBps  / 10 GBps

4 48
7@92%

22.5 GBps / 24.1 GBps

2@98%

7.2 GBps / 8.3 GBps

8 8
7@91%

13.2GBps / 23.5GBps

5@92%

13.2 GBps  / 14.5 GBps

8 48
7@94%

23.2GBps / 23.5GBps

5@90%

13.0 GBps / 13.7 GBps

16 16
7@93%

18.6 GBps / 23.1 GBps 

6@97%

17.2 GBps  / 18.2 GBps

16 48
7@93%

23.6 GBps / 23.1 GBps 

6@93%

17 GBps  / 15.7 GBps

Back to count of NFSd threads

A single 200 Gbit 
network Interface 



RDMA and TCP  Session Trunking 
(max_connect+trunkdiscovery) with 1 and 2 
ports

RDMA max_connect=16 TCP max_connect=16

3D U-Net 14@93% 10@96%

CPU load 55%@48 82%@16

Checkpointing 
Save / Load 17.2 GBps / 18.5 GBps 14.2 GBps / 17.9 GBps 

CPU load 33%@48 84%@16

Fio Sequential Read / 
Write 29.2 GBps / 43.2 GBps 19.2 GBps  / 32.8 GBps

Fio Random Reads 335k @ 154 us 95 lat 282k @ 255 us 95 lat

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, nconnect={variable}, 
max_connect={variable} sync, trunkdiscovery     
nfsserv:/srv/nfs/ /mnt/nfstest



Ubuntu session trunking issue 

With vers=4.2,proto=tcp,trunkdiscovery, 
nconnect=8,max_connect=16 the client 
creates 8 TCP sessions to IP#1 but only 1 
session to IP#2.

As result, we get poor fan-out across paths; 
we can’t reach expected throughput on 
dual-port controllers.

Workaround:

• Assign multiple secondary IPs on both 
controller ports (e.g., 4 IPs per port).

• Publish one hostname with all those A-
records.

• Remount with trunking; the client opens 
transports across many IPs, not just two.



Client side conclusions

Core module parameters (system-wide; 
set once)

• Raise concurrency ceilings on high-perf 
systems (~+15% vs defaults):

Per-mount tuning (per share; per 
workload)

• Parallelism (TCP): use nconnect=8–16 to 
open many lanes per mount. On a single 
100–200 Gb link, this typically reaches 
~80% of RDMA on the same NIC.

• Parallelism (multi-IP): enable session 
trunking 
(trunkdiscovery,max_connect=…) so 
lanes spread across multiple server 
IPs/NIC queues.

RDMA specifics

• nconnect does not massively lift 
sequential flow rate on RDMA (already 
low-overhead), but it helps small-block 
random paths that otherwise bottleneck 
on a single connection (~110k ops/s 
ceiling seen).

• For linear scale on RDMA, add session 
trunking (more IPs/paths), not just 
more lanes to one IP.



Client side conclusions

Threading guidance (server tie-in)

• TCP, single busy client: align nfsd 
threads ≈ total client lanes to avoid 
server-side queuing.

• Many clients / high-core servers: set 
threads ≈ physical cores (with 
sunrpc.svc_pool_mode=percpu).

• RDMA: fewer threads can suffice 
(lower per-op CPU); still ensure you’re 
not starved under bursts.

Ubuntu TCP trunking quirk (FYI)

• Symptom: only 1 lane to the second 
IP with nconnect>1.

• Workaround: assign multiple 
secondary IPs per port and mount 
via a hostname listing them; the client 
will fan out across all addresses.



NFS overhead: best NFS tuning vs best local file system

Local FS NFSoRDMA Threads=CPU core count RATIO

3D U-Net 22@94% 14@93% 63%

Checkpointing Save / 
Load 28.1GBps / 26.4 GBps 17.2 GBps / 18.5 GBps 61% / 70%

Fio Seq Writes/Reads 55.8 GBps / 56.4 GBps 29.2 GBps / 43.2 GBps 52% /  76% 

Fio Random Reads 4k 
(sync) 582 k IOPS @ 92 us 95 lat 335k @ 154 us  95% lat 57%
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NFS Local IO



NFS LOCAL IO

• What is it: Local fast path that preserves NFSv4 

semantics while bypassing the network stack 
when client and nfsd are on the same machine.

• Lower P95/P99 latency, fewer context 

switches/IRQs, lower CPU overhead, higher 

sustained BW for big sequential I/O.

• Caveat: Results do not reflect multi-node 

behavior (no NIC queues, no nconnect, no 

RDMA link effects).

Usecases: 

• Tier-0 Training Scratch: on-node 

NVMe exported via LocalIO keeps 

GPU feeders hot; 

• Checkpoint Sink + Async Push: 

write checkpoints locally at wire-

speed; a background job mirrors to 

NAS/object/PFS. Result: fast fsync 

locally, policy-driven durability later.

• RAG / Indexing Intermediate Store: 

local write-heavy index builds 



NFS LocalIO challenges and proposed solution

The challenges

• Single-node failure domain. 
Local media = no built-in HA. A 
disk/node failure can stall training 
and risks data loss without extra 
protection.

• Capacity & scale limits. Local 
chassis slots bound capacity; 
adding/reshuffling drives is 
intrusive and not elastic across 
nodes.

• QLC-era copy times explode. 
With 122 TB today (244 TB 
tomorrow), (re)seeding or 
evacuating LocalIO via ordinary 
NFS takes a very long time—per-
share throughput, metadata 
overhead, and network hops 
become the bottleneck.

The fix (architecture)

• Back LocalIO with a protected, 
network volume. Deliver a high-
performance, fault-tolerant block 
volume (erasure-coded) over 
NVMe/TCP or NVMe/RDMA to 
the compute node.

• Run NFS server on top of that 
volume and use LocalIO for 
apps.

• Apps see the NFS path via 
LocalIO (no NIC in the hot path), 
while durability and scale live in 
the backend.

The results

• Elastic capacity on demand. 
Provision and grow the volume 
online; the NFS export expands 
without host rebuilds.

• Mobility without bulk copying. 
Detach/reattach the volume to 
another node for maintenance or 
failover; if needed, migrate fast via 
NVMe/RDMA rather than file-level 
copies.

• Faster (re)population. Use NFS 
v4.2 inter-server copy, block-level  
copy, or direct NVMe-oF reattach to 
seed/evacuate datasets much faster 
than client-mediated NFS copies.



Storage Disaggregation and NFS LocalIO

Run an NFS server on the node
Export that filesystem and build a single, unified 
namespace. Remote nodes consume it over TCP 

(nconnect) or RDMA as appropriate.

Local I/O fast path
On the hosting node, apps hit the NFS Local I/O path 

(kernel short-circuit, no TCP/RDMA), avoiding 

extra RPC overhead and minimizing tail latency/CPU.

Why this works:
• Flexibility: Opus composes and places capacity 

exactly where compute needs it.

• Performance: direct NVMe-oF locally; NFS provides 

high-BW multi-reader/writer semantics to the rest of 

the cluster.

• Operational simplicity: one POSIX view, standard 

tools (nfsd, nfsstat, mountstats), easy policy (quotas, 

auth).

Present storage with xiRAID Opus
Expose volumes to compute nodes via NVMe-oF (RDMA 
or TCP) — line-rate, low-latency block access right on the 

node.

Format & mount locally
On each compute node, create an aligned local filesystem 

(e.g., XFS with proper su/swidth,) and mount it for the 

workloads.



NFS LOCAL IO + NVMf

NFS Dual Port, TCP NFS Dual Port, RDMA NVMf/TCP NVMf/RDMA

3D U-Net 10@96% 14@93% 14@91% 16@93% 

Checkpointing 
Save / Load

14.2 GBps / 17.9 

GBps 

17.2 GBps / 18.5 

GBps
24 GBps / 26 GBps 24GBps / 28 GBps

Fio Sequential 
Write / Read

19.2 GBps  / 32.8 

GBps

29.2 GBps / 43.2 

GBps
36.4 GBps / 39.1 GBps

43.2 GBps / 43.9 

GBps

Fio Random 
Read (async) 282k @ 255 us 95 lat

335k @ 154 us  

95% lat 

1M IOPS @  289 us 

lat  

1M IOPS @ 212 us 95 

lat  

Fio Random 
Read (sync) 282k @ 255 us 95 lat

335k @ 154 us 

95% lat

388k IOPS @ 199 us 

95 lat

365k IOPS @ 180 us 

95 lat



Conclusions (1)

• Backend storage for NFS should provide performance for network 
saturation in both normal (2-5X) and degraded (20X) modes

• Local File System should be tuned, XFS is the optimal: full stripe 
allocation, external log and AGs parallelism are the most important 
settings

• NFS Server default settings aren’t enough. 

o NFSD threads equal to the CPU cores is optimal for training but 
not enough for checkpointing

o "no_wdelay" siginificantly improve checkpointing (2X)

o "async" (15-20%) further slightly improve checkpointing but it can 
influence on system stability 
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Conclusions (2)

• NFS Client should be tuned: "max_session_slots" is the most important setting 

(15%) for the client kernel module. 

• NFS client mount options matters for both training and checkpointing: 

o nconnect is providing scaling for TCP with 1 IP. Default nconnect is fine for RDMA with 1IP

• each TCP lane as ~1.5–2.0 Gb/s (writes). With up to 16 lanes per mount, we can budget 

and accumulate throughput by adding lanes until we hit NIC or backend limits.

• With nfsd threads count aligned to client lanes, TCP+nconnect reaches ~70–85% of 

RDMA on the same interface for streaming AI I/O.

• Session trunking (TCP) aggregate performance scales close to linearly as lanes/paths 

are added. RDMA trunking scales cleanly 

• On Ubuntu, trunking may fully fan out only to the first IP. Workaround: assign multiple 
secondary IPs per port and mount via a hostname listing all of them; set max_connect ≥ 

IPs × nconnect. This restores multi-path fan-out.



Conclusions (3)

• NFS LocalIO

• RPC bypass gives low latency and  high throughput. LocalIO 

removes overhead on same-host client/server.

• Small-op boost: With asynchronous I/O, LocalIO typically 

delivers 3–4X higher performance on small operations vs 

standard NFS datapath.

• Pair with disaggregated storage for flexibility + durability. 

Mount a high-performance, protected network volume under 

LocalIO to get elastic capacity, easy scaling, and fast mobility 

(grow/move without long file-level copies) and improves 

performance.



What’s next

Objective
➢ Prove performance and stability on a bigger topology and quantify gains 

from server/client tuning at 400 Gb/s.

Topology under test:
➢ 2× storage nodes: NVMe PCIe Gen5 arrays, dual 400 Gb links each.

➢ 4× clients: 1x400GBit Each, 64 CPU Cores Each

Test matrix (A/B comparisons):
➢ NFSv4.2 RDMA vs TCP + nconnect (multichannel).

➢ SMB Direct vs SMB Multichannel

Workloads to run:
➢ MLPerf Storage “training” (datasize → datagen → run).

➢ Checkpoint streaming (1–4 MiB writes, multi-writer).

➢ GPU/Accelerator Utilization ≥ 90% where applicable.

➢ Target ≥ 90% of link rate sustained without tail blow-ups.
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Thank you for 
attending! 
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NFS server options

Server-side max payload per READ/WRITE can be raised to 4 MiB in 6.16 kernel.

# check current limit

cat /proc/fs/nfsd/max_block_size

# raise to 4 MiB (4194304) and apply

echo 4194304 | sudo tee /proc/fs/nfsd/max_block_size

sudo systemctl restart nfs-server    # or nfs-kernel-server

Client: check negotiated sizes:

nfsstat -m

grep -E 'rsize|wsize' /proc/self/mountstats



Server Options

vm.dirty_bytes = 1073741824 (1 GiB)
Absolute cap (bytes) at which a process doing writes must start writeback itself. Smooths large write bursts and prevents 
massive “all-at-once” flushes. Too high ⇒ long stalls during flush; too low ⇒ over-eager flushing.

vm.dirty_background_bytes = 268435456 (256 MiB)
Absolute threshold that wakes the kernel’s background flusher threads to start draining dirty pages. Keeps a steady 
writeback pipeline so foreground I/O isn’t jolted by sudden flushes.

vm.swappiness = 
Biases the kernel to avoid swapping anonymous memory unless truly necessary, preserving page cache for filesystem I/O. 
Good for storage servers with ample RAM (reduces cache churn).

net.core.rmem_max = 268435456
Upper bound for per-socket receive buffers. Allows TCP/UDP autotuning (and RDMA ULPs using sockets) to grow 
windows on high-BDP paths. Doesn’t force buffers by itself; it raises the ceiling.

net.core.wmem_max = 268435456
Upper bound for per-socket send buffers. Lets autotuning open bigger send windows for long, fat links (useful with multi-
stream TCP NFS).

net.core.netdev_max_backlog = 250000
Maximum packets queued on the ingress backlog when the NIC delivers faster than the stack can process. Higher values 
absorb short bursts and reduce drops; if set too high on an overloaded CPU, it can add queuing latency.



max_session_cb_slots + callback_nr_threads

What:

• max_session_cb_slots — parallel callbacks (delegations, pNFS recalls) the client can process from a 
server.

• callback_nr_threads — number of kernel threads handling those callbacks.

• Why for AI: With pNFS/flexfiles or heavy parallel opens/closes, responsive callback handling prevents 
stalls and delegation recalls from becoming a bottleneck.

• Recommend: max_session_cb_slots=32–64, callback_nr_threads=8–12 (up to 16 for metadata-intensive 
loaders).

Set:

• echo 64 | sudo tee /sys/module/nfs/parameters/max_session_cb_slots

• echo 12 | sudo tee /sys/module/nfs/parameters/callback_nr_threads

• # persistent

• options nfs max_session_cb_slots=64 callback_nr_threads=12



nfs4_disable_idmapping &
nfs_idmap_cache_timeout

What:

• nfs4_disable_idmapping=1 (with sec=sys) skips v4 idmapping and uses numeric UID/GID directly.

• nfs_idmap_cache_timeout controls TTL of idmap cache.

• Why for AI: Reduces metadata RPC churn during massive parallel file access by many workers; 
keeps stat()/open() paths light.

Recommend:

• If all nodes share identical numeric UID/GID, set nfs4_disable_idmapping=1.

• nfs_idmap_cache_timeout=600–1200s (throughput) or 300–600s (latency-sensitive small-file workloads).

• Set: options nfs nfs4_disable_idmapping=1 nfs_idmap_cache_timeout=900

• Watch-outs: Only use nfs4_disable_idmapping=1 when UID/GID spaces are truly aligned.



delay_retrans (Fast Fail for Small-IO Paths)

• What: After server replies NFS4ERR_DELAY, limit retries before returning EAGAIN.

• Why for AI: Dataloaders and micro-services often prefer quick retry over long stalls.

• Recommend: 0–1 for latency-sensitive small I/O; keep -1 (default) for pure 
bulk-throughput training.

• Set:

• echo 1 | sudo tee /sys/module/nfs/parameters/delay_retrans

• # persistent

• options nfs delay_retrans=1



nfs_access_max_cachesize (Access Cache 
Budget)

• What: Global budget for caching ACCESS results (permission checks).

• Why for AI: Many processes (workers) touching vast directory trees benefit from a larger ACCESS cache, 
cutting metadata round-trips.

• Recommend: 128k–512k for large training sets; 64k–256k for small-file/latency paths to control memory.

• Set:

• echo 262144 | sudo tee /sys/module/nfs/parameters/nfs_access_max_cachesize

• options nfs nfs_access_max_cachesize=262144

• Watch-outs: Too small ⇒ excess RPC; too large ⇒ client RAM overhead.



I/O Sizes: rsize / wsize

• Set to 1048576 (1 MiB) — current Linux client cap per RPC. Verify with nfsstat -
m and /proc/self/mountstats.

• Kernel 6.16 supports for 4M for the storage side.



Reliability & Timeouts

➢ hard (default for v4): Required for training/checkpoints to avoid silent 

corruption.

➢ timeo= / retrans=: Use defaults for bulk; for latency-sensitive 

small-IO consider slightly lower timeo and verify behavior under loss.

➢ retrans: Don’t set too low; allow the client to ride out transient blips 

during epochs.



Caching & Coherency (metadata)

• lookupcache=:
• all (aggressive): fastest for read-mostly, may delay visibility of new files created by others.

• positive: good balance for dataloaders (cache hits for existing entries, fewer negatives).

• none: strongest coherency; avoid unless required (metadata RPC storm).

• Attribute cache: acregmin/max, acdirmin/max, or coarse actimeo=<sec> to set all four.

• Training/checkpoints (read-mostly): longer timers (e.g., actimeo=600).

• Dataloaders: shorter timers (e.g., acregmax=60,acdirmax=60).

• nocto: disables close-to-open consistency; choose only on strictly read-only datasets staged once.
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