
Scaling Up
NFS Storage
Sergei Platonov
VP of Strategy, Xinnor

Davide Villa
CRO, Xinnor

The International Conference on Massive
Storage Systems and Technology

What is xiRAID

xiRAID Classic – for current HW technology
In production

• Linux kernel block device for local or parallel file systems or block

storage appliances

• Supporting high availability (drive failures as well as server failures)

• It works on any x86 server

xiRAID Opus – overcoming the kernel limits
Released Sep 2025

• Linux user space block device for NVMe-oF and Virtual environments

• Built-in VirtIO-BLK and NVMeoF target and initiator

• It works on any x86 server as well as DPU/ARM

xiRAID aggregates local and network-attached NVMe drives at the maximum possible

performance, to create a pool of drives protected in case of multiple drives failure.

xiRAID’s advantages

Superior performance in
normal operation

Protects NVMe drives while delivering
97% of their theoretical performance

Demonstrated by the 3rd fastest
production deployment worldwide in the
IO500 list

Helma Storage Cluster at
NHR@FAU

https://io500.org/submissions/view/736

5PB HA storage cluster to serve 768 GPUs

https://io500.org/submissions/view/736

The most efficient IO500
storage cluster significantly
improves energy efficiency

• Helma (Lustre + xiRAID) scored

838.99 using 20 storage

servers. Competing high scorers

need many more storage

servers for lower results.

• Fewer storage servers → fewer

PSUs, NICs, fans, and less

cooling for a given IO500-class

result.

System
Solution

(Vendor)
Score

Storage

servers

Score /

storage
server

3 Helma
xiRAID + Lustre

(Xinnor)
838.99 20 41.95

4 SSC-24
WekaFS

(WekaIO)
826.86 40 20.67

5 Shaheen III
Lustre

(HPE)
797.04 160 4.98

7 Leonardo
ExaScaler

(DDN)
648.96 29 22.37

9 Miyabi-G
Lustre

(DDN)
391.60 44 8.9

xiRAID’s advantages

Superior performance in
normal operation

Protects NVMe drives while delivering
97% of their theoretical performance

Demonstrated by the 3rd fastest
production deployment worldwide in the
IO500 list

High performance in degraded
mode

>10-30x performance boost vs
competitive options

Joint solution brief with Solidigm
demonstrating 25x performance
improvement in QLC drive rebuild time

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html

RAID Engine Rebuild time Rebuild speed
WAF

(lower is better)

Workload speed

under rebuild

mdraid >67 days 10.5 MB/s 1.58
Read: ~100MB/s

Write: ~45MB/s

xiRAID Classic 4.3 53h 53m
25x faster rebuild

316 MB/s
30x higher throughput

1.21
23% lower WAF

Read: 44GB/s

Write: 13GB/s

290-440x higher

QLC – Rebuild With Workload

Rebuilding 1x Solidigm D5-P5336 61.44TB QLC in RAID 5 over 9 drives

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html

xiRAID’s advantages

Superior performance in
normal operation

Protects NVMe drives while delivering
97% of their theoretical performance

Demonstrated by the 3rd fastest
production deployment worldwide in the
IO500 list

High performance in degraded
mode

>10-30x performance boost vs
competitive options

Joint solution brief with Solidigm
demonstrating 25x performance
improvement in QLC drive rebuild time

No PCIe taxation

Software-only solution with minimal
CPU load for checksum calculation.

No need for dedicated hardware, freeing
up 16PCIe Lanes and one PCIe slot for
additional drives or network connectivity

https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html
https://www.solidigm.com/products/technology/raid-rebuild-with-xiraid-and-qlc-ssds.html

Why do we need high performance NFS server?

We need to keep GPU busy!

The most expensive part of modern Datacenter is GPU time

Different workloads require different storage
performance characteristics

➢ Training

➢ Checkpointing

➢ RAG

Why NFS fits AI

➢ Ubiquity & simplicity

➢ Ships with every Linux distribution;

one mount command and you’re

done

➢ POSIX semantics

➢ Great fit for some AI I/O patterns

➢ Performance features, when needed

➢ NFSv4.1/4.2 sessions & delegations;

server-side copy (v4.2); TCP

multistreaming; NFSoRDMA, NFS

LOCAL_IO

➢ Operational efficiency

➢ Mature observability

(nfsstat, mountstats, /proc/fs/nfsd),

➢ straightforward tuning (nfsd

threads).

➢ Security options

➢ From fast sec=sys to Kerberos

(krb5/krb5i/krb5p) when compliance

requires it.

xiRAID + NFS

Where NFS fits for Xinnor:

➢ For small installations: a tuned NFS

server on top of fast local RAID/NVMe

delivers the required throughput and

simplicity.

➢ For large installations: modular NFS

storage can act as a component (e.g.,

pNFS data servers) inside a broader

architectures.

➢ For NFS-on-Demand solution for GPU

cloud installation

Our approach

1. Presenting a high-performance RAID

(local or composable NVMe-oF)

2. Format correctly (XFS/EXT4, aligned)

3. Export via NFSv4.2 with either TCP +
nconnect or RDMA to hit both

streaming bandwidth and low tail

latency.

Competitive advantages

• Extremely fast NFSv4 node for checkpointing

• 4x times faster than tier1 NFS vendor per node

• Plug-n-Play capability for easy installations

Xinnor NFS Solution Architecture

Performance results
https://xinnor.io/blog/saturating-infiniband-

bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/

Step by step deployment guide

https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-

with-xiraid-backend-and-rdma-access/

Reference architecture
https://xinnor.io/blog/saturating-infiniband-

bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/

https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/how-to-build-high-performance-nfs-storage-with-xiraid-backend-and-rdma-access/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/
https://xinnor.io/blog/saturating-infiniband-bandwidth-with-xiraid-to-keep-nvidia-dgx-busy/

Configuration examples

1U12 Server

• Single CPU with 32 cores

• 128+ GB RAM

• 1 x 400Gbs CX7 cards

Expected Performance (2 clients):

Sequential read: ~ 45 GB/s
Sequential write: ~ 40 GB/s

2U24 Server

• Single CPU with 48 cores

• 128+ GB RAM

• 2 x 400Gbs CX7 cards

Expected Performance (2 clients):

Sequential read: ~ 90 GB/s
Sequential write: ~60 GB/s

• 12 x 2.5” PCIe Gen5 drives

• RAID6 with 10 drives for data

• RAID1 with 2 small drives for FS
journal

• 20x 2.5” PCIe Gen5 drives

• RAID50 with 18 drives for data

• RAID1 with 2 small drives for FS
journal

What is xiRAID for scale-up NFS servers

Near line-rate writes
(streaming):
Sustains ~90–95% of backend media

bandwidth on sequential

write/checkpoint paths—turning

expensive links (100–400 Gb/s) into

useful throughput instead of headroom.

Resource isolation = no
contention with NFSD:
Run RAID workers in dedicated NUMA-

aware cpusets. Result: RAID

rebuild/compute and NFSD request

handling don’t starve each other.

High performance even in
degraded mode:
On NVMe failure, xiRAID

maintains ~90–95% of available

performance — so data stream

keep feeding GPUs at speed.

Fast rebuilds → QLC-friendly:
Aggressive, parallel rebuild logic

shrinks the vulnerable window

and keeps tail latency flat, enabling

adoption of large QLC drives.

What it means for AI:

• Stable checkpoint

throughput and smooth

P95 during training.

• Predictable performance

under load spikes and failures.

• Capacity scaling with

QLC, without giving up GPU

utilization.

MLPerf Storage Benchmark

Source: ML Commons, IT Press Tour 60

Workloads simulated by MLPerf Storage

Workload
Reference
Network

Sample size Framework Reference Quality

Image
segmentation
(medical)

Synthetic – from

KiTS19
3D-Unet 146 MB PyTorch

maximize MB/s, and # of

accelerators with >90%

accelerator utilization

Checkpointing
LLAMA3-

{8b,70b,405b,

1t}

502M-8.9G

file size
PyTorch

Maximize MB/s for Checkpoint

Save and Load operations

Minimize checkpoint Save and

Load Time

Image

classification

Synthetic – from

ImageNet
ResNet50 150 KB Tensorflow

maximize MB/s, and # of

accelerators with >90%

accelerator utilization

Scientific

(cosmology)

Synthetic – from

CosmoFlow N-

body simulation

Parameter

prediction
2 MB Tensorflow

maximize MB/s, and # of

accelerators with >70%

accelerator utilization

Test bed description

The node configuration:
48 CPU cores, 512 GB

RAM, 8xPCIe 4.0 NVMe

drives

Ubuntu 24.04 with a
customized 6.16 kernel.

3D U-Net / Checkpointing storage patterns

Source: https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf

3D U-Net Percentage of Read at Queue Depth

Queue Depth

P
e
rc

e
n
ta

g
e

 o
f
O

p
e
ra

ti
o
n
s

3D U-Net Training I/O pattern:
• 128 KB reads

• The io queue depth distribution is

demonstrated at the right part of the

slide

Checkpointing I/O pattern:
• 128 KB writes and reads

• Utilized PyTorch save/load;

• We ran the checkpointing workload with

the psync=true parameter set
0

1

2

3

4

0 10 20 30 40 50 60 70

https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf
https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf
https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf
https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf
https://files.futurememorystorage.com/proceedings/2024/20240808_AIML-303-1_Vaske.pdf

Test approach

• mlpstorage training run --hosts 127.0.0.1 --num-client-hosts 1 --
client-host-memory 512 --num-accelerators {variable} --
accelerator-type h100 --model 3D U-Net --data-dir 3D U-Net_data
--results-dir 3D U-Net_results --param
dataset.num_files_train=65000 reader.odirect=true
reader.read_threads=8 reader.prefetch_size=4 --allow-run-as-root

• mlpstorage checkpointing run -rd ch_r3 -m llama3-405b --client-
host-memory-in-gb 512 -np 36 -cf CP --allow-run-as-root --param
parameters.checkpoint.fsync=true
parameters.framework=pytorch parameters.model.parallelism.pip
eline=32 parameters.model.parallelism.tensor=16

Workflow
Calculate minimum dataset size → Generate the

dataset → Run the benchmark → Generate

report

What is “success”: throughput
(samples/sec) while keeping Average
Accelerator Utilization (AU) ≥ 90% (the

benchmark’s “passing” utilization threshold;

results pages describe throughput at ≥ 90% AU).

We will focus on 3D U-Net model training and

LLMA-405b checkpointing as the most storage-

intensive workloads.

During testing, we used a set of tools to monitor

parameters and reconfigure the system.

Benchmark parameters:

NFS Perf Test Toolbox

• Client-side NFS
• nfsstat -m — negotiated vers/proto/rsize/wsize.

• nfsiostat 1 — per-mount ops/s, kB/s, avg RTT/queue

• mountstats /mnt/nfs — per-op latencies.

• rpcctl client

• Server-side NFS
• nfsstat -s — server op mix & retrans.

• watch -n1 cat /proc/net/rpc/nfsd — RPC queues/threads.

• cat /proc/fs/nfsd/{threads,versions,portlist,max_block_size} — live params (6.16+ max_block_size).

• rpcinfo -p | egrep '2049|20049' — TCP(2049) & RDMA(20049) services.

• ss -lntp | egrep ':2049|:20049' — listeners & bound IPs.

NFS Perf Test Toolbox

• CPU & scheduler
• mpstat -P ALL 1 — per-CPU utilization.

• pidstat -t -C nfsd 1 — per-thread nfsd usage.

• perf top / perf record -g (optional deep dive).

• Storage / FS backend
• iostat -x 1 — device util/await/avgqu-sz.

• xfs_info /mnt/fs — stripe/alignment sanity (XFS).

How easy it is to do badly

Let’s enable RDMA

We need to do some tuning to achieve

reasonable performance

What affects performance?

Tuning Steps:

1. ​Backend Storage (don’t forget about Degraded and Rebuild mode)

2. Filesystem format and mount options

3. NFS server options and capabilities

4. Network options (won’t be covered today)

5. NFS client options

6. Test Parameters

How to read the results

Threads=1

3D U-Net 1@98%

CPU load @ Training 49%@1

Checkpointing Save / Load 2.1 GBps / 10 GBps

CPU Load @ Checkpointing 95%@1

The results have been rounded for simplicity.

Workloads Parameters

Max count of H100 GPU @ AU

Average server CPU load generated
by NFSd @ Number of CPU cores
utilized
Performance

Backend storage health impact

xiRAID Normal MDRAID Normal xiRAID Degraded MDRAID Degraded

3D U-Net 14 @ 93% 13 @ 90% 14 @ 91% 1 @ 56%

CPU load 3D
U-Net

55% @ 48 50% @ 48 52% @ 48 11% @ 48

Checkpointing
Save / Load

17.2 GBps /

18.5 GBps

3.2 GBps /

18.6 GBps

15.4 GBps /

17.6 GBps

2.6 GBps /

2.3 GBps

CPU load
Checkpointing

33% @ 48 15% @ 48 31%@48 11% @ 48

Results achieved with the Server and Client setting are described further

Filesystem format and mount options
XFS default XFS OPT EXT4 DEF EXT4 OPT

3D U-Net 18@91% 22@94% 16@95% 18@91%

Checkpointing
Save / Load 17.2 GBps / 20.3 GBps 28.1GBps / 26.4 GBps 18.5 GBps / 16.4 GBps 21.8 GBps / 20.6 GBps

FIO 1M
sequential
WRITE/READ

55.4 GBps / 56.4 GBps 55.8 GBps / 56.4 GBps 55.4 GBps / 56.3 GBps 55.5 GBps / 56.4 GBps

FIO 4k random
READ async

7.5 M IOPS @ 494 us

95 lat

7.5 M IOPS @ 477 us

95 lat

7.5 M IOPS @ 481 us

95 lat

7.5 M IOPS @ 475 us

95 lat

FIO 4k random
READ sync

577 k IOPS @ 99 us 95

lat

582 k IOPS @ 92 us 95

lat

557 k IOPS @ 102 us

95 lat

571 k IOPS @ 92 us 98

lat

Optimal XFS Settings

➢ sudo mkfs.xfs -f -b size=4096 -d su=64k,sw=7,agcount=128 logdev=/dev/xi_raid10
sectsize=4096,size=1024m /dev/xi_raid6

➢ sudo mount -t xfs -o
noatime,nodiratime,logbsize=256k,logbufs=8,allocsize=1M,largeio,inode64,logdev=/dev/xi_raid10 /dev/xi_raid6
/srv/nfs/

File system tuning recommendations

• End-to-end alignment reduces wasted
stripes. Format with correct RAID hints

(e.g., mkfs.xfs -d su=<stripe>,sw=<width>) so writes
land on full stripes when possible.

• External log reduces checkpoint stalls. Place

the XFS log on a fast NVMe (-l logdev=/dev/…

,sectsize=4096,size=2–4G) to cut metadata/journal

contention during rename()+fsync() heavy

checkpoints.

• Parallelism from AGs. Use sensible AG
count (e.g., -d agcount=64–128 for multi-core

servers) to enable parallel allocators without

excessive fragmentation.

➢ Mount options deliver performance gains.
Prefer noatime,inode64,logdev=/dev/… (and keep

default delayed logging).

➢ Increase device readahead for scans (blockdev --

setra 16384–65536), and smooth write-back
with vm.dirty_bytes / vm.dirty_background_bytes.

➢ Expected impact. Typically, +20–30%

sustained BW and smoother tails on

sequential I/O vs. default format/mount; CPU

per GB written often drops as well.

NFS — What’s New (Linux 5.3 → 6.17)

• Parallelism & bandwidth: nconnect (multi-TCP per mount) and

NFSv4.1 session trunking (multi-IP, HA) remove single-flow

limits and fully utilize fast NICs.

• Smarter data & metadata: READ_PLUS skips sending zero-filled

holes in sparse files; writes=eager/wait gives precise write

semantics; fewer redundant GETATTR calls

• LOCALIO (loopback): bypass TCP/RPC for same-host

client+server; now with O_DIRECT for near-native performance;

visibility in sysfs (6.16+)

• NFS Inter-Server Copy: Client triggers a server-to-server copy;

bytes flow from source NFS server → destination NFS server

without passing through the client.

NFS server options

[nfsd]

debug=0

threads=64

host=10.10.10.1,30.30.
30.1

port=2049

grace-time=45

lease-time=45

udp=n

tcp=y

vers4.1=y

vers4.2=y

rdma=y

rdma-port=20049

nfsd threads — practical recommendations

➢ Start point: threads ≈ number of effective cores servicing the NFS NIC (think

physical cores feeding that NIC’s RX/TX queues; don’t count SMT unless

you’ve verified wins).

➢ Rule-of-thumb bands:

➢ Small/medium fleets: 32–64 threads.

➢ Large fan-in (100s of clients) or heavy small-IO metadata: 64–96.

➢ Going >128 rarely helps and often increases lock contention/context

switches.

➢ Turn up when: RPC backlog > 0 under load, nfsd worker CPU < 70% but

requests queue;

➢ Turn down when: run-queue per core > 2, system time spikes

➢ Validate: watch /proc/net/sunrpc/nfsd (queue/threads), nfsstat -s, and mpstat -P ALL 1 during load.

Server options: number of nfsd threads

Threads=1 Threads=CPU core count Threads=Defaults (8) Threads=2 CPU core count

3D U-Net 1@98% 14@93% 7@91% 10@93%

CPU load
3D U-Net 67%@1 60%@48 78%@8 90%@48

Checkpointing
Save / Load 2.1 GBps / 4.2 GBps 7.3 GBps / 17.5 GBps 7.3 GBps / 17.3 GBps

7.6 GBps / 17.2

GBps

CPU Load
Checkpointing 95%@1 15%@48 20%@24 15%@48

Fio Seq
Writes/Reads 2.9 GBps / 5.2 GBps 26.4GBps / 41.1GBps 13.2GBps / 27.5GBps 24.7GBps / 26.7GBps

Fio Random
Reads 4k

112k @ 628 us 95%

lat

333k @ 190 us 95%

lat

236 k @ 192 us 95%

lat

331k @ 327 us 95%

lat

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16,
sync, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest

NFS server configuration recommendations

➢ Defaults aren’t enough. Out-of-the-box

NFS/NFSD settings limit throughput; they don’t

deliver acceptable performance for modern

ML/AI or checkpointing workloads for large –

scale NFS servers.

➢ Set threads ≈ cores. Adjust with awareness of

the storage backend’s CPU demand (RAID /

erasure coding / SPDK / checksumming) so you

don’t starve it. Recommendations differ for TCP

with multiple streams.

➢ More threads ≠ better performance. Increasing

nfsd threads beyond core count typically adds

context switches and lock contention.

➢ Threads ≈ cores ⇒ NIC-limited
performance. With proper IRQ/NUMA locality

and no storage bottleneck, threads near core
count achieves maximum practical NIC
throughput (approaches line-rate).

➢ Checkpoint is different. For large

sequential Checkpoint operations, NFSD thread

count has negligible effect after NFSd threads
count > 4; observed checkpoint performance

remains unsatisfactory under current settings.

➢ Implication. Improving Checkpoint

requires further system-level
tuning (filesystem/journal, write-back policy, I/O

path, and data layout)—not just NFSD thread

adjustments.

Export options: wdelay vs no_wdelay

wdelay no_wdelay

Checkpointing
Save / Load 7.3 GBps /17.5 GBs 12.8 GBps /17.5 GBps

FIO
Sequential write 22.6 GBps 23.5 GBps

Since the checkpointing workload is highly synchronous and latency-

sensitive, enabling the no_wdelay parameter significantly improves

performance.

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576,
max_connect=16,sync, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16,
nconnect=8, async, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest

Export options: sync vs async

sync async

Checkpointing
Save / Load 12.8 GBps /17.5 GBps 13.5 GBps /18.5 GBps

FIO
Sequential write/read 23.5 GBps / 41.2 GBps 25.3 GBps / 41.2 GBps

Async mode shows slightly better performance, but on practice it tends to

be unstable on more powerful systems.

Conclusions: NFS Server Settings for High-
Performance AI

• Enable NFSoRDMA

• Right-size nfsd threads (≈ number of physical
cores)

• Match threads to effective cores/NUMA (avoid
oversubscription);

• Advertise multiple server IPs / listen on all
interfaces

• Present a hostname with multiple A/AAAA records and ensure
nfsd listens on them. This enables session trunking so clients
can spread load across paths and NIC queues.

• For SYNC workloads, prefer no_wdelay (with sync
exports)

• Eliminates small write coalescing delays; combine with a fast
journal/log device. (If policy allows, async yields max
throughput—let apps fsync() at checkpoints.)

Expected impact

With correct backend and
NIC tuning, these changes
typically improve aggregate
throughput and stabilize
P95/P99 by ~2–4X over
defaults, keeping GPUs fed
even under heavy
checkpoints.

NFS Client:
What we can change for high performance

Bucket 1 — NFS module
tunables (system-wide):

• NFS requests concurrency

Bucket 2 — Per-mount options
(tuned per share/workload):

• Parallelism: multiple streams
and session trunking

• Transport & version

• I/O size

• Write policy

NFS module tunables (system-wide)

Param Training / Checkpointing (Throughput) Mixed (RAG)

max_session_slots ! 128–256 128–192

max_session_cb_slots 32–64 24–48

callback_nr_threads 8–12 8–12

nfs4_disable_idmapping 1 if sec=sys & unified UID/GID; else 0 per env

nfs_idmap_cache_timeout 600–1200s 600–900s

delay_retrans -1 (default backoff) 0–1

nfs_access_max_cachesize 1M 128k–256k

enable_ino64 1 1

max_session_slots (Parallelism = Bandwidth)

• What. Maximum number of outstanding NFSv4.1 requests negotiated by the client.

• Why for AI. High concurrency is crucial for saturating fast NICs during large tensor/checkpoint I/O.

• Recommend. 128–256 for bandwidth-bound training; keep closer to 64–128 for pure low-latency

small I/O.

• Set:

Temporary

echo 256 | sudo tee /sys/module/nfs/parameters/max_session_slots

Persistent (/etc/modprobe.d/nfs.conf)

options nfs max_session_slots=256

• Watch-outs

Benefits depend on server slot limits; too high can increase queuing delay.

NFS client kernel module options:
Defaults vs Optimal parameters

Defaults Optimal (Training preset)

3D U-Net 12@92% 14@93%

Checkpointing
Save / Load 12.8GBps / 17.5GBps 17.2 GBps / 18.5 GBps

FIO
Sequential write/read 23.6 GBps / 41GBps 29.2 GBps / 43.2 GBps

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, max_connect=16,
sync, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest

Per-mount options. nconnect and max_connect

• nconnect=<1..16>: Multiple TCP/RDMA connections to one server IP for a given

mount; boosts throughput and mitigates head-of-line blocking.

• max_connect=<1..16>: For NFSv4.1+ session trunking across multiple server IPs that

belong to the same server; improves bandwidth & resiliency. Mount via each IP (or

rely on trunking discovery where supported).

• Rule of thumb (TCP)

• Throughput per lane ≈ 1.5–2.0 GB/s (sync-heavy, checkpoint/recording).

• IOPs per lane ≈ 110k @4k

• Ajust a number of connections with expected performance

Other options are described in the Appendix

TCP Multiple Streams

• Single stream = single bottleneck

• ~ 2.5 GBps Reads/ 1.6 GBps Writes per single connection

• 110k 4k IOPS per single connection

• One TCP flow ⇒ one congestion window, one socket queue, more head-of-line blocking.

• A single receive/transmit queue pair under-utilizes RSS and CPU cores.

• nconnect: parallel lanes on one mount (one server IP)

• Opens N independent TCP connections per mount.

• Aggregates congestion windows; spreads packets across RSS queues/CPUs.

• More in-flight RPCs without fighting a single socket’s limits.

• Session trunking scale the path to data

• NFSv4.1/4.2 session trunking fans one session across multiple server IPs (more paths, HA).

46

RDMA vs TCP Multistream (nconnect option) with
1 IP

RDMA
Defaults

RDMA
nconnect=16

TCP Defaults TCP nconnect=4 TCP nconnect=8 TCP nconnect=16

3D U-Net 7@94% 7@93% 1@64% 3@96% 5@92% 6@97%

CPU load 3D U-
Net 28%@48 28%@48 71%@1 75%@4 78%@8 74%@16

Checkpointing
Save / Load

15.7 GBps /

16.1 GBps

17.1 GBps / 16.4

GBps

1.6 GBps / 2.1

GBps

6.2 GBps / 8.1

GBps

11.7 GBps / 14.2

GBps

13.7 GBps /

15.6 GBps

CPU load
Checkpointing 33% @ 48 34% @ 48 72%@1 74% @ 4 78% @ 8 82% @ 16

Fio Sequential
Write / Read

20.9 GBps /

22.5 GBps

23.6 GBps / 23.1

GBps

1.6 GBps / 2.6

GBps

7.2 GBps / 10

GBps

13.2 GBps /

14.5 GBps

17.2 GBps /

18.2 GBps

Fio Random
Reads

110k @ 545

95 lat

335k @ 151 us

lat

49k @ 1.3 ms 95

lat

160k @ 570 us

95 lat

260k@ 337 us

95 lat

279k @ 288 us

95 lat

mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, nconnect={variable}, sync,
nfsserv:/srv/nfs/ /mnt/nfstest

Client mount parameters:

nconnect
count of NFSd
threads

NFSoRDMA NFSoTCP

1 1
1@98%

2.9 GBps / 4.8 GBps

1@64%

1.6 GBps / 2.6 GBps

1 48
7@94%

20.9 GBps / 22.5 GBps

1@58%

1.6 GBps / 2.3 GBps

4 4
5@93%

10.5 GBps / 23.7 GBps

3@96%

7.2 GBps / 10 GBps

4 48
7@92%

22.5 GBps / 24.1 GBps

2@98%

7.2 GBps / 8.3 GBps

8 8
7@91%

13.2GBps / 23.5GBps

5@92%

13.2 GBps / 14.5 GBps

8 48
7@94%

23.2GBps / 23.5GBps

5@90%

13.0 GBps / 13.7 GBps

16 16
7@93%

18.6 GBps / 23.1 GBps

6@97%

17.2 GBps / 18.2 GBps

16 48
7@93%

23.6 GBps / 23.1 GBps

6@93%

17 GBps / 15.7 GBps

Back to count of NFSd threads

A single 200 Gbit
network Interface

RDMA and TCP Session Trunking
(max_connect+trunkdiscovery) with 1 and 2
ports

RDMA max_connect=16 TCP max_connect=16

3D U-Net 14@93% 10@96%

CPU load 55%@48 82%@16

Checkpointing
Save / Load 17.2 GBps / 18.5 GBps 14.2 GBps / 17.9 GBps

CPU load 33%@48 84%@16

Fio Sequential Read /
Write 29.2 GBps / 43.2 GBps 19.2 GBps / 32.8 GBps

Fio Random Reads 335k @ 154 us 95 lat 282k @ 255 us 95 lat

Client mount parameters:
mount -t nfs -o vers=4.2, proto=rdma, port=20049, rsize=1048576, wsize=1048576, nconnect={variable},
max_connect={variable} sync, trunkdiscovery
nfsserv:/srv/nfs/ /mnt/nfstest

Ubuntu session trunking issue

With vers=4.2,proto=tcp,trunkdiscovery,
nconnect=8,max_connect=16 the client
creates 8 TCP sessions to IP#1 but only 1
session to IP#2.

As result, we get poor fan-out across paths;
we can’t reach expected throughput on
dual-port controllers.

Workaround:

• Assign multiple secondary IPs on both
controller ports (e.g., 4 IPs per port).

• Publish one hostname with all those A-
records.

• Remount with trunking; the client opens
transports across many IPs, not just two.

Client side conclusions

Core module parameters (system-wide;
set once)

• Raise concurrency ceilings on high-perf
systems (~+15% vs defaults):

Per-mount tuning (per share; per
workload)

• Parallelism (TCP): use nconnect=8–16 to
open many lanes per mount. On a single
100–200 Gb link, this typically reaches
~80% of RDMA on the same NIC.

• Parallelism (multi-IP): enable session
trunking
(trunkdiscovery,max_connect=…) so
lanes spread across multiple server
IPs/NIC queues.

RDMA specifics

• nconnect does not massively lift
sequential flow rate on RDMA (already
low-overhead), but it helps small-block
random paths that otherwise bottleneck
on a single connection (~110k ops/s
ceiling seen).

• For linear scale on RDMA, add session
trunking (more IPs/paths), not just
more lanes to one IP.

Client side conclusions

Threading guidance (server tie-in)

• TCP, single busy client: align nfsd
threads ≈ total client lanes to avoid
server-side queuing.

• Many clients / high-core servers: set
threads ≈ physical cores (with
sunrpc.svc_pool_mode=percpu).

• RDMA: fewer threads can suffice
(lower per-op CPU); still ensure you’re
not starved under bursts.

Ubuntu TCP trunking quirk (FYI)

• Symptom: only 1 lane to the second
IP with nconnect>1.

• Workaround: assign multiple
secondary IPs per port and mount
via a hostname listing them; the client
will fan out across all addresses.

NFS overhead: best NFS tuning vs best local file system

Local FS NFSoRDMA Threads=CPU core count RATIO

3D U-Net 22@94% 14@93% 63%

Checkpointing Save /
Load 28.1GBps / 26.4 GBps 17.2 GBps / 18.5 GBps 61% / 70%

Fio Seq Writes/Reads 55.8 GBps / 56.4 GBps 29.2 GBps / 43.2 GBps 52% / 76%

Fio Random Reads 4k
(sync) 582 k IOPS @ 92 us 95 lat 335k @ 154 us 95% lat 57%

54 | ©2025 SNIA Developer Conference. All Rights Reserved.

NFS Local IO

NFS LOCAL IO

• What is it: Local fast path that preserves NFSv4

semantics while bypassing the network stack
when client and nfsd are on the same machine.

• Lower P95/P99 latency, fewer context

switches/IRQs, lower CPU overhead, higher

sustained BW for big sequential I/O.

• Caveat: Results do not reflect multi-node

behavior (no NIC queues, no nconnect, no

RDMA link effects).

Usecases:

• Tier-0 Training Scratch: on-node

NVMe exported via LocalIO keeps

GPU feeders hot;

• Checkpoint Sink + Async Push:

write checkpoints locally at wire-

speed; a background job mirrors to

NAS/object/PFS. Result: fast fsync

locally, policy-driven durability later.

• RAG / Indexing Intermediate Store:

local write-heavy index builds

NFS LocalIO challenges and proposed solution

The challenges

• Single-node failure domain.
Local media = no built-in HA. A
disk/node failure can stall training
and risks data loss without extra
protection.

• Capacity & scale limits. Local
chassis slots bound capacity;
adding/reshuffling drives is
intrusive and not elastic across
nodes.

• QLC-era copy times explode.
With 122 TB today (244 TB
tomorrow), (re)seeding or
evacuating LocalIO via ordinary
NFS takes a very long time—per-
share throughput, metadata
overhead, and network hops
become the bottleneck.

The fix (architecture)

• Back LocalIO with a protected,
network volume. Deliver a high-
performance, fault-tolerant block
volume (erasure-coded) over
NVMe/TCP or NVMe/RDMA to
the compute node.

• Run NFS server on top of that
volume and use LocalIO for
apps.

• Apps see the NFS path via
LocalIO (no NIC in the hot path),
while durability and scale live in
the backend.

The results

• Elastic capacity on demand.
Provision and grow the volume
online; the NFS export expands
without host rebuilds.

• Mobility without bulk copying.
Detach/reattach the volume to
another node for maintenance or
failover; if needed, migrate fast via
NVMe/RDMA rather than file-level
copies.

• Faster (re)population. Use NFS
v4.2 inter-server copy, block-level
copy, or direct NVMe-oF reattach to
seed/evacuate datasets much faster
than client-mediated NFS copies.

Storage Disaggregation and NFS LocalIO

Run an NFS server on the node
Export that filesystem and build a single, unified
namespace. Remote nodes consume it over TCP

(nconnect) or RDMA as appropriate.

Local I/O fast path
On the hosting node, apps hit the NFS Local I/O path

(kernel short-circuit, no TCP/RDMA), avoiding

extra RPC overhead and minimizing tail latency/CPU.

Why this works:
• Flexibility: Opus composes and places capacity

exactly where compute needs it.

• Performance: direct NVMe-oF locally; NFS provides

high-BW multi-reader/writer semantics to the rest of

the cluster.

• Operational simplicity: one POSIX view, standard

tools (nfsd, nfsstat, mountstats), easy policy (quotas,

auth).

Present storage with xiRAID Opus
Expose volumes to compute nodes via NVMe-oF (RDMA
or TCP) — line-rate, low-latency block access right on the

node.

Format & mount locally
On each compute node, create an aligned local filesystem

(e.g., XFS with proper su/swidth,) and mount it for the

workloads.

NFS LOCAL IO + NVMf

NFS Dual Port, TCP NFS Dual Port, RDMA NVMf/TCP NVMf/RDMA

3D U-Net 10@96% 14@93% 14@91% 16@93%

Checkpointing
Save / Load

14.2 GBps / 17.9

GBps

17.2 GBps / 18.5

GBps
24 GBps / 26 GBps 24GBps / 28 GBps

Fio Sequential
Write / Read

19.2 GBps / 32.8

GBps

29.2 GBps / 43.2

GBps
36.4 GBps / 39.1 GBps

43.2 GBps / 43.9

GBps

Fio Random
Read (async) 282k @ 255 us 95 lat

335k @ 154 us

95% lat

1M IOPS @ 289 us

lat

1M IOPS @ 212 us 95

lat

Fio Random
Read (sync) 282k @ 255 us 95 lat

335k @ 154 us

95% lat

388k IOPS @ 199 us

95 lat

365k IOPS @ 180 us

95 lat

Conclusions (1)

• Backend storage for NFS should provide performance for network
saturation in both normal (2-5X) and degraded (20X) modes

• Local File System should be tuned, XFS is the optimal: full stripe
allocation, external log and AGs parallelism are the most important
settings

• NFS Server default settings aren’t enough.

o NFSD threads equal to the CPU cores is optimal for training but
not enough for checkpointing

o "no_wdelay" siginificantly improve checkpointing (2X)

o "async" (15-20%) further slightly improve checkpointing but it can
influence on system stability

59

Conclusions (2)

• NFS Client should be tuned: "max_session_slots" is the most important setting

(15%) for the client kernel module.

• NFS client mount options matters for both training and checkpointing:

o nconnect is providing scaling for TCP with 1 IP. Default nconnect is fine for RDMA with 1IP

• each TCP lane as ~1.5–2.0 Gb/s (writes). With up to 16 lanes per mount, we can budget

and accumulate throughput by adding lanes until we hit NIC or backend limits.

• With nfsd threads count aligned to client lanes, TCP+nconnect reaches ~70–85% of

RDMA on the same interface for streaming AI I/O.

• Session trunking (TCP) aggregate performance scales close to linearly as lanes/paths

are added. RDMA trunking scales cleanly

• On Ubuntu, trunking may fully fan out only to the first IP. Workaround: assign multiple
secondary IPs per port and mount via a hostname listing all of them; set max_connect ≥

IPs × nconnect. This restores multi-path fan-out.

Conclusions (3)

• NFS LocalIO

• RPC bypass gives low latency and high throughput. LocalIO

removes overhead on same-host client/server.

• Small-op boost: With asynchronous I/O, LocalIO typically

delivers 3–4X higher performance on small operations vs

standard NFS datapath.

• Pair with disaggregated storage for flexibility + durability.

Mount a high-performance, protected network volume under

LocalIO to get elastic capacity, easy scaling, and fast mobility

(grow/move without long file-level copies) and improves

performance.

What’s next

Objective
➢ Prove performance and stability on a bigger topology and quantify gains

from server/client tuning at 400 Gb/s.

Topology under test:
➢ 2× storage nodes: NVMe PCIe Gen5 arrays, dual 400 Gb links each.

➢ 4× clients: 1x400GBit Each, 64 CPU Cores Each

Test matrix (A/B comparisons):
➢ NFSv4.2 RDMA vs TCP + nconnect (multichannel).

➢ SMB Direct vs SMB Multichannel

Workloads to run:
➢ MLPerf Storage “training” (datasize → datagen → run).

➢ Checkpoint streaming (1–4 MiB writes, multi-writer).

➢ GPU/Accelerator Utilization ≥ 90% where applicable.

➢ Target ≥ 90% of link rate sustained without tail blow-ups.

63 | ©2025 SNIA Developer Conference. All Rights Reserved.

Thank you for
attending!

64 | ©2025 SNIA Developer Conference. All Rights Reserved.

Appendix

NFS server options

Server-side max payload per READ/WRITE can be raised to 4 MiB in 6.16 kernel.

check current limit

cat /proc/fs/nfsd/max_block_size

raise to 4 MiB (4194304) and apply

echo 4194304 | sudo tee /proc/fs/nfsd/max_block_size

sudo systemctl restart nfs-server # or nfs-kernel-server

Client: check negotiated sizes:

nfsstat -m

grep -E 'rsize|wsize' /proc/self/mountstats

Server Options

vm.dirty_bytes = 1073741824 (1 GiB)
Absolute cap (bytes) at which a process doing writes must start writeback itself. Smooths large write bursts and prevents
massive “all-at-once” flushes. Too high ⇒ long stalls during flush; too low ⇒ over-eager flushing.

vm.dirty_background_bytes = 268435456 (256 MiB)
Absolute threshold that wakes the kernel’s background flusher threads to start draining dirty pages. Keeps a steady
writeback pipeline so foreground I/O isn’t jolted by sudden flushes.

vm.swappiness =
Biases the kernel to avoid swapping anonymous memory unless truly necessary, preserving page cache for filesystem I/O.
Good for storage servers with ample RAM (reduces cache churn).

net.core.rmem_max = 268435456
Upper bound for per-socket receive buffers. Allows TCP/UDP autotuning (and RDMA ULPs using sockets) to grow
windows on high-BDP paths. Doesn’t force buffers by itself; it raises the ceiling.

net.core.wmem_max = 268435456
Upper bound for per-socket send buffers. Lets autotuning open bigger send windows for long, fat links (useful with multi-
stream TCP NFS).

net.core.netdev_max_backlog = 250000
Maximum packets queued on the ingress backlog when the NIC delivers faster than the stack can process. Higher values
absorb short bursts and reduce drops; if set too high on an overloaded CPU, it can add queuing latency.

max_session_cb_slots + callback_nr_threads

What:

• max_session_cb_slots — parallel callbacks (delegations, pNFS recalls) the client can process from a
server.

• callback_nr_threads — number of kernel threads handling those callbacks.

• Why for AI: With pNFS/flexfiles or heavy parallel opens/closes, responsive callback handling prevents
stalls and delegation recalls from becoming a bottleneck.

• Recommend: max_session_cb_slots=32–64, callback_nr_threads=8–12 (up to 16 for metadata-intensive
loaders).

Set:

• echo 64 | sudo tee /sys/module/nfs/parameters/max_session_cb_slots

• echo 12 | sudo tee /sys/module/nfs/parameters/callback_nr_threads

• # persistent

• options nfs max_session_cb_slots=64 callback_nr_threads=12

nfs4_disable_idmapping &
nfs_idmap_cache_timeout

What:

• nfs4_disable_idmapping=1 (with sec=sys) skips v4 idmapping and uses numeric UID/GID directly.

• nfs_idmap_cache_timeout controls TTL of idmap cache.

• Why for AI: Reduces metadata RPC churn during massive parallel file access by many workers;
keeps stat()/open() paths light.

Recommend:

• If all nodes share identical numeric UID/GID, set nfs4_disable_idmapping=1.

• nfs_idmap_cache_timeout=600–1200s (throughput) or 300–600s (latency-sensitive small-file workloads).

• Set: options nfs nfs4_disable_idmapping=1 nfs_idmap_cache_timeout=900

• Watch-outs: Only use nfs4_disable_idmapping=1 when UID/GID spaces are truly aligned.

delay_retrans (Fast Fail for Small-IO Paths)

• What: After server replies NFS4ERR_DELAY, limit retries before returning EAGAIN.

• Why for AI: Dataloaders and micro-services often prefer quick retry over long stalls.

• Recommend: 0–1 for latency-sensitive small I/O; keep -1 (default) for pure
bulk-throughput training.

• Set:

• echo 1 | sudo tee /sys/module/nfs/parameters/delay_retrans

• # persistent

• options nfs delay_retrans=1

nfs_access_max_cachesize (Access Cache
Budget)

• What: Global budget for caching ACCESS results (permission checks).

• Why for AI: Many processes (workers) touching vast directory trees benefit from a larger ACCESS cache,
cutting metadata round-trips.

• Recommend: 128k–512k for large training sets; 64k–256k for small-file/latency paths to control memory.

• Set:

• echo 262144 | sudo tee /sys/module/nfs/parameters/nfs_access_max_cachesize

• options nfs nfs_access_max_cachesize=262144

• Watch-outs: Too small ⇒ excess RPC; too large ⇒ client RAM overhead.

I/O Sizes: rsize / wsize

• Set to 1048576 (1 MiB) — current Linux client cap per RPC. Verify with nfsstat -
m and /proc/self/mountstats.

• Kernel 6.16 supports for 4M for the storage side.

Reliability & Timeouts

➢ hard (default for v4): Required for training/checkpoints to avoid silent

corruption.

➢ timeo= / retrans=: Use defaults for bulk; for latency-sensitive

small-IO consider slightly lower timeo and verify behavior under loss.

➢ retrans: Don’t set too low; allow the client to ride out transient blips

during epochs.

Caching & Coherency (metadata)

• lookupcache=:
• all (aggressive): fastest for read-mostly, may delay visibility of new files created by others.

• positive: good balance for dataloaders (cache hits for existing entries, fewer negatives).

• none: strongest coherency; avoid unless required (metadata RPC storm).

• Attribute cache: acregmin/max, acdirmin/max, or coarse actimeo=<sec> to set all four.

• Training/checkpoints (read-mostly): longer timers (e.g., actimeo=600).

• Dataloaders: shorter timers (e.g., acregmax=60,acdirmax=60).

• nocto: disables close-to-open consistency; choose only on strictly read-only datasets staged once.

	Slide 1: Scaling Up NFS Storage
	Slide 2: What is xiRAID
	Slide 3: xiRAID’s advantages
	Slide 4: Helma Storage Cluster at NHR@FAU
	Slide 5: The most efficient IO500 storage cluster significantly improves energy efficiency
	Slide 6: xiRAID’s advantages
	Slide 7: QLC – Rebuild With Workload
	Slide 8: xiRAID’s advantages
	Slide 9: Why do we need high performance NFS server?
	Slide 10: Why NFS fits AI
	Slide 11: xiRAID + NFS
	Slide 12
	Slide 13: Configuration examples
	Slide 14: What is xiRAID for scale-up NFS servers
	Slide 15: MLPerf Storage Benchmark
	Slide 16: Workloads simulated by MLPerf Storage
	Slide 17: Test bed description
	Slide 18: 3D U-Net / Checkpointing storage patterns
	Slide 19: Test approach
	Slide 20: NFS Perf Test Toolbox
	Slide 21: NFS Perf Test Toolbox
	Slide 22: How easy it is to do badly
	Slide 23: Let’s enable RDMA
	Slide 24: What affects performance?
	Slide 25: How to read the results
	Slide 26
	Slide 27: Backend storage health impact
	Slide 28
	Slide 29: Filesystem format and mount options
	Slide 30: File system tuning recommendations
	Slide 31
	Slide 32: NFS — What’s New (Linux 5.3 → 6.17)
	Slide 33: NFS server options
	Slide 34: Server options: number of nfsd threads
	Slide 35: NFS server configuration recommendations
	Slide 36: Export options: wdelay vs no_wdelay
	Slide 37: Export options: sync vs async
	Slide 38: Conclusions: NFS Server Settings for High-Performance AI
	Slide 40
	Slide 41: NFS Client: What we can change for high performance
	Slide 42: NFS module tunables (system-wide)
	Slide 43: max_session_slots (Parallelism = Bandwidth)
	Slide 44: NFS client kernel module options: Defaults vs Optimal parameters
	Slide 45: Per-mount options. nconnect and max_connect
	Slide 46: TCP Multiple Streams
	Slide 47: RDMA vs TCP Multistream (nconnect option) with 1 IP
	Slide 48: Back to count of NFSd threads
	Slide 49: RDMA and TCP Session Trunking (max_connect+trunkdiscovery) with 1 and 2 ports
	Slide 50: Ubuntu session trunking issue
	Slide 51: Client side conclusions
	Slide 52: Client side conclusions
	Slide 53: NFS overhead: best NFS tuning vs best local file system
	Slide 54: NFS Local IO
	Slide 55: NFS LOCAL IO
	Slide 56: NFS LocalIO challenges and proposed solution
	Slide 57: Storage Disaggregation and NFS LocalIO
	Slide 58: NFS LOCAL IO + NVMf
	Slide 59: Conclusions (1)
	Slide 60: Conclusions (2)
	Slide 61: Conclusions (3)
	Slide 62: What’s next
	Slide 63: Thank you for attending!
	Slide 64: Appendix
	Slide 65: NFS server options
	Slide 66: Server Options
	Slide 67: max_session_cb_slots + callback_nr_threads
	Slide 68: nfs4_disable_idmapping & nfs_idmap_cache_timeout
	Slide 69: delay_retrans (Fast Fail for Small‑IO Paths)
	Slide 70: nfs_access_max_cachesize (Access Cache Budget)
	Slide 71: I/O Sizes: rsize / wsize
	Slide 72: Reliability & Timeouts
	Slide 73: Caching & Coherency (metadata)

