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What is xiRAID

xiRAID aggregates local and network-attached NVMe drives at the maximum possible
performance, to create a pool of drives protected in case of multiple drives failure.
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xiRAID Classic — for current HW technology

In production

+ Linux kernel block device for local or parallel file systems or block

storage appliances

«  Supporting high availability (drive failures as well as server failures)

* It works on any x86 server
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xiRAID Opus — overcoming the kernel limits
Released Sep 2025

* Linux user space block device for NVMe-oF and Virtual environments
*  Built-in VirtlO-BLK and NVMeoF target and initiator

* It works on any x86 server as well as DPU/ARM
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XIRAID’s advantages

Superior performance in
normal operation

Protects NVMe drives while delivering
97% of their theoretical performance

Demonstrated by the 3 fastest
production deployment worldwide in the
10500 list
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Helma (Lustre + xiRAID) scored
838.99 using 20 storage
servers. Competing high scorers
need many more storage
servers for lower results.

Fewer storage servers — fewer
PSUs, NICs, fans, and less
cooling for a given I0500-class
result.
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Superior performance in

Protects NVMe drives while delivering
97% of their theoretical performance

Demonstrated by the 3™ fastest
production deployment worldwide in the
10500 list

High performance in

>10-30x performance boost vs
competitive options

Joint solution brief with Solidigm
demonstrating 25x performance
improvement in QLC drive rebuild time


https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html

Rebuilding 1x Solidigm D5-P5336 61.44TB QLC in RAID 5 over 9 drives

RAID Engine Rebuild time Rebuild speed

WAF
(lower is better)

Workload speed
under rebuild

mdraid >0/ days 10.5 MB/s

1.58

Read: ~100MB/s
Write: ~45MB/s

GRAD Classicas 03N 93M 316 MB/s

25x faster rebuild 30x higher throughput

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-glc-ssds.html

1.2

23% lower WAF

Read: 44GB/s
Write: 13GB/s
290-440x higher

(Z) SOLIDIGM. RINNOR
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Superior performance in

Protects NVMe drives while delivering
97% of their theoretical performance

Demonstrated by the 3™ fastest
production deployment worldwide in the
10500 list

High performance in

>10-30x performance boost vs
competitive options

Joint solution brief with Solidigm
demonstrating 25x performance
improvement in QLC drive rebuild time

No PCle taxation

Software-only solution with minimal
CPU load for checksum calculation.

No need for dedicated hardware, freeing
up 16PCle Lanes and one PCle slot for
additional drives or network connectivity


https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html

We need to keep GPU busy!
The most expensive part of modern Datacenter is GPU time

Different workloads require different storage
performance characteristics

> Training
» Checkpointing
> RAG



» Ubiquity & simplicity ~ Operational efficiency

> Ships with every Linux distribution; > Mature observability
one mount command and you're (nfsstat, mountstats, /proc/fs/nfsd),
done » straightforward tuning (nfsd
threads).

> POSIX semantics

- Great fit for some Al I/O patterns - Security options

> From fast sec=sys to Kerberos
- Performance features, when needed (krb5/krb5i/krb5p) when compliance

. NFSv4.1/4.2 sessions & delegations: requires it.
server-side copy (v4.2); TCP
multistreaming; NFSoRDMA, NFS
LOCAL 10



Where NFS fits for Xinnor: Our approach

- For small installations: a tuned NFS Presenting a high-performance RAID
server on top of fast local RAID/NVMe (local or composable NVMe-oF)
delivers the required throughput and Format correctly (XFS/EXT4, aligned)
simplicity. . Export via NFSv4.2 with either TCP +

~ For large installations: modular NFS nconnect or RDMA to hit both
storage can act as a component (e.g., streaming bandwidth and low tail
PNFS data servers) inside a broader latency.

architectures.

> For NFS-on-Demand solution for GPU
cloud installation



Xinnor NFS Solution Architecture

Competitive advantages

+ Extremely fast NFSv4 node for checkpointing
* 4x times faster than tier1 NFS vendor per node

+ Plug-n-Play capability for easy installations

Reference architecture
https://xinnor.io/blog/saturating-infiniband-
bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/

Performance results

https://xinnor.io/blog/saturating-infiniband-
bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/

Step by step deployment guide
https://xinnor.io/bloa/how-to-build-high-performance-nfs-storage-
with-xiraid-backend-and-rdma-access/

NFSoRDMA server

xfs filesystem (aligned with RAID)

xiRAID Volumes

data log
parity RAID(s]  RAID1

B-8E0

NVMe drives
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Configuration examples

1U12 Server
» Single CPU with 32 cores -+ 12 x 2.5” PCle Gen5 drives
- 128+ GB RAM * RAID6 with 10 drives for data

* 1 x 400Gbs CX7 cards * RAID1 with 2 small drives for FS
journal

Expected Performance (2 clients):

Sequential read: ~ 45 GB/s
Sequential write: ~ 40 GB/s

2U24 Server
» Single CPU with 48 cores - 20x 2.5” PCle Gen5 drives

- 128+ GB RAM
* 2 x400Gbs CX7 cards

* RAID50 with 18 drives for data

* RAID1 with 2 small drives for FS
journal

Expected Performance (2 clients):

Sequential read: ~ 90 GB/s
Sequential write: ~60 GB/s



Near line-rate writes High performance evenin What it means for Al

(streaming): degraded mode:

Sustains ~90—-95% of backend media On NVMe failure, xiRAID * Stable checkpoint

bandwidth on sequential maintains ~90-95% of available throughput and smooth
write/checkpoint paths—turning performance — so data stream P95 during training.

expensive links (100—400 Gb/s) into keep feeding GPUs at speed. + Predictable performance
useful throughput instead of headroom. under load spikes and failures.

. . Fast rebuilds — QLC-friendly: Capacity scaling with
Resource ISO|atIOI‘I =No AggreSSiVG, parallel rebuild IOgiC QLC, without giving up GPU

contention with NFSD: shrinks the vulnerable window utilization.
Run RAID workers in dedicated NUMA-
aware cpusets. Result: RAID
rebuild/compute and NFSD request
handling don’t starve each other.

and keeps tail latency flat, enabling
adoption of large QLC drives.



MLPert Storage Benchmark

Storage resources

MLPerf Storage
Benchmark

Dataset
e.g. images

Compute resources

System Memory Accelerators
Data Batch Load data Train
e.g. tensors in batches model

Tensorflow
PYTORCH

Source: ML Commons, IT Press Tour 60

Emulated
by sleep ()

Simulated training
“think time”

Sleep for the time it takes
to process a batch before
requesting the next batch.
Sleep time is configurable
to simulate many types of
accelerators.



Workload

Image
classification

Scientific
(cosmology)

Synthetic — from
KiTS19

Synthetic — from
ImageNet

Synthetic — from
CosmoFlow N-
body simulation

Reference
Network

3D-Unet

LLAMA3-
{8b,70b,405b,
1t)

ResNet50

Parameter
prediction

Sample size

146 MB

502M-8.9G
file size

150 KB

2 MB

Framework

PyTorch

PyTorch

Tensorflow

Tensorflow

Reference Quality

maximize MB/s, and # of
accelerators with >90%
accelerator utilization

Maximize MB/s for Checkpoint
Save and Load operations
Minimize checkpoint Save and
Load Time

maximize MB/s, and # of
accelerators with >90%
accelerator utilization

maximize MB/s, and # of
accelerators with >70%
accelerator utilization



Test bed description

QM8700

200 GBitl\ ,LZOO GBit 200 GBit,L lZOO GBit

NFS Client

MLPerf storage

NFS Server

Local FS

xiRAID: RAID5

56686066606
8x NVMe

N

WV

Rand. Read:

7.5 M IOPS

R/W:
~60 GB/s

The node configuration:
48 CPU cores, 512 GB
RAM, 8xPCle 4.0 NVMe
drives

Ubuntu 24.04 with a
customized 6.16 kernel.



3D U-Net Percentage of Read at Queue Depth

3D U-Net Training I/0 pattern: 4

« 128 KB reads

* The io queue depth distribution is
demonstrated at the right part of the
slide

Checkpointing I/0 pattern:

« 128 KB writes and reads

» Utilized PyTorch save/load,;

« We ran the checkpointing workload with
the psync=true parameter set

Percentage of Operations
N

o..
%0 o®
®000000000000000°

0O 10 20 30 40 50 60 70
Queue Depth

Source: https://files.futurememorystorage.com/proceedings/2024/20240808 AIML-303-1_Vaske.pdf
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Test approach

Workflow

Calculate minimum dataset size — Generate the
dataset — Run the benchmark — Generate
report

What is “success”: throughput

(samples/sec) while keeping Average
Accelerator Utilization (AU) =90% (the
benchmark’s “passing” utilization threshold;
results pages describe throughput at = 90% AU).

We will focus on 3D U-Net model training and
LLMA-405b checkpointing as the most storage-
intensive workloads.

During testing, we used a set of tools to monitor
parameters and reconfigure the system.

Benchmark parameters:

mlpstorage training run --hosts 127.0.0.1 --num-client-hosts 1 --
client-host-memory 512 --num-accelerators {variable} --
accelerator-type h100 --model 3D U-Net --data-dir 3D U-Net_data
--results-dir 3D U-Net_results --param
dataset.num_files_train=65000 reader.odirect=true
reader.read_threads=8 reader.prefetch_size=4 --allow-run-as-root

mlpstorage checkpointing run -rd ch_r3 -m llama3-405b --client-
host-memory-in-gb 512 -np 36 -cf CP --allow-run-as-root --param
parameters.checkpoint.fsync=true
parameters.framework=pytorch parameters.model.parallelism.pip
eline=32 parameters.model.parallelism.tensor=16



Client-side NFS

nfsstat -m — negotiated vers/proto/rsize/wsize.
nfsiostat 1 — per-mount ops/s, kB/s, avg RTT/queue
mountstats /mnt/nfs — per-op latencies.

rpcctl client

Server-side NFS

nfsstat -s — server op mix & retrans.

watch -n1 cat /proc/net/rpc/nfsd — RPC queues/threads.

cat /proc/fs/nfsd/{threads,versions,portlist,max_block_size} — live params (6.16+ max_block_size).
rpcinfo -p | egrep '2049|20049' — TCP(2049) & RDMA(20049) services.

ss -Intp | egrep ':2049]:20049' — listeners & bound IPs.



CPU & scheduler

mpstat -P ALL 1 — per-CPU utilization.
pidstat -t -C nfsd 1 — per-thread nfsd usage.
perf top / perf record -g (optional deep dive).

Storage / FS backend

jostat -x 1 — device util/await/avgqu-sz.
xfs_info /mnt/fs — stripe/alignment sanity (XFS).
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2025-09-02T13:38:21.
. 304699
.306801
.307202
.307527
.311171
.328231
.328809

2025-09-02T13:57:05
2025-09-02T13:57:@5
2025-09-02T13:57:05
2025-09-02T13:57:05
2025-09-02T13:57:@5
2025-09-02T13:57:05
2025-09-02T13:57:05

109123

200696
205989
206400
206727
214275
229324
230466
228000
230258
230608
230905
234168
250804
251325
594688
596913
597288
597581
601204
616529
617093

cmputatlion_placCer.CcC. ompuUtatlon placer already ed
Running DLIO [Training & Checkpointing] with 8 process(es)
Model size: ©.000010 GB
Total checkpoint size: ©.000010 GB
Max steps per epoch: 178 = 1 x 10000 / 7 / 8 (samples per file *
Starting epoch 1: 178 steps expected
Starting block 1
Ending block 1 - 178 steps completed in 1140.51 s
Epoch 1 - Block 1 [Training] Accelerator Utilization [AU] (%): 5.
Epoch 1 - Block 1 [Training] Throughput (samples/second): 9.1782
Epoch 1 - Block 1 [Training] Computation time per step (second):
Ending epoch 1 - 178 steps completed in 1140.58 s
Starting epoch 2: 178 steps expected
Starting block 1
Ending block 1 - 178 steps completed in 1125.60 s
Epoch 2 - Block 1 [Training] Accelerator Utilization [A 1 (%): 5.
Epoch 2 — Block 1 [Training] Throughput (samples/second : 9.1699
Epoch 2 — Block 1 [Training] Computation time per step &
Ending epoch 2 - 178 steps completed in 1125.00 s
Starting epoch 3: 178 steps expected
Starting block 1
Ending block 1 - 178 steps completed in 1126.34 s
Epoch 3 - Block 1 [Training] Accelerator Utilization [AU] (%): 5.
Epoch 3 - Block 1 [Training] Throughput (samples/second): 9.1631
Epoch 3 - Block 1 [Training] Computation time per step (second):
Ending epoch 3 - 178 steps completed in 1126.35 s
Starting epoch 4: 178 steps expected
Starting block 1
Ending block 1 - 178 steps completed in 1123.69 s
Epoch 4 — Block 1 [Training] Accelerator Utilization [AU] (%): 5.
Epoch 4 — Block 1 [Training] Throughput (samples/second): 9.1853
Epoch 4 - Block 1 [Training] Computation time per step (second):
Ending epoch 4 - 178 steps completed in 1123.69 s
Starting epoch 5: 178 steps expected
Starting block 1

num files / batch size / comm size)

3253

0.3231+/-0.

3165

0.3231+/-0.

3294

©.3231+/-0.

oeoe (set

oeee (set

0000 (set

value:

value:

value:

value:

{'mean': ©.323})

{'mean': 0.323})

{'mean': ©8.323})

{'mean': ©.323})




Let's enable RDMA

[METRIC]

[METRIC] Number of Simulated Accelerators: 8

[METRIC] Training Accelerator Utilization [AU] (%): 58.5000 (8.6964)
[METRIC] Training Throughput (samples/second): 100.8224 (14.9877)

[METRIC] Training I/0 Throughput (MB/second): 14095.9107 (2095.4251)
[METRIC] train_au meet expectation: faill
[METRIC]

We need to do some tuning to achieve
reasonable performance



Tuning Steps:

Backend Storage (don't forget about Degraded and Rebuild mode)
Filesystem format and mount options

NFS server options and capabilities

Network options (won’t be covered today)

NFS client options

S 0k 0~

Test Parameters



How to read the results

Workloads Parameters
\ 4 \ %
Threads=1
3D U-Net 1@98% < Max count of H100 GPU @ AU
- Average server CPU load generated
CPU load @ Training 49%@1 < by NFSd @ Number of CPU cores
utilized

Checkpointing Save / Load 2.1 GBps /10 GBps < Performance

CPU Load @ Checkpointing 95%@1

The results have been rounded for simplicity.
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xiRAID Normal

3D U-Net 14 @ 93%
CPU load 3D o

U-Net 55% @ 48
Checkpointing 17.2 GBps /
Save / Load 18.5 GBps
CPU load 33% @ 48

Checkpointing

MDRAID Normal
13 @ 90%
50% @ 48

3.2 GBps /
18.6 GBps

15% @ 48

XxiRAID Degraded
14 @ 91%
52% @ 48

15.4 GBps /
17.6 GBps

31%@48

Results achieved with the Server and Client setting are described further

MDRAID Degraded
1@ 56%
11% @ 48

2.6 GBps /
2.3 GBps

11% @ 48
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Filesystem format and mount options

XFS default XFS OPT EXT4 DEF EXT4 OPT
3D U-Net 18@91% 22@94% 16@95% 18@91%
Sheckpolnthd 172 GBps /20.3GBps  28.1GBps /26.4 GBps  18.5 GBps / 16.4 GBps ~ 21.8 GBps / 20.6 GBps
FIO 1M
sequential 55.4 GBps / 56.4 GBps 55.8 GBps/56.4 GBps 55.4 GBps/56.3 GBps 55.5 GBps/56.4 GBps
WRITE/READ
FIO 4k random 7.5 M IOPS @494 us 7.5MIOPS @477us 7.5MIOPS @481us 7.5 M IOPS @ 475 us
READ async 95 lat 95 lat 95 lat 95 lat
FI0 4k random 577 k IOPS @ 99 us 95 582 k IOPS @ 92 us 95 557 kIOPS @ 102us 571 k IOPS @ 92 us 98
READ sync lat lat 95 lat lat

Optimal XFS Settings

> sudo mkfs.xfs -f -b size=4096 -d su=64k,sw=7,agcount=128 logdev=/dev/xi _raid10

sectsize=4096,size=1024m /dev/xi_raid6

> sudo mount -t xfs -o

noatime,nodiratime,logbsize=256k,logbufs=8,allocsize=1M,largeio,inode64,logdev=/dev/xi_raid10 /dev/xi_raid6

/srv/nfs/



End-to-end alignment reduces wasted
stripes. Format with correct RAID hints
(€e.9., mkfs.xfs -d su=<stripe>,sw=<width>) SO writes
land on full stripes when possible.

External log reduces checkpoint stalls. Place
the XFS log on a fast NVMe (-l logdev=/dev/...
,sectsize=4096,size=2-4G) t0 cut metadata/journal
contention during rename()+fsync() heavy
checkpoints.

Parallelism from AGs. Use sensible AG
count (e.g., -d agcount=64-128 for multi-core
servers) to enable parallel allocators without
excessive fragmentation.

- Mount options deliver performance gains.

Prefer noatime,inode64,logdev=/dev/... (and keep
default delayed logging).

- Increase device readahead for scans (blockdev --

setra 16384-65536), and smooth write-back
with vm.dirty_bytes / vm.dirty background_bytes.

- Expected impact. Typically, +20-30%

sustained BW and smoother tails on
sequential I/O vs. default format/mount; CPU
per GB written often drops as well.
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Parallelism & bandwidth: nconnect (multi-TCP per mount) and
NFSv4.1 session trunking (multi-IP, HA) remove single-flow
limits and fully utilize fast NICs.

Smarter data & metadata: READ_PLUS skips sending zero-filled
holes in sparse files; writes=eager/wait gives precise write
semantics; fewer redundant GETATTR calls

LOCALIO (loopback): bypass TCP/RPC for same-host
client+server; now with O_DIRECT for near-native performance;
visibility in sysfs (6.16+)

NFS Inter-Server Copy: Client triggers a server-to-server copy;
bytes flow from source NFS server — destination NFS server
without passing through the client.



NFS server options

[nfsd] nfsd threads — practical recommendations

debug=0 > Start point: threads = number of effective cores servicing the NFS NIC (think

threads=64 physical cores feeding that NIC’s RX/TX queues; don’t count SMT unless
you've verified wins).

host=10.10.10.1,30.30.

30.1 > Rule-of-thumb bands:

port=2049 > Small/medium fleets: 32-64 threads.

grace-time=45
lease-time=45
udp=n

tcp=y

vers4.l=y >

vers4.2=y
rdma=y

rdma-port=20049

> Large fan-in (100s of clients) or heavy small-IO metadata: 64—96.

> Going >128 rarely helps and often increases lock contention/context
switches.

Turn up when: RPC backlog > 0 under load, nfsd worker CPU < 70% but
requests queue;

Turn down when: run-queue per core > 2, system time spikes
Validate: watch /proc/net/sunrpc/nfsd (queue/threads), nfsstat -s, and mpstat -P ALL 1 duri ng load.



Threads=1 Threads=CPU core count Threads=Defaults (8)

3D U-Net 1@98% 14@93% 1@91%
DN  B7%@ 60%@48 78%@8

Checkpoinind 5 1 GBps /4.2 GBps 7.3 GBps /17.5 GBps 7.3 GBps / 17.3 GBps

CPU Load
Checkpointing

C\i,?iies(}Reads 29 GBps/5.2GBps 26.4GBps/41.1GBps 13.2GBps/ 27.5GBps

Fio Random 112k @ 628 us 95% 333k @ 190 us 95% 236 k@ 192 us 95%
Reads 4k lat lat lat

95%@1 15%@48 20%@24

Client mount parameters:

mount -t nfs -0 vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16,
sync, trunkdiscovery

nfsserv:/srv/nfs/ /mnt/nfstest

Threads=2 CPU core count
10@93%
90%@48

7.6 GBps /17.2
GBps

15%@48

24.7GBps / 26.7GBps

331k @ 327 us 95%
lat



- Defaults aren’t enough. Out-of-the-box
NFS/NFSD settings limit throughput; they don'’t
deliver acceptable performance for modern
ML/AIl or checkpointing workloads for large —
scale NFS servers.

. Set threads = cores. Adjust with awareness of
the storage backend’s CPU demand (RAID /
erasure coding / SPDK / checksumming) so you
don’t starve it. Recommendations differ for TCP
with multiple streams.

. More threads = better performance. Increasing
nfsd threads beyond core count typically adds
context switches and lock contention.

» Threads = cores = NIC-limited

performance. With proper IRQ/NUMA locality
and no storage bottleneck, threads near core
count achieves maximum practical NIC
throughput (approaches line-rate).

. Checkpoint is different. For large

sequential Checkpoint operations, NFSD thread
count has negligible effect after NFSd threads
count > 4; observed checkpoint performance
remains unsatisfactory under current settings.

- Implication. Improving Checkpoint

requires further system-level

tuning (filesystem/journal, write-back policy, 1/0
path, and data layout)—not just NFSD thread
adjustments.



Export options: wdelay vs no_wdelay

wdelay no_wdelay
oo 7.3 GBps /17.5 GBs 12.8 GBps /17.5 GBps
FIO
Sequential write 22.6 GBpS 23.5 GBpS

Since the checkpointing workload is highly synchronous and latency-

sensitive, enabling the no_wdelay parameter significantly improves
performance.

Client mount parameters:

mount -t nfs -0 vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576,
max_connect=16,sync, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest



sync async
Sheckpointing 12.8 GBps /17.5 GBps 13.5 GBps /18.5 GBps
Sequential write/read  23-5 GBps / 41.2 GBps 25.3 GBps / 41.2 GBps

Async mode shows slightly better performance, but on practice it tends to
be unstable on more powerful systems.

Client mount parameters:

mount -t nfs -0 vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16,
nconnect=8, async, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest



Enable NFSoRDMA

Right-size nfsd threads (= number of physical
cores)

Match threads to effective cores/NUMA (avoid
oversubscription);

Advertise multiple server IPs / listen on all
interfaces

Present a hostname with multiple A/AAAA records and ensure
nfsd listens on them. This enables session trunking so clients
can spread load across paths and NIC queues.

For SYNC workloads, prefer no_wdelay (with sync
exports)
Eliminates small write coalescing delays; combine with a fast

journal/log device. (If policy allows, async yields max
throughput—Iet apps fsync() at checkpoints.)

With correct backend and
NIC tuning, these changes
typically improve aggregate
throughput and stabilize
P95/P99 by ~2-4X over
defaults, keeping GPUs fed
even under heavy
checkpoints.
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NFS Client:
What we can change for high performance

Bucket 1 — NFS module Bucket 2 — Per-mount options
tunables (system-wide): (tuned per share/workload):

Parallelism: multiple streams
and session trunking

* NFS requests concurrency

Transport & version
l/O size

Write policy



NFS module tunables (system-wide)

Param Training / Checkpointing (Throughput) Mixed (RAG)
max_session_slots 1128-256 128-192
max_session_cb_slots 32—-64 2448
callback_nr_threads 8—12 8—12
nfs4_disable_idmapping 1 if sec=sys & unified UID/GID; else 0 per env
nfs_idmap_cache_timeout 600-1200s 600-900s
delay_retrans -1 (default backoff) 0-1
nfs_access_max_cachesize 1M 128k—256k
enable_ino64 1 1



What. Maximum number of outstanding NFSv4.1 requests negotiated by the client.
Why for Al. High concurrency is crucial for saturating fast NICs during large tensor/checkpoint I/O.

Recommend. 128-256 for bandwidth-bound training; keep closer to 64—128 for pure low-latency
small I/O.

Set:

# Temporary
echo 256 | sudo tee /sys/module/nfs/parameters/max_session_slots
# Persistent (/etc/modprobe.d/nfs.conf)

options nfs max_session_slots=256

Watch-outs

Benefits depend on server slot limits; too high can increase queuing delay.



NFS client kernel module options:
Defaults vs Optimal parameters

Defaults Optimal (Training preset)
3D U-Net 12@92% 14@93%
Sheckpointing 12.8GBps / 17.5GBps 17.2 GBps / 18.5 GBps
Sequential write/read 23.6 GBps / 41GBps 29.2 GBps / 43.2 GBps

Client mount parameters:

mount -t nfs -0 vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16,
sync, trunkdiscovery

nfsserv:/srv/nfs/ /mnt/nfstest



nconnect=<1..16>: Multiple TCP/RDMA connections to one server IP for a given
mount; boosts throughput and mitigates head-of-line blocking.

max_connect=<1..16>: For NFSv4.1+ session trunking across multiple server IPs that
belong to the same server; improves bandwidth & resiliency. Mount via each IP (or
rely on trunking discovery where supported).

Rule of thumb (TCP)
Throughput per lane = 1.5-2.0 GB/s (sync-heavy, checkpoint/recording).
|OPs per lane = 110k @4k
Ajust a number of connections with expected performance

Other options are described in the Appendix



Single stream = single bottleneck
~ 2.5 GBps Reads/ 1.6 GBps Writes per single connection
110k 4k IOPS per single connection
One TCP flow = one congestion window, one socket queue, more head-of-line blocking.
A single receive/transmit queue pair under-utilizes RSS and CPU cores.

nconnect: parallel lanes on one mount (one server IP)
Opens N independent TCP connections per mount.
Aggregates congestion windows; spreads packets across RSS queues/CPUs.
More in-flight RPCs without fighting a single socket’s limits.

Session trunking scale the path to data
NFSv4.1/4.2 session trunking fans one session across multiple server IPs (more paths, HA).



RDMA RDMA

_ TCP Defaults TCP nconnect=4  TCP nconnect=8 TCP nconnect=16
Defaults nconnect=16

3D U-Net 7@94% 7T@93% 1@64% 3@96% 5@92% 6@97%
CcPUload3DU- ogn@as  28%@48 71%@1 75%@4 78%@8 74%@16
Checkpointing 15.7 GBps/ 17.1 GBps/16.4 1.6 GBps /2.1 6.2 GBps / 8.1 11.7 GBps/14.2 13.7 GBps /
Save / Load 16.1 GBps GBps GBps GBps GBps 15.6 GBps
CPU load

Checkpointing 33% @ 48 34% @ 48 72% @1 74% @ 4 78% @ 8 82% @ 16

Fio Sequential 20.9 GBps/ 23.6 GBps/23.1 1.6 GBps/ 2.6 7.2GBps /10 13.2 GBps / 17.2 GBps /
Write / Read 22.5 GBps GBps GBps GBps 14.5 GBps 18.2 GBps

Fio Random 110k @ 545 335k @ 151 us 49k @ 1.3 ms 95 160k @ 570us 260k@ 337 us 279k @ 288 us
Reads 95 lat lat lat 95 lat 95 lat 95 lat

Client mount parameters:

mount -t nfs -0 vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, nconnect={variable}, sync,
nfsserv:/srv/nfs/ /mnt/nfstest



nconnect

16

16

count of NFSd
threads

1

48

48

48

16

48

NFSoRDMA

1@98%

2.9 GBps /4.8 GBps
71@9%4%

20.9 GBps / 22.5 GBps
S5@93%

10.5 GBps / 23.7 GBps
71@92%

22.5 GBps / 24.1 GBps
7T@91%

13.2GBps / 23.5GBps
71@9%4%

23.2GBps / 23.5GBps
71@93%

18.6 GBps / 23.1 GBps
71@93%

23.6 GBps / 23.1 GBps

NFSoTCP

1@64%

1.6 GBps / 2.6 GBps
1@58%

1.6 GBps / 2.3 GBps
3@96%

7.2 GBps /10 GBps
2@98%

7.2 GBps / 8.3 GBps
5@92%

13.2 GBps /14.5 GBps
5@90%

13.0 GBps / 13.7 GBps
6@97%

17.2 GBps /18.2 GBps
6@93%

17 GBps /15.7 GBps

A single 200 Gbit
network Interface



RDMA and TCP Session Trunking

(max_connect+trunkdiscovery) with 1 and 2
ports

RDMA max_connect=16 TCP max_connect=16
3D U-Net 14@93% 10@96%
CPU load 55% @48 82%@16
Sheckpolniing 17.2 GBps / 18.5 GBps 14.2 GBps / 17.9 GBps
CPU load 33%@48 84%@16
B oequential Read /- 29.2 GBps / 43.2 GBps 19.2 GBps /32.8 GBps
Fio Random Reads 335k @ 154 us 95 lat 282K @ 255 us 95 lat

Client mount parameters:

mount -t nfs -0 vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, nconnect={variable},
max_connect={variable} sync, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest



With vers=4.2,proto=tcp,trunkdiscovery, root@xi1NAS-D3D92343D893194A: /home/xinnor# sudo rpcctl client | grep -E 'xprt-.*tcp,'

nconnect=8,max_connect=16 the client igigigig [main]
creates 8 TCP sessions to |IP#1 but only 1 30.30.30.10
session to |IP#2. 10.10.10.10
19.10.19.18
As result, we get poor fan-out across paths; 18131818
we can't reach expected throughput on S5 b 6.1
dual-port controllers. 10.10.10.10
10.10.10.10 [main]
10.10.10.10
30:30.30.18
Workaround: 10.10.10.10
19.18.19.18
Assign multiple secondary IPs on both | 18181818
controller ports (e.g., 4 IPs per port). 10.10.10.10

10.10.10.10

Publish one hostname with all those A-
records.

Remount with trunking; the client opens
transports across many IPs, not just two.



Core module parameters (system-wide; RDMA specifics

set once) nconnect does not massively lift
Raise concurrency ceilings on high-perf sequential flow rate on RDMA (already
systems (~+15% vs defaults): low-overhead), but it helps small-block

random paths that otherwise bottleneck
on a single connection (~110k ops/s
ceiling seen).

Per-mount tuning (per share; per
workload)

Parallelism (TCP): use nconnect=8-16 to

open many lanes per mount. On a single For linear scale on RDMA, add session

100-200 Gb link, this typically reaches t"‘“kjng (Wlore 'PSI»/FEathS)’ not just
~80% of RDMA on the same NIC. more fanes to one Ir.

Parallelism (multi-IP): enable session

trunking

(trunkdiscovery,max_connect=...) so
lanes spread across multiple server
IPs/NIC queues.



Threading guidance (server tie-in) Ubuntu TCP trunking quirk (FYI)

TCP, single busy client: align nfsd Symptom: only 1 lane to the second
threads = total client lanes to avoid IP with nconnect>1.

server-side queuing. Workaround: assign multiple

Many clients / high-core servers: set secondary IPs per port and mount
threads = physical cores (with via a hostname listing them; the client
sunrpc.svc_pool mode=percpu). will fan out across all addresses.

RDMA: fewer threads can suffice
(lower per-op CPU); still ensure you’re
not starved under bursts.



NFS overhead: best NFS tuning vs best local file system

Local FS NFSoRDMA Threads=CPU core count RATIO
3D U-Net 22@94 % 14@93% 63%
Checkpointing Save/ 28.1GBps / 26.4 GBps 17.2 GBps / 18.5 GBps 61% / 70%
Fio Seq Writes/Reads  55.8 GBps / 56.4 GBps 29.2 GBps /43.2 GBps 52% | 76%
(o o Reads 4 52 kIOPS @ 92us 95 lat 335k @ 154 us 95% lat 57%
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NFS Local IO




What is it: Local fast path that preserves NFSv4

semantics while bypassing the network stack
when client and nfsd are on the same machine.

Lower P95/P99 latency, fewer context

switches/IRQs, lower CPU overhead, higher
sustained BW for big sequential /0.

Caveat: Results do not reflect multi-node

behavior (no NIC queues, no nconnect, no
RDMA link effects).

Usecases:

Tier-0 Training Scratch: on-node
NVMe exported via LocallO keeps
GPU feeders hot;

Checkpoint Sink + Async Push:
write checkpoints locally at wire-
speed; a background job mirrors to
NAS/object/PFS. Result: fast fsync
locally, policy-driven durability later.

RAG / Indexing Intermediate Store:
local write-heavy index builds



The challenges

Single-node failure domain.
Local media = no built-in HA. A
disk/node failure can stall training
and risks data loss without extra
protection.

Capacity & scale limits. Local
chassis slots bound capacity;
adding/reshuffling drives is
intrusive and not elastic across
nodes.

QLC-era copy times explode.
With 122 TB today (244 TB
tomorrow), (re)seeding or
evacuating LocallO via ordinary
NFS takes a very long time—per-
share throughput, metadata
overhead, and network hops
become the bottleneck.

The fix (architecture)

Back LocallO with a protected,
network volume. Deliver a high-
performance, fault-tolerant block
volume (erasure-coded) over
NVMe/TCP or NVMe/RDMA to

the compute node.

Run NFS server on top of that
volume and use LocallO for

apps.

Apps see the NFS path via
LocallO (no NIC in the hot path),
while durability and scale live in
the backend.

The results

Elastic capacity on demand.
Provision and grow the volume
online; the NFS export expands
without host rebuilds.

Mobility without bulk copying.
Detach/reattach the volume to
another node for maintenance or
failover; if needed, migrate fast via
NVMe/RDMA rather than file-level
copies.

Faster (re)population. Use NFS
v4.2 inter-server copy, block-level
copy, or direct NVMe-oF reattach to
seed/evacuate datasets much faster
than client-mediated NFS copies.



Storage Disaggregation and NFS LocallO

/Mount ¢ &

/NFSd

b

MLPerf storage

NVMf/RDMA
r )
o EFS RPC xiRAID Opus
dss
P 66666660

|

Computational
server 1

r Computational 1
server 2

Present storage with xiRAID Opus
Expose volumes to compute nodes via NVMe-oF (RDMA
or TCP) — line-rate, low-latency block access right on the

node.

Format & mount locally
On each compute node, create an aligned local filesystem
(e.g., XFS with proper su/swidth,) and mount it for the

workloads.

Run an NFS server on the node

Export that filesystem and build a single, unified
namespace. Remote nodes consume it over TCP
(nconnect) or RDMA as appropriate.

Local I/0 fast path

On the hosting node, apps hit the NFS Local 1/0 path
(kernel short-circuit, no TCP/RDMA), avoiding

extra RPC overhead and minimizing tail latency/CPU.

Why this works:

» Flexibility: Opus composes and places capacity
exactly where compute needs it.

« Performance: direct NVMe-oF locally; NFS provides
high-BW multi-reader/writer semantics to the rest of
the cluster.

« Operational simplicity: one POSIX view, standard
tools (nfsd, nfsstat, mountstats), easy policy (quotas,
auth).



3D U-Net

Checkpointing
Save / Load

Fio Sequential
Write / Read

Fio Random
Read (async)

Fio Random
Read (sync)

NFS Dual Port, TCP
10@96%

14.2 GBps /17.9
GBps

19.2 GBps /32.8
GBps

282k @ 255 us 95 lat

282k @ 255 us 95 lat

NFS Dual Port, RDMA
14@93%

17.2 GBps / 18.5
GBps

29.2 GBps /43.2
GBps

335k @ 154 us
95% lat

335k @ 154 us
95% lat

NVMf/TCP

14@91%

24 GBps / 26 GBps

36.4 GBps / 39.1 GBps

1M IOPS @ 289 us
lat

388k IOPS @ 199 us
95 lat

NVM{/RDMA

16@93%

24GBps / 28 GBps

43.2 GBps /43.9
GBps

1M IOPS @ 212 us 95
lat

365k IOPS @ 180 us
95 lat



Backend storage for NFS should provide performance for network
saturation in both normal and degraded modes

Local File System should be tuned, XFS is the optimal: full stripe
allocation, external log and AGs parallelism are the most important

settings
NFS Server default settings aren’t enough.

NFSD threads equal to the CPU cores is optimal for training but
not enough for checkpointing

"no_wdelay" siginificantly improve checkpointing
"async" further slightly improve checkpointing but it can
influence on system stability



NFS Client should be tuned: "max_session_slots" is the most important setting
for the client kernel module.

NFS client mount options matters for both training and checkpointing:
nconnect is providing scaling for TCP with 1 IP. Default nconnect is fine for RDMA with 11P

each TCP lane as ~1.5-2.0 Gb/s (writes). With up to 16 lanes per mount, we can budget
and accumulate throughput by adding lanes until we hit NIC or backend limits.

With nfsd threads count aligned to client lanes, TCP+nconnect reaches ~70-85% of
RDMA on the same interface for streaming Al 1/O.

Session trunking (TCP) aggregate performance scales close to linearly as lanes/paths
are added. RDMA trunking scales cleanly

On Ubuntu, trunking may fully fan out only to the first IP. Workaround: assign multiple
secondary IPs per port and mount via a hostname listing all of them; set max_connect =
IPs x nconnect. This restores multi-path fan-out.



NFS LocallO

RPC bypass gives low latency and high throughput. LocallO
removes overhead on same-host client/server.

Small-op boost: With asynchronous I/O, LocallO typically
delivers higher performance on small operations vs
standard NFS datapath.

Pair with disaggregated storage for flexibility + durability.
Mount a high-performance, protected network volume under
LocallO to get elastic capacity, easy scaling, and fast mobility
(grow/move without long file-level copies) and improves
performance.



What's next

Objective
~ Prove performance and stability on a bigger topology and quantify gains
from server/client tuning at 400 Gb/s.

Topology under test:
> 2% storage nodes: NVMe PCle Gens arrays, dual 400 Gb links each.
> 4x clients: 1x400GBit Each, 64 CPU Cores Each

Test matrix (A/B comparisons):
> NFSv4A.2 RDMA vs TCP + nconnect (multichannel).
> SMB Direct vs SMB Multichannel

Workloads to run:
» MLPerf Storage “training” (datasize — datagen — run).
> Checkpoint streaming (1-4 MiB writes, multi-writer).
» GPU/Accelerator Utllization = 90% where applicable.
~ Target = 90% of link rate sustained without tail blow-ups.
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NFS server options

Server-side max payload per READ/WRITE can be raised to 4 MiB in 6.16 kernel.
# check current limit

cat /proc/fs/nfsd/max_block_size

# raise to 4 MiB (4194304) and apply

echo 4194304 | sudo tee /proc/fs/nfsd/max_block_size

sudo systemctl| restart nfs-server # or nfs-kernel-server

Client: check negotiated sizes:
nfsstat -m

grep -E 'rsize |wsize' /proc/self/mountstats



Server Options

vm.dirty_bytes = 1073741824 (1 GiB)

Absolute cap (bytes) at which a process doing writes must start writeback itself. Smooths large write bursts and prevents
massive “all-at-once” flushes. Too high = long stalls during flush; too low = over-eager flushing.

vm.dirty_background_bytes = 268435456 (256 MiB)

Absolute threshold that wakes the kernel’'s background flusher threads to start draining dirty pages. Keeps a steady
writeback pipeline so foreground I/O isn’t jolted by sudden flushes.

vm.swappiness =

Biases the kernel to avoid swapping anonymous memory unless truly necessary, preserving page cache for filesystem 1/O.
Good for storage servers with ample RAM (reduces cache churn).

net.core.rmem_max = 268435456
Upper bound for per-socket receive buffers. Allows TCP/UDP autotuning (and RDMA ULPs using sockets) to grow
windows on high-BDP paths. Doesn'’t force buffers by itself; it raises the ceiling.

net.core.wmem_max = 268435456

Upper bound for per-socket send buffers. Lets autotuning open bigger send windows for long, fat links (useful with multi-
stream TCP NFS).

net.core.netdev_max_backlog = 250000
Maximum packets queued on the ingress backlog when the NIC delivers faster than the stack can process. Higher values
absorb short bursts and reduce drops; if set too high on an overloaded CPU, it can add queuing latency.



max_session _cb_slots + callback nr threads

What:

* max_session_cb_slots — parallel callbacks (delegations, pNFS recalls) the client can process from a
server.

* callback_nr_threads — number of kernel threads handling those callbacks.

- Why for Al: With pNFS/flexfiles or heavy parallel opens/closes, responsive callback handling prevents
stalls and delegation recalls from becoming a bottleneck.

* Recommend: max_session_cb_slots=32-64, callback_nr_threads=8-12 (up to 16 for metadata-intensive
loaders).

Set:

* echo 64 | sudo tee /sys/module/nfs/parameters/max_session_cb_slots
* echo 12 | sudo tee /sys/module/nfs/parameters/callback_nr_threads
* # persistent

e options nfs max_session_cb_slots=64 callback_nr_threads=12



nfs4 disable idmapping &
nfs _idmap_ cache timeout

What:

* nfs4_disable_idmapping=1 (with sec=sys) skips v4 idmapping and uses numeric UID/GID directly.
* nfs_idmap_cache_timeout controls TTL of idmap cache.

« Why for Al: Reduces metadata RPC churn during massive parallel file access by many workers;
keeps stat()/open() paths light.

Recommend:
If all nodes share identical numeric UID/GID, set nfs4 disable _idmapping=1.

nfs_idmap_cache_timeout=600—-1200s (throughput) or 300-600s (latency-sensitive small-file workloads).

Set: options nfs nfs4_disable_idmapping=1 nfs_idmap_cache_timeout=900

Watch-outs: Only use nfs4_disable_idmapping=1 when UID/GID spaces are truly aligned.



delay retrans (Fast Fail for Small-IO Paths)

« What: After server replies NFS4ERR _DELAY, limit retries before returning EAGAIN.
« Why for Al: Dataloaders and micro-services often prefer quick retry over long stalls.

« Recommend: 0—1 for latency-sensitive small I/O; keep -1 (default) for pure
bulk-throughput training.

« Set:
* echo 1 | sudo tee /sys/module/nfs/parameters/delay_retrans
* # persistent

e options nfs delay_retrans=1



nfs _access max_cachesize (Access Cache
Budget)

« What: Global budget for caching ACCESS results (permission checks).

- Why for Al: Many processes (workers) touching vast directory trees benefit from a larger ACCESS cache,
cutting metadata round-trips.

* Recommend: 128k—512k for large training sets; 64k—256k for small-file/latency paths to control memory.
+ Set:
* echo 262144 | sudo tee /sys/module/nfs/parameters/nfs_access_max_cachesize

* options nfs nfs_access_max_cachesize=262144

« Watch-outs: Too small = excess RPC; too large = client RAM overhead.



/O Sizes: rsize / wsize

- Set to 1048576 (1 MiB) — current Linux client cap per RPC. Verify with nfsstat -
m and /proc/self/mountstats.

« Kernel 6.16 supports for 4M for the storage side.



Reliability & Timeouts

- hard (default for v4): Required for training/checkpoints to avoid silent
corruption.

- timeo=/ retrans=: Use defaults for bulk; for latency-sensitive
small-1O consider slightly lower timeo and verify behavior under loss.

> retrans: Don't set too low; allow the client to ride out transient blips
during epochs.



Caching & Coherency (metadata)

lookupcache-=:
- all (aggressive): fastest for read-mostly, may delay visibility of new files created by others.
* positive: good balance for dataloaders (cache hits for existing entries, fewer negatives).
* none: strongest coherency; avoid unless required (metadata RPC storm).

Attribute cache: acregmin/max, acdirmin/max, or coarse actimeo=<sec> to set all four.

Training/checkpoints (read-mostly): longer timers (e.g., actimeo=600).

Dataloaders: shorter timers (e.g., acregmax=60,acdirmax=60).

nocto: disables close-to-open consistency; choose only on strictly read-only datasets staged once.
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