
1

Famfs: open source
scale-out shared
memory file system
John Groves

Technical Director

And Co-Chair of the CXL Software and Systems Working Group

https://famfs.org

Aug 2025

2

Background: CXL / Disaggregated memory usage models

Pooling (composable system-ram) Sharing / ‘not system ram’

• Memory is added as System RAM

(managed by Linux)

• Tiering and migration are viable

(migrate_pages(), TPP, DAMON, etc.)

• Incompatible with multi-host sharing

(memory gets zeroed when Linux “onlines” it)

• It’s possible to provision very large amounts of memory

for jobs that can’t run in 3-4T

• The hardware supports this (CXL3, DCD, etc.)

• These cases include

– Both concurrent and sequential sharing

– Other use cases that use Linux memory-mgmt

• Software usage is too complicated

• Famfs is the missing link

– “All” apps can use data in files

– Files already map to memory

– Many apps use big data in files

– RAS “blast radius” is limited to apps that access the

memory

System-RAM
(Owned/allocated by Linux)

DAX or Famfs mem
(not allocated by Linux)

3

Famfs: The Core Insight

• Sharable memory needs a standard access method

–Linux has no concept of memory that isn’t wholly owned

• The file system is the natural abstraction for shared memory

–No fundamental new abstractions required

–Software already understands files!!

–Posix permissions apply, etc.

• Prior proposals to enable of shared memory might be paraphrased as “It’s a new

paradigm, requiring new abstractions!”

–See HP’s “The Machine”

4

Access

LatencyThe superpower
of memory is
low-latency
random access

• Memory access latency is much

lower than storage latency

• Compare disaggregated memory

to storage, not system-ram

• Data that doesn’t fit in System-

RAM can be random-accessed in

disaggregated memory 100x

faster than storage

50us +

450ns +

100ns +

100X

4-5X

System RAM
(up to 3-4T)

Disaggregated Memory
(up to 100T this year,

Bigger later)

Storage
(unlimited)

5

Famfs: bigger data in shared memory

• RocksDB read-only benchmark

• Famfs benchmarks (Green)

– RocksDB database stored in famfs

– RocksDB instances on multiple hosts can share the same

files/memory

– No modifications to RocksDB (famfs is just files)

• Control Group (Gray)

– RocksDB database stored in xfs backed by nvme

– Cached in DDR; Performance great when it fits in mem

• Benefits:

– Data is de-duplicated

– Or sharding / shuffling is avoided

– Cache line access (less read amplification)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0.19 0.38 0.56 0.75 0.95 1.14 1.33 1.52 1.70 1.94

O
P

S
/S

E
C

DB SIZE : DRAM SIZE

Operations Per Second(Random Read) -

With DB Cached upto ful l DRAM capacity

DRAM + SSD Famfs on 4CXL Cards Famfs on 2 CXL Cards

10

100

1000

10000

100000

0.19 0.38 0.56 0.75 0.95 1.14 1.33 1.52 1.70 1.94

P99 Latency(us) (Log Scale)

DRAM + SSD P99 Latency Famfs on 4CXL Cards P99 Latency

Famfs on 2 CXL Cards P99 Latency

6

Large datasets
don’t just appear,
they get
“wrangled”

• Not all problems fit in memory

• The problems (data sets) get

bigger, but the available

techniques remain the same

–Scale up

(bigger servers / mem / GPUs)

–Scale out

(more servers / mem / GPUs)

• Wrangling tools aren’t necessarily
memory-efficient: very large

system-ram can be needed

Disaggregated

memory pool
or “JBOM”

48TiB

Data set

Server

32TiB

Memory

expansion

VM

96TiB

Famfs file

system

Server

7

What if data is
[much] bigger
than memory?

• Some data can be reduced in

size effectively

• Some data can be sharded

(split across hosts) effectively

• Some data is accessed
sequentially, and can

be staged via DMA / RDMA

• Random access in

disaggregated memory is

2 orders of magnitude lower
latency than NVME

(100x Improvement)

Data is large

Can use

data

reduction

Yay
Yes

Can shard

effectively
OK

Yes

No

Use disaggregated

memory

Access is

sequential

Use DMA /

RDMA

Yes

No

No

8

Famfs organizes disaggregated
memory as a scale-out file system

• Memory is accessible as files

–Write/read become memcpy

–Mmap provides byte / cache-line access

• “All” apps can access data in files

• Famfs files are memory and not storage

–Move data into famfs for in-memory access

–Move data out of famfs to store persistently

• Posix permissions apply, along with strict partitioning

of data from separate files

• Orchestration layers such as PNFS can use famfs as
a tier – providing memory performance + scale-out

sharing

Enabling shared JBOM for all apps that can use files

Famfs Client

Nodes

Famfs Master Node

/mnt/famfs
/mnt/famfs/set0
/mnt/famfs/set1

/mnt/famfs/set2
/mnt/famfs/set3
…

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

9

Interleaving is critical for memory performance

• CXL supports hardware interleaving but…

–The device physical address (DPA) range must be identical on all memory devices in an interleaved set

–But “memory devices” are virtual – based on DCD (dynamic capacity device) allocations

–The normal fragmentation of alloc / release will make it difficult or impossible to allocate the same DPA

range on, say, 16 allocations from different CXL memories

• Each famfs file can be interleaved across many CXL memory devices

–Famfs has no constraints about DPA ranges

10

Famfs architecture (MVP)

• All metadata is stored in an append-only log

• Log is written by Master and ”played” by Clients

• V1 handles clients with stale metadata by not supporting truncate or delete

• Metadata handled in user space (library, cli, currently no daemons)

• Read / write / mmap / vma faults handled in kernel

• Memory mapping from famfs == cache-line level access to shared mem

• Many of the limitations can be addressed in future versions

Famfs Client

Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

11

Famfs:
Functional
Blocks

• Metadata log is written and

read by user space

components

• File ”fmaps” are pushed into the

kernel from user space

• Users see regular files

• Metadata distribution model

could change

(pnfs integration, anyone?)
Memory /

daxdevs

User

Kernel

Famfs / VFS

Famfs

Administration

Medadata

Processing

File Users

F
ile

 I
/O

C
o

n
tr

o
l

12

Famfs:
Functional
Blocks

• Metadata log is written and

read by user space

components

• File ”fmaps” are pushed into the

kernel from user space

• Users see regular files

• PNFS could solve metadata

consistency

• Probably need something in the
file I/O path

Memory /

daxdevs

User

Kernel

Famfs / VFS

Famfs

Administration

Medadata

Processing

File Users

L
O

C
A

L
IO

M
e
ta

d
a
ta

C

o
n
tr

o
l

M
e
ta

d
a
ta

PNFS

13

Famfs status: on track for Linux
upstream in late 2025 / early 2026

• Nov 2023 – Introduced famfs at the Linux Plumbers Conference

• Spring 2025 – Famfs Linux patch sets released (v1, v2)

• May 2024 – Famfs session at LSFMM
(Linux Storage, File System and Memory Management summit)

– Conclusion: Famfs merging into fuse

• Aug 2024 – Famfs adds interleaved file support

• Nov 2024 – Famfs covered in Storage Newsletter piece on SC24

• 2024 – Famfs in pilot use at CERN, Alibaba, Intel, Universities, etc.

• Sep 2024 – Famfs session at Linux Plumbers Conference

• Feb 2025 – Famfs poster at Usenix FAST Conference

• Mar 2025 – Famfs session at LSFMM (LWN Article)

• Spring 2025 – Famfs fuse-based patch sets released (v1, v2)

• Famfs documentation:
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

Famfs Client

Nodes

Famfs Master Node

/mnt/famfs
/mnt/famfs/set0
/mnt/famfs/set1

/mnt/famfs/set2
/mnt/famfs/set3
…

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

https://lpc.events/event/17/contributions/1455/
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lwn.net/Articles/983105/
https://lpc.events/event/18/contributions/1827/
https://www.usenix.org/conference/fast25/poster-session
https://lwn.net/Articles/1020170/
https://lore.kernel.org/linux-fsdevel/20250421013346.32530-1-john@groves.net/T/#m16f1386e90a6b40ceb60ae7feca7bbff281956bc
https://lore.kernel.org/linux-fsdevel/20250703185032.46568-1-john@groves.net/
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

14

The superpower
of memory is
low-latency
random access

• Famfs with big memory breaks

scaling barriers for

–Graph analytics

–Rag pipelines

– In-memory databases and indexes

• Graph databases, RAG/LLM

pipelines and indexes can scale to

100T and beyond without sharding

or demand-paging

Node/edges/embedding

 data in storage (PBs)

100GB

100TB

Graph analytics and neural networks

RAG/LLM Pipeline

Retrieved Info
Answer

Vector

DBs

Generation

Source

Corpus
Chunks Embeddings

Indexing

User Query

Embeddings Retrieval

Similarity Search

Filter & Re-rank

GPU

LLM

Big Data Index

Active
Memtable

SST SST

Log

SST

Log

RocksDB Architecture with 100GB-1PB

Datasets using key-value store

Active
Read-only
Memtable

15

Summary

• Disaggregated memory breaks scaling barriers for latency-

sensitive workloads

• Famfs provides a natural, scale-out access method for data

in disaggregated, shared memory

• Software does not need to change to use shared memory! Famfs Client

Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

16

File system layer
Technical details

17

Fuse (File System in User Space)

• Fuse kernel component provides a

file system mount

• Fuse server (AKA Fuse Daemon) is

authoritative as to what files exist

• Fuse server facilitates I/O

• Fuse server enforces any limitations

(with help from fuse in the kernel)

• Famfs fits logically, in that it already

handles metadata from user space

• But fuse has notoriously poor
performance

User

Kernel

fuse

lo
o

k
u

p

fuse server

re
a

d

w
ri
te Etc…

re
a

d
d

ir

Apps

/path/to/files

18

Background: CXL Memory sharing topology

• Think of a Dynamic Capacity Device (DCD) as a memory device with built-in allocator and access control

• The allocator is necessary for multi-host environments

• DCD (via fabric manager) can give additional hosts access to a sharable allocation, writable or read-only, etc.

CXL.mem
Direct-attached

memory
/dev/dax System-RAM

Server Linux Sees:

/dev/dax System-RAM

CXL DCD
Linux Sees:

• Nothing, until memory is allocated (Init Dynamic Capacity Add fabric

manager command - 7.6.7.6.5)

• A “tagged” dax device for each successful allocation

• This holds true for DCD in any topology:

• Direct attached, multi-headed (MHD)

• LD-FAM or G-FAM
CXL Switch

CXL DCD

CXL DCD

CXL DCD

CXL DCD

CXL DCD

CXL DCD

CXL MHD

Sysadmin can convert
between dax and

system-ram mode

Sysadmin can convert
between dax and

system-ram mode

DCD

19

CXL tagged capacity name space

• DCD is not usable until memory is allocated

• Allocation (Init DC Add)(sharable allocations are

”tagged”, and appear as “virtual” dax devices)

• Tagged dax memory can be “onlined” as

system-ram (non-shared memory)

• Sharable memory can surface simultaneously

or not

• A famfs instance lives on one or more tagged

dax memory instances

• Famfs can also interleave files across an

arbitrary number of Tags

• CXL interleave can be programmed across

multiple tagged allocations*

/dev/dax/<tag0> Host A

/dev/dax/<tag1> Host A

/dev/dax/<tag2> Host A

/dev/dax/<tag0> Host B

/dev/dax/<tag3> Host B

/dev/dax/<tag0> Host C

/dev/dax/<tag3> Host C

/dev/dax/<tag4> Host C

/dev/dax/<tag5> Host C

CXL

DCD

20

Conventional
files as memory

• Files [already] map to memory

…if the data is in memory

• When the data is in memory:

– Read/Write are just memcpy()

variants

– Memory mapping assembles the

pages into a virtual address

range that is directly accessed as

memory

• Many are aware of TLBs and page

tables, which resolve a virtual

address to memory

– A TLB + page-table miss results

in a fault() call to the file

system to resolve the file offset to

a page

Page 0

Page 1

Page 2

Page 3

Page n-1

…

/data/set0

21

Conventional
files as memory

• Files [already] map to memory

…if the data is in memory

• When the data is in memory:

– Read/Write are just memcpy()

variants

– Memory mapping assembles the

pages into a virtual address

range that is directly accessed as

memory

• Many are aware of TLBs and page

tables, which resolve a virtual

address to memory

– A TLB + page-table miss results

in a fault() call to the file

system to resolve the file offset to

a page

Page 0

Page 1

Page 2

Page 3

Page n-1

…

/data/set0
Block

Storage

(SSD, etc.)

• Conventional file systems sparsely cache pages from a files backing store

– Meaning a fault() call might have to allocate memory and retrieve

data from backing storage

• Pages that are cached (green) are accessed as memory

• Pages that are not in cache (gray) must be faulted in from backing store

if accessed

22

Huge page 0

Huge page 1

Huge page n-1

Famfs files
as memory

• Files [already] map to memory

…if the data is in memory

• When the data is in memory:

– Read/Write are just memcpy()

variants

– Memory mapping assembles the

pages into a virtual address

range that is directly accessed as

memory

• Many are aware of TLBs and page

tables, which resolve a virtual

address to memory

– A TLB + page-table miss results

in a fault() call to the file

system to resolve the file offset to

a page

…

/data/set0

• Famfs is not sparse; files are always fully mapped to memory

• Famfs data lives in [sharable] dax memory devices

• Huge page mapping reduces virtual memory mapping overhead by 512x

• Since the backing memory is not sparse, there is no downside to huge

page mapping

23

File system / VFS functionality

Storage Memory caching Local memory

allocation

Memory sharing

(Single host)

Direct/DAX memory

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block
device

• Storage is allocate-
on-write or delayed

allocation

• Preallocation

supported (fallocate,

etc.)

• Free on last unlink

(delete)

• Mutated pages

written-back to

storage

• Data is demand-
paged from storage

into page cache

• Mmap accesses data

in page cache

• Read/write copies

to/from page cache

• O_DIRECT I/O

bypasses the page

cache

24

File system / VFS functionality

Storage Memory caching Local memory

allocation

Memory sharing

(Single host)

Direct/DAX memory

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block
device

• Storage is allocate-
on-write or delayed

allocation

• Preallocation

supported (fallocate,

etc.)

• Free on last unlink

(delete)

• Mutated pages

written-back to

storage

• Data is demand-
paged from storage

into page cache

• Mmap accesses data

in page cache

• Read/write copies

to/from page cache

• O_DIRECT I/O

bypasses the page

cache

• Anonymous mmap is
lazy allocation from

page cache

Anon. mmap

25

File system / VFS functionality

Storage Memory caching Local memory

allocation

Memory sharing

(Single host)

Direct/DAX memory

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block
device

• Storage is allocate-
on-write or delayed

allocation

• Preallocation

supported (fallocate,

etc.)

• Free on last unlink

(delete)

• Mutated pages

written-back to

storage

• Data is demand-
paged from storage

into page cache

• Mmap accesses data

in page cache

• Read/write copies

to/from page cache

• O_DIRECT I/O

bypasses the page

cache

• Anonymous mmap is
lazy allocation from

page cache

Anon. mmap

• Allocation from the
page cache – no

backing store

• Ramfs and tmpfs do

lazy allocation;

Hugetlbfs does eager

allocation

• Hugetlbfs allocates

from pool of host-
managed huge pages

Ramfs, tmpfs, hugetlbfs

26

File system / VFS functionality

Storage Memory caching Local memory

allocation

Memory sharing

(Single host)

Direct/DAX memory

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block
device

• Storage is allocate-
on-write or delayed

allocation

• Preallocation

supported (fallocate,

etc.)

• Free on last unlink

(delete)

• Mutated pages

written-back to

storage

• Data is demand-
paged from storage

into page cache

• Mmap accesses data

in page cache

• Read/write copies

to/from page cache

• O_DIRECT I/O

bypasses the page

cache

• Anonymous mmap is
lazy allocation from

page cache

Anon. mmap

• Allocation from the
page cache – no

backing store

• Ramfs and tmpfs do

lazy allocation;

Hugetlbfs does eager

allocation

• Hugetlbfs allocates

from pool of host-
managed huge pages

Ramfs, tmpfs, hugetlbfs

• Allocation from
local DAX/SPM

• Storage persistent if
memory is persistent

• Pmem dev emulates

block dev for

metadata

• Metadata cached in

non-dax memory –

shared mounts from

memory not supported

Fsdax (xfs, ext4, etc.)

27

File system / VFS functionality

Storage Memory caching Local memory

allocation

Memory sharing

(Single host)

Direct/DAX memory

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block
device

• Storage is allocate-
on-write or delayed

allocation

• Preallocation

supported (fallocate,

etc.)

• Free on last unlink

(delete)

• Mutated pages

written-back to

storage

• Data is demand-
paged from storage

into page cache

• Mmap accesses data

in page cache

• Read/write copies

to/from page cache

• O_DIRECT I/O

bypasses the page

cache

• Anonymous mmap is
lazy allocation from

page cache

Anon. mmap

• Allocation from the
page cache – no

backing store

• Ramfs and tmpfs do

lazy allocation;

Hugetlbfs does eager

allocation

• Hugetlbfs allocates

from pool of host-
managed huge pages

Ramfs, tmpfs, hugetlbfs

• Allocation from
local DAX/SPM

• Storage persistent if
memory is persistent

• Pmem dev emulates

block dev for

metadata

• Metadata cached in

non-dax memory –

shared mounts from

memory not supported

Fsdax (xfs, ext4, etc.)

• Memory allocation
from sharable

DAX/SPM / Tagged

Capacity

• Append-only log

distributes files (path,

allocation,

permissions) from
master to other hosts

with access

Needed: fsdax famfs

28

How does Famfs work
Backup

© 2025 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an “AS IS” basis

without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality, or compatibility, are provided for informational

purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, the M logo, Intelligence Accelerated , and other

Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

	Slide 1: Famfs: open source scale-out shared memory file system
	Slide 2: Background: CXL / Disaggregated memory usage models
	Slide 3: Famfs: The Core Insight
	Slide 4: The superpower of memory is low-latency random access
	Slide 5: Famfs: bigger data in shared memory
	Slide 6: Large datasets don’t just appear, they get “wrangled”
	Slide 7: What if data is [much] bigger than memory?
	Slide 8: Famfs organizes disaggregated memory as a scale-out file system
	Slide 9: Interleaving is critical for memory performance
	Slide 10: Famfs architecture (MVP)
	Slide 11: Famfs: Functional Blocks
	Slide 12: Famfs: Functional Blocks
	Slide 13: Famfs status: on track for Linux upstream in late 2025 / early 2026
	Slide 14: The superpower of memory is low-latency random access
	Slide 15: Summary
	Slide 16: File system layer
	Slide 17: Fuse (File System in User Space)
	Slide 18: Background: CXL Memory sharing topology
	Slide 19: CXL tagged capacity name space
	Slide 20: Conventional files as memory
	Slide 21: Conventional files as memory
	Slide 22: Famfs files as memory
	Slide 23: File system / VFS functionality
	Slide 24: File system / VFS functionality
	Slide 25: File system / VFS functionality
	Slide 26: File system / VFS functionality
	Slide 27: File system / VFS functionality
	Slide 28: How does Famfs work
	Slide 29

