
NFS: Genesis

Tom Lyon
@aka_pugs@mastodon.social



Zeitgeist 1983

4.2BSD finally available!

FIle sharing - obviously desirable, but non-trivial

Disks - expensive!

Systems – frequent down time  (backups, esp)

Network – flaky shared media

UNIX explosion – for *new* vendors but not the installed base

Share files – or just disks?   



Workstation vs Disk Cost

1982:

Sun-1:  $8,900 

With Ethernet, Memory, UNIX  $13,900

Disk (SMD - 84MB): $13,900

1985: 

Sun-2/50-2: $8,900

Sun-3/75M-4: $15,900

Disk(SCSI - 71MB): $5,900



Network Disk Protocol

Bill Croft 1983 - SunOS 1.1 (4/84)

Proof for viable diskless operation

Huge cost savings & feature parity with Apollo

Example of benefits of statelessness and idempotency

PITA to administer - none of today’s SAN tools



Beliefs/Fears/Constraints

Disks are/will be expensive!

Prior network file systems presume local disk!  (Not Apollo)

VAXen and mainframes own the disks!

“Servers” are a concept not yet proven

Need a protocol – can’t even assume C language on the server

“Distributed UNIX” isn’t UNIX

Terminals <<$ Workstations <<$ Minicomputers



Jan. 03, 1984 - Bill Joy Perigee

“Design of the Sun Network File System”

“Sun Network File Protocol Design Considerations”

“Sun UNIX Modifications to use the Sun Network File Service”

Stakes in the ground:

Heterogeneity, Statelessness, Datagrams, Idempotency

File handles, Vnodes, Block-based for caching & VM 

*No* file use after unlink



RPC/XDR

Bob Lyon, 2/2/84

“Sun RPC Architecture”

Bob Lyon, 8/20/84 

“Sun RPC Protocol Specification Version 2 aka “Son of Courier”

Xerox XSIS-038112 12/81

“Courier: the Remote Procedure Call Protocol”

Andrew D. Birrell & Bruce Jay Nelson, Xerox CSL 83-7 12/83

“Implementing Remote Procedure Calls”



NFS Architecture Offsite

May or June 1984

Use after unlink!  The “¾” solution - .nfsXXXXX files

Off to the races!

Participants:

Bill Joy, Dave Goldberg, Bob Lyon, Tom Lyon, 
Joe Moran,  Rusty Sandberg, Steve Kleiman



SunOS Release History

Sun UNIX - 1982 - Unisoft V7 UNIX, no networking

SunOS 0.4 Beta - Aug 1983 - 4.1cBSD, networking!

SunOS 1.0 - Nov 1983 - 4.2BSD Beta 

SunOS 1.1 - Apr 1984 - 4.2BSD final and ND

SunOS 2.0 - May 1985 (long beta) - NFS!  But also ND

SunOS 3.0 - Feb 1986 - Sun-3 HW and System-V compat libraries

SunOS 4.0 - Dec 1988 - VM rewrite, ND Eliminated – diskless NFS, Automounter



Statelessness

Error recovery is 100x harder in state-ful protocols

Like guaranteed vs best-effort delivery

“Just Retry” is so much easier

Network was flaky – single fat yellow coax

Servers – frequent downtime (backups, etc)

Servers must not depend on clients



Open Systems

Sun was committed to Ethernet and TCP/IP from day one.

Ethernet and TCP/IP dominated because of a community committed to 

openness and interoperability.

It was natural (at least for us engineers) to push NFS the same way.

The earliest partners were nascent large system vendors - Convex, Gould, 

Pyramid



Connectathon/Uniforum Feb. 1986

16 vendors

5 operating systems

PC-NFS 1.0 - June 1986  - MSDOS/PCDOS 3.x



Merges Not Made

Microsoft/SMB

Approached by MS early on, but - printers? 

TOPS/Macintosh

Centram Systems West/TOPS/Sitka acquired by Sun

Lots of work ~1988 to define merge, thankfully dropped

Sun + Apple = Snapple

1996: serious merger talks incl. network services architecture



https://nfs40.online



NFS Evolution
“Protocols live forever.”

Brian Pawlowski
beepee@gmail.com



Lessons from the Journey

Separate Protocol from Implementation (don’t put the local API on the wire)

● Connectathon → Bakeathon

Standards Matter - but must evolve

● NFS is an open standard, proprietary protocols come and go

Evolution, Not Revolution

● Each version solved specific problems, backward compatibility maintained

Timing is Everything

● pNFS arrived just as AI/ML needed it

Simplicity Wins (Ubiquity is a terrible advantage

● NFS is native everywhere that is important)

● Built into OS = no special software, Standard Ethernet = no special hardware





Zeitgeist 2025

Linux finally available! 

File sharing - obviously desirable, but non-trivial

Disks - expensive! (can you say SSDs?)

Systems – frequent down time  (backups, esp)

Network – flaky shared media

UNIX implosion

Share files – or just disks?   



A Lot Happened Between 1994 and 2025

❖ For good or ill: World Wide Web (but Wikipedia!)

❖ Friends lost/gained: Sun, SGI, DEC, Yahoo, AOL, Netscape, Apple, VMware, 

Google, Amazon, nVidia, Paypal, Facebook, Netflix, OpenAI, Apple, Spotify

❖ Is that a computer in your pocket? Mobile revolution

❖ Looking very cloudy: AWS, Azure, Google, Oracle…

❖ Intel’s Pyrrhic victory with the x86 architecture (a story still writing itself)

❖ Music styles come and go, but it’s always coming via streaming 

❖ Wi-Fi (“I don’t know what the network of the future will be, I just know it will 

be called Ethernet.”)



The Scale Challenge: 1994 vs 2025

1994 Reality:

● Typical file: 10KB-1MB documents

● Large dataset: 100MB database

● Network: 10 Mbps Ethernet

● Storage: $1000/GB hard drives

● NFSv2: 4GB file size limit seemed huge

2025 Reality:

● Typical file: 4K videos (100GB+), AI model 
checkpoints (10-500GB)

● Large dataset: Multi-petabyte data lakes
● Network: 100-400 Gbps standard, 800 Gbps 

emerging
● Storage: $0.02/GB NVMe SSDs
● NFSv4.2 with pNFS: Exabyte-scale 

deployments

● The 1,000,000x Challenge: Files grew 1000x, datasets grew 1,000,000x, but latency tolerance “stayed the 

same”



Timeline - 30 Years of Evolution
1995 RFC 1813 NFSv3

2000 RFC 3010 NFSv4.0 initial (we were this close)

2003 RFC 3530 NFSv4.0 stable (but…)

2010 RFC 5661 NFSv4.1 fixed minor versioning, pNFS

2010 RFC 5663/5664 Block/Object layouts

2015 RFC 7530 NFSv4.0 bug fix

2016 RFC 7862 NFSv4.2 Server-Side Copy, Application I/O Advise, Sparse Files, Labeled NFS.

2017 RFC 8154 SCSI Layout

2018 RFC 8435 FlexFiles layout

2020 RFC 8881 NFSv4.1 revised

2025 Active Development FlexFiles v2, ACL/I18N clarification



NFS Version 2 from Sun Microsystems

Small Files: NFSv2 supported files to 4GB, UDP and 8KB block transfer

Ancillary Protocols: Locking, mounting was offloaded to separate, often 
problematic, protocols resulting in firewall and management complexity

Security: Weak security (AUTH_SYS only) 

Performance Bottlenecks: Synchronous writes were required for data integrity, 
creating a significant performance ceiling (without solid state acceleration) 

Weak Caching Semantics: Client-side caching was limited and relied on polling 
(chatty GETATTR calls)



NFSv3

Alpha architecture (CPU wars) x NFS success 
drives DEC address 64 bit address (large file) 
support 

Chet Juszczak at DEC threatens fork of NFS

Companies collaborate at two week offsite in 
Massachusetts woods July 1992 

UDP deprecated for TCP and 1+ MB transfer sizes

NFSv3 becomes ubiquitous (NFSv2 deprecated)



NFS Version 3 Adoption

Dead simple crash recovery - little server state (locking) to manage - widely 
implemented (dare we say ubiquitous)



NFS Version 3

Small Files: NFSv2 supported files to 4GB, UDP and 8KB block transfer

Ancillary Protocols: Locking, mounting was offloaded to separate, often 
problematic, protocols resulting in firewall and management complexity

Security: Weak security (AUTH_SYS only) 

Performance Bottlenecks: Synchronous writes were required for data integrity, 
creating a significant performance ceiling (without solid state acceleration)

Weak Caching Semantics: Client-side caching was limited and relied on polling 
(chatty GETATTR calls)



The NFSv3 Ecosystem Complexity

The Problem: - 6+ separate services -

Dynamic ports (firewall nightmare) - No 

unified namespace - Security afterthought



I believe in Father Christmas!

In 1998 transitioned NFS work from a “proprietary 
technology” to an open IETF standard

Scott Bradner created RFC 2339, formal agreement where 
Sun Microsystems ceded control of future NFS to the IETF

Under Bradner's oversight, NFSv4.0 became the 
first version developed entirely within the IETF 
introducing stronger security, gracefully stateful 
connections, single port (2049) only, and performance 
optimizations.



NFSv4.0 (2000-2003) - The Stateful Revolution

RFC Timeline: - RFC 3010 (Dec 2000)/RFC 3530 (Apr 2003)

1. Honestly Stateful Protocol - Integrated locks & leases (remember Sprite?)

2. Mandatory Security - RPCSEC_GSS/Kerberos (mandatory to implement )

3. Single Port/Firewall Friendly - TCP 2049 only

4. COMPOUND Operations - Batch multiple ops

5. Delegations - stronger client-side file caching

6. Pseudo-filesystem a virtual layer organizes all exported paths into one 

namespace (server-side automounter) (influence of AFS)



Why NFSv4.0 Wasn’t Enough

Critical Problems Wrestled With (2003-2009):

1. Callback Complexity (Server → Client callbacks blocked by NAT/firewalls, 

Delegations often unusable)

2. No Exactly-Once Semantics (Non-idempotent operations could execute 

multiple times, Risk of data corruption)

3. Still a Single Server Bottleneck (All I/O through one server, Linear scaling 

impossible)

The HPC Challenge: “We need to move 100s GB/s to 1000 compute nodes”



NFSv4.1 (2010): The Performance Revolution

RFC 5661 (Jan 2010)/RFC 8881 (2020): Significant Protocol Extensions

The Sessions Model: Exactly-once semantics guaranteed (prevent destructive 
replay) - Client-initiated callbacks (persistent two-way channel solves reverse 

NAT/firewall) - Connection trunking (multipath bandwidth aggregation) - Reliable 

recovery

Advanced Features: Directory delegations - Multi-server namespace - pNFS -

Parallel NFS

Key Innovation: Separation of control and data planes



pNFS Protocol Flow

Decouple the Control Plane from the Data Plane

Performance Impact: - 10x-100x throughput improvement - scales to thousands of clients



pNFS Layout Types Evolution
Year Layout Type RFC Target Storage Use Case

2010 File 5661 NFS servers General purpose

2010 Block 5663 SAN/iSCSI Trusted environments

2010 Object 5664 Object stores Cloud storage

2017 SCSI 8154 SCSI devices Modern SAN

2018 Flex Files 8435 Any Dynamic tiering

2024 NVMe 9561 NVMe Binding to SCSI layout

2025 Development: Flex Files v2 with erasure coding

Key Point: pNFS adapts to any storage architecture



NFSv4.2 (2016): Refining the Protocol (RFC 7862)

A proper minor version on top of NFSv4.1 added storage-aware features to bring 
remote file access semantics closer to local filesystems

● Server-Side Copy (SSC): Client instructs the server to perform a copy internally 
(COPY, CLONE), eliminating network overhead . 

● Sparse Files & Space Reservations: SEEK to find holes, DEALLOCATE to punch 
them, ALLOCATE to pre-reserve storage space, crucial for applications like 
databases.

● Enhanced Client-Server Interaction: I/O Advise (IO_ADVISE): Client provides hints 
about I/O patterns (sequential, random) to the server for optimization, Layout 
Statistics (LAYOUTSTATS): Client reports performance and error data from DSs 
back to the MDS, enabling intelligent layout decisions.



Meeting Modern Workloads

NFSv3 (1995): Solved the immediate "large file" problem
● Freed from 4GB prison
● Enabled first digital video workflows

NFSv4.0 (2003): Solved WAN and security for distributed computing
● More “WAN” friendly

NFSv4.1/pNFS (2010): Solved the bandwidth wall
● Eliminate single-server bottleneck
● Scaled to meet AIML/HPC demands

NFSv4.2 (2016): Application optimizations
● Server-side operations for object-like semantics
● Sparse files for containers/VMs
● Ready for Kubernetes era



Lessons from the Journey

Separate Protocol from Implementation

● Connectathon → Bakeathon

Standards Matter - but must evolve

● NFS is an open standard, proprietary protocols come and go

Evolution, Not Revolution

● Each version solved specific problems, backward compatibility maintained

Timing is Everything

● pNFS arrived just as AI/ML needed it

Simplicity Wins (Ubiquity is a terrible advantage

● NFS is native everywhere that is important)

● Built into OS = no special software, Standard Ethernet = no special hardware



NFS @ 40

https://nfs40.online


	Slide 1: NFS: Genesis
	Slide 2: Zeitgeist 1983
	Slide 3: Workstation vs Disk Cost
	Slide 4: Network Disk Protocol
	Slide 5: Beliefs/Fears/Constraints
	Slide 6: Jan. 03, 1984 - Bill Joy Perigee
	Slide 7: RPC/XDR
	Slide 8: NFS Architecture Offsite
	Slide 9: SunOS Release History
	Slide 10: Statelessness 
	Slide 11: Open Systems
	Slide 12: Connectathon/Uniforum Feb. 1986
	Slide 13: Merges Not Made
	Slide 14:   
	Slide 15: NFS Evolution “Protocols live forever.”
	Slide 16: Lessons from the Journey
	Slide 17
	Slide 18: Zeitgeist 2025
	Slide 19: A Lot Happened Between 1994 and 2025
	Slide 20: The Scale Challenge: 1994 vs 2025
	Slide 21: Timeline - 30 Years of Evolution
	Slide 22: NFS Version 2 from Sun Microsystems
	Slide 23: NFSv3
	Slide 24: NFS Version 3 Adoption
	Slide 25: NFS Version 3
	Slide 26: The NFSv3 Ecosystem Complexity
	Slide 27: I believe in Father Christmas!
	Slide 28: NFSv4.0 (2000-2003) - The Stateful Revolution
	Slide 29: Why NFSv4.0 Wasn’t Enough
	Slide 30: NFSv4.1 (2010): The Performance Revolution
	Slide 31: pNFS Protocol Flow
	Slide 32: pNFS Layout Types Evolution
	Slide 33: NFSv4.2 (2016): Refining the Protocol (RFC 7862)
	Slide 34: Meeting Modern Workloads
	Slide 35: Lessons from the Journey
	Slide 36

