Famfs: open source
scale-out shared
memory file system

John Groves

Technical Director

And Co-Chair of the CXL Software and Systems Working Group
https://famfs.org

Aug 2025

Background: CXL / Disaggregated memory usage models

Pooling (composable system-ram)

System-RAM
(Owned/allocated by Linux)

Memory is added as System RAM
(managed by Linux)

Tiering and migration are viable
(migrate pages(), TPP, DAMON, etc.)

Incompatible with multi-host sharing
(memory gets zeroed when Linux “onlines” it)

It's possible to provision very large amounts of memory
for jobs that can’t run in 3-4T

Sharing / ‘not system ram’

DAX or Famfs mem
(not allocated by Linux)

» The hardware supports this (CXL3, DCD, etc.)

* These cases include
— Both concurrent and sequential sharing
— Other use cases that use Linux memory-mgmt

» Software usage is too complicated

« Famfs is the missing link
— “All” apps can use data in files
— Files already map to memory
— Many apps use big data in files

— RAS “blast radius” is limited to apps that access the

memory
micron. |

2

— Famfs: The Core Insight

famfs

« Sharable memory needs a standard access method
—Linux has no concept of memory that isn’t wholly owned

 The file system is the natural abstraction for shared memory
—No fundamental new abstractions required
—Software already understands files!!
—Posix permissions apply, etc.

* Prior proposals to enable of shared memory might be paraphrased as “It's a new

paradigm, requiring new abstractions!”
-See HP’s “The Machine”

micron

The superpower
of memory is
low-latency
random access

 Memory access latency is much
lower than storage latency

« Compare disaggregated memory
to storage, not system-ram

 Data that doesn’t fit in System-
RAM can be random-accessed in
disaggregated memory 100x
faster than storage

Storage
(unlimited)

Disaggregated Memory ==
(UptO 100T this year, EEEEEN

Bigger later) fam fS

srentos (DA

Access
Latency

50us +
y N\

100X

450ns +
y N

4-5X

106ns +

micron 4

Famfs: bigger data in shared memory

Operations Per Second(Random Read) -
With DB Cached upto full DRAM capacity

* RocksDB read-only benchmark 900000
800000

« Famfs benchmarks (Green) 700000
8 600000

— RocksDB database stored in famfs @ 500000

% 400000
- RocksDB instances on multiple hosts can share the same [ERgSeeea

files/memory 100000
0

— No modifications to RocksDB (famfs is just files) 018 (52 170 1.94
DB SIZE : DRAM SIZE

ContrOI GrOU p (G ray) DRAM + SSD e Famfs on 4CXL Cards Famfs on 2 CXL Cards

— RocksDB database stored in xfs backed by nvme

P99 Latency(us) (Log Scale)

— Cached in DDR; Performance great when it fits in mem oo

Benefits: 10000

— Data is de-duplicated
1000

— Or sharding / shuffling is avoided
— Cache line access (less read amplification) 3

10
0.19 0.38 0.56 0.75 0.95 1.14 FSS 1.52 1.70

DRAM + SSD P99 Latency e EFamfs on 4CXL Cards P99 Latency
Famfs on 2 CXL Cards P99 Latency

Large datasets
don’t just appear,
they get
“wrangled”

* Not all problems fit in memory

» The problems (data sets) get
bigger, but the available
techniques remain the same

—Scale up
(bigger servers / mem / GPUs)

— Scale out
(more servers / mem / GPUSs)

* Wrangling tools aren’t necessarily
memory-efficient: very large
system-ram can be needed

Server

EF md Data set

32TiB
Memory
expansion

96TiB
Famfs file
system

Disaggregated
memory pool
or “‘JBOM”

micron

6

What if data is
[much] bigger
than memory?

« Some data can be reduced in
size effectively

« Some data can be sharded
(split across hosts) effectively

« Some data is accessed
sequentially, and can
be staged via DMA / RDMA

 Random access in
disaggregated memory is
2 orders of magnitude lower
latency than NVME
(100x Improvement)

micron

7

Famfs organizes disaggregated
memory as a scale-out file system

Enabling shared JBOM for all apps that can use files

 Memory is accessible as files
— Write/read become memcpy
— Mmap provides byte / cache-line access

» “All” apps can access data in files

* Famfs files are memory and not storage
— Move data into famfs for in-memory access
— Move data out of famfs to store persistently

* Posix permissions apply, along with strict partitioning
of data from separate files

» Orchestration layers such as PNFS can use famfs as
a tier — providing memory performance + scale-out
sharing

Famfs Master Node

/mnt/famfs

/mnt/famfs/set0 l_ I E
/mnt/famfs/setl @
/mnt/famfs/set2 I O I I |

/mnt/famfs/set3 E’
Shared Memory Famfs Client

Nodes

mkfs.famfs /dev/dax0.0

famfs mount /dev/dax@.0 /mnt/famfs
famfs cp [-r] <src> <dest>

famfs creat -s <size> <dest>

micron

8

Interleaving is critical for memory performance

« CXL supports hardware interleaving but...
— The device physical address (DPA) range must be identical on all memory devices in an interleaved set
— But “memory devices” are virtual — based on DCD (dynamic capacity device) allocations

— The normal fragmentation of alloc / release will make it difficult or impossible to allocate the same DPA
range on, say, 16 allocations from different CXL memories

 Each famfs file can be interleaved across many CXL memory devices

— Famfs has no constraints about DPA ranges

micron 9

Famfs architecture (MVP)

» All metadata is stored in an append-only log

» Log is written by Master and "played” by Clients

* V1 handles clients with stale metadata by not supporting truncate or delete
» Metadata handled in user space (library, cli, currently no daemons)

» Read / write / mmap / vma faults handled in kernel

* Memory mapping from famfs == cache-line level access to shared mem

* Many of the limitations can be addressed in future versions

DAX Memory Device

./foo/bar ffoofbar
data 0 data 1
Log Entry: mkdir | | Log Entry: file create
Relpath: ./foo Relpath: ./foo/bar
Size: 2GiB
Extent list: (count=2) * Data is disjoint in memory because the file has
- offset, len = (2GiB, 1GiB) 2 non-contiguous extents

- offset, len = (12GiB, 1GiB) « Apps that mmap the file will see it as a

contiguous virtual memory range (this is
standard filesystem stuff)

Famfs Master Node

Shared Memory Famfs Client
Nodes

mkfs.famfs /dev/dax0.0

famfs mount /dev/dax@0.0 /mnt/famfs
famfs cp [-r] <src> <dest>

famfs creat -s <size> <dest>

micron 10

Famfs:
Functional
Blocks

» Metadata log is written and
read by user space
components

 File "fmaps” are pushed into the
kernel from user space

» Users see regular files

» Metadata distribution model
could change
(pnfs integration, anyone?)

Famfs

Administration
Medadata
Processing

Famfs / VFS

File Users

Kernel

daxdevs

micron 11

Famfs:
Functional
Blocks

» Metadata log is written and
read by user space
components

 File "fmaps” are pushed into the
kernel from user space

» Users see regular files

« PNFS could solve metadata
consistency

* Probably need something in the
file 1/0 path

Famfs

Administration
Medadata
Processing

Famfs / VFS

File Users

Kernel

daxdevs

micron 12

Famfs status: on track for Linux
upstream in late 2025 / early 2026

* Nov 2023 — Introduced famfs at the Linux Plumbers Conference

Famfs Master Node

—o
* May 2024 — Famfs session at LSFMM
(Linux Storage, File System and Memory Management summit) .

» Spring 2025 — Famfs Linux patch sets released (v1, v2)

ﬂ

— Conclusion: Famfs merging into fuse

/mnt/famfs/setl

* Aug 2024 — Famfs adds interleaved file support /mnt/fanfs/set2 TEEEEE
/mnt/famfs/set3

/mnt/famfs
/mnt/famfs/seto rE I E ’

Shared Memory Famfs Client

Nodes

* Nov 2024 — Famfs covered in Storage Newsletter piece on SC24
+ 2024 — Famfs in pilot use at CERN, Alibaba, Intel, Universities, etc.

» Sep 2024 — Famfs session at Linux Plumbers Conference

mkfs.famfs /dev/dax0.0

, famf t /dev/dax@.0 /mnt/famf
* Feb 2025 — Famfs poster at Usenix FAST Conference Py ?gu?_r] S e/ TAmT

famfs creat -s <size> <dest>

* Mar 2025 — Famfs session at LSFMM (LWN Article)
» Spring 2025 — Famfs fuse-based patch sets released (v1, v2)

* Famfs documentation:
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

micron 13

https://lpc.events/event/17/contributions/1455/
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lwn.net/Articles/983105/
https://lpc.events/event/18/contributions/1827/
https://www.usenix.org/conference/fast25/poster-session
https://lwn.net/Articles/1020170/
https://lore.kernel.org/linux-fsdevel/20250421013346.32530-1-john@groves.net/T/#m16f1386e90a6b40ceb60ae7feca7bbff281956bc
https://lore.kernel.org/linux-fsdevel/20250703185032.46568-1-john@groves.net/
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

The superpower
of memory is
low-latency
random access

» Famfs with big memory breaks
scaling barriers for

— Graph analytics
— Rag pipelines

— In-memory databases and indexes

» Graph databases, RAG/LLM

pipelines and indexes can scale to
100T and beyond without sharding

or demand-paging

Graph analytics and neural networks

100TB
| —
RAG/LLM Pipeline
r
Indexmg
1 OOGB Embeddings ﬂ
Node/edges/embedding User Que
data in storage (PBs) i Vgcétor
) S
= 4 Embeddings Retrieval
Similarity Search
Filter & Re-rank
. J

Big Data Index

Active
Memtable

RocksDB Architecture with 100GB-1PB
Datasets using key-value store

p
GPU vy
Retrieved Info wd LLM Generation
{ Answer
\

micron 14

Summary

» Disaggregated memory breaks scaling barriers for latency-

" Famfs Master Node
sensitive workloads

—)
« Famfs provides a natural, scale-out access method for data IEEERN C—)
In disaggregated, shared memory ‘ l—r——__l ‘ —) ‘
—XH

Shared Memory Famfs Client
Nodes

» Software does not need to change to use shared memory!

mkfs.famfs /dev/dax0.0

famfs mount /dev/dax@0.0 /mnt/famfs
famfs cp [-r] <src> <dest>

famfs creat -s <size> <dest>

micron 15

File system layer

Technical details

Fuse (File System in User Space)

» Fuse kernel component provides a
file system mount

* Fuse server (AKA Fuse Daemon) is
authoritative as to what files exist

* Fuse server facilitates 1/0 fuse server

* Fuse server enforces any limitations
(with help from fuse in the kernel) § E] B 21| Bt
S118]12]|3

A A A A

/path /files

User

Kernel

» Famfs fits logically, in that it already
handles metadata from user space

» But fuse has notoriously poor
performance

micron 17

Background: CXL Memory sharing topology

« Think of a Dynamic Capacity Device (DCD) as a memory device with built-in allocator and access control
« The allocator is necessary for multi-host environments

« DCD (via fabric manager) can give additional hosts access to a sharable allocation, writable or read-only, etc.

Sarver Linux Sees:
Sysadmin can convert

Direct-attached _ /dev/dax qmmmm ~System-RAM between dax and
memory CXL.mem E / system-ram mode
DCD cxiocp [o)

Linux Sees:

* Nothing, until memory is allocated (Init Dynamic Capacity Add fabric
manager command - 7.6.7.6.5)
+ A“tagged” dax device for each successful allocation

CXL DCD
Sysadmin can convert
CXL DCD /dev/dax ¢ummmmp System-RAM between dax and
CXL DCD + This holds true for DCD in any topology: system-ram mode
CXL Switch « Direct attached, multi-headed (MHD)
CXL DCD LD-FAM or G-FAM

CXL DCD
CXL DCD

micron 18

CXL tagged capacity name space

« DCD is not usable until memory is allocated

/dev/dax/<tago>—— (C—_) HostA

/dev/dax/<tagl>— (C—__) HostA
/dev/dax/<tag2>—— (C—__) HostA

« Allocation (Init DC Add)(sharable allocations are
"tagged’, and appear as “virtual” dax devices)

« Tagged dax memory can be “onlined” as
system-ram (non-shared memory)

/dev/dax/<tago> — (C=—_) Host B
/dev/dax/<tag3>—— (C—_) Host B

« Sharable memory can surface simultaneously
or not

« A famfs instance lives on one or more tagged
dax memory instances

/dev/dax/<tago>—— E) Host C
/dev/dax/<tag3>—— (Z) Host C
/dev/dax/<tagd>—— (= Host C

/dev/dax/<tags>— (C—_) Host C

« Famfs can also interleave files across an
arbitrary number of Tags

» CXL interleave can be programmed across
multiple tagged allocations™

micron 19

Conventional
files as memory

» Files [already] map to memory
...if the data is in memory

 When the data is in memory:

— Read/Write are just memcpy()
variants

— Memory mapping assembles the
pages into a virtual address
range that is directly accessed as
memory

« Many are aware of TLBs and page
tables, which resolve a virtual
address to memory

— A TLB + page-table miss results
ina fault() call to the file
system to resolve the file offset to
a page

/data/setO ~<

B Pagen-1

micron

20

Conventional
files as memory

» Files [already] map to memory
...if the data is in memory

 When the data is in memory:

— Read/Write are just memcpy()
variants

— Memory mapping assembles the
pages into a virtual address
range that is directly accessed as
memory

« Many are aware of TLBs and page
tables, which resolve a virtual
address to memory

— A TLB + page-table miss results
ina fault() call to the file
system to resolve the file offset to
a page

Page 0

Page 1
Page 2
Page 3

Block

/data/setO ~<

Storage
. (SSD, etc.)

B Pagen-1

» Conventional file systems sparsely cache pages from a files backing store

— Meaning a fault() call might have to allocate memory and retrieve
data from backing storage

» Pages that are cached (green) are accessed as memory

» Pages that are not in cache (gray) must be faulted in from backing store

if accessed

micron 21

Famfs files
as memory

» Files [already] map to memory
...if the data is in memory

 When the data is in memory:

— Read/Write are just memcpy()
variants

— Memory mapping assembles the
pages into a virtual address
range that is directly accessed as
memory

« Many are aware of TLBs and page
tables, which resolve a virtual
address to memory

— A TLB + page-table miss results
ina fault() call to the file
system to resolve the file offset to
a page

Huge page O

/data/set0 ~< Huge page 1

—

Huge page n-1

Famfs is not sparse; files are always fully mapped to memory

Famfs data lives in [sharable] dax memory devices

Huge page mapping reduces virtual memory mapping overhead by 512x

Since the backing memory is not sparse, there is no downside to huge

page mapping

micron

22

File system / VFS functionality

Storage

Memory caching

Local memory
allocation

Memory sharing
(Single host)

Direct/DAX memory
allocation

Memory sharing
(Multi-host FAM)

K Storage is block \

device

+ Storage is allocate-
on-write or delayed
allocation

* Preallocation
supported (fallocate,
etc.)

¢ Free on last unlink
(delete)

* Mutated pages
written-back to

\ storage J

Conventional file systems

KData is demand- \

paged from storage
into page cache

* Mmap accesses data
in page cache

* Read/write copies
to/from page cache

+ O_DIRECT I/O
bypasses the page
cache

" 4

micron

23

File system / VFS functionality

Storage

Memory caching

Local memory
allocation

Memory sharing
(Single host)

Direct/DAX memory
allocation

Memory sharing
(Multi-host FAM)

K Storage is block \

device

+ Storage is allocate-
on-write or delayed
allocation

* Preallocation
supported (fallocate,
etc.)

¢ Free on last unlink
(delete)

* Mutated pages
written-back to

\ storage

4

Conventional file systems

KData is demand- \

paged from storage
into page cache

* Mmap accesses data
in page cache

* Read/write copies
to/from page cache

+ O_DIRECT I/O
bypasses the page
cache

4

Anon. mmap

Anonymous mmap is
lazy allocation from
page cache

micron

24

File system / VFS functionality

Storage

Memory caching

Local memory
allocation

Memory sharing
(Single host)

Direct/DAX memory
allocation

Memory sharing
(Multi-host FAM)

K Storage is block \

device

+ Storage is allocate-
on-write or delayed
allocation

* Preallocation
supported (fallocate,
etc.)

¢ Free on last unlink
(delete)

* Mutated pages
written-back to

k storage

4

Conventional file systems

KData is demand- \

paged from storage
into page cache

* Mmap accesses data
in page cache

* Read/write copies
to/from page cache

+ O_DIRECT I/O
bypasses the page
cache

4

Anon. mmap

Anonymous mmap is
lazy allocation from
page cache

Ramfs, tmpfs, hugetlbfs

Allocation from the
page cache — no
backing store

Ramfs and tmpfs do
lazy allocation;
Hugetlbfs does eager
allocation

Hugetlbfs allocates
from pool of host-
managed huge pages

micron

25

File system / VFS functionality

Storage Memory caching Local memory Memory sharing Direct/DAX memory Memory sharing
allocation (Single host) allocation (Multi-host FAM)
Conventional file systems
K Storage is block \ K Data is demand- \ Anon. mmap Fsdax (xfs, ext4, etc_)
device paged from storage
 Storage is allocate- e 2 Geche « Anonymous mmap is \
on-writ.e or delayed = !\/Imap accesses data lazy allocation from « Allocation from
allocation in page cache page cache local DAX/SPM
* Preallocation * Read/write copies » Storage persistent if
supported (fallocate, to/from page cache memory is persistent
etc.) « O_DIRECT I/O Ramfs, tmpfs, hugetlbfs « Pmem dev emulates
¢ Free on last unlink bypasses the page block dev for
(delete) cache metadata
* Mutated pages * Allocation from the » Metadata cached in
written-back to page cache — no non-dax memory —
k storage J k J backing store shared mounts from
+ Ramfs and tmpfs do memory not supported
lazy allocation;
Hugetlbfs does eager
allocation
* Hugetlbfs allocates
from pool of host-
managed huge pages
micron. | 26

File system / VFS functionality

Storage Memory caching Local memory Memory sharing Direct/DAX memory Memory sharing
allocation (Single host) allocation (Multi-host FAM)
Conventional file systems
K Storage is block \ f Data is demand- \ Anon. mmap Fsdax (xfs, ext4, etc.)

device

+ Storage is allocate-
on-write or delayed
allocation

* Preallocation
supported (fallocate,
etc.)

¢ Free on last unlink
(delete)

* Mutated pages
written-back to

\ storage

>

paged from storage
into page cache

* Mmap accesses data
in page cache

* Read/write copies
to/from page cache

*+ O_DIRECT I/O

bypasses the page
cache

4

Anonymous mmap is
lazy allocation from
page cache

Ramfs, tmpfs, hugetlbfs

Allocation from the
page cache — no
backing store

Ramfs and tmpfs do
lazy allocation;
Hugetlbfs does eager
allocation

\

» Allocation from
local DAX/SPM

+ Storage persistent if
memory is persistent

* Pmem dev emulates
block dev for
metadata

» Metadata cached in
non-dax memory —
shared mounts from
memory not supported

)

Hugetlbfs allocates
from pool of host-
managed huge pages

Needed: fsdax famfs

K Memory allocation

from sharable
DAX/SPM / Tagged
Capacity

Append-only log
distributes files (path,
allocation,
permissions) from
master to other hosts

k with access

micron

27

How does Famfs work

Backup

L
JNICION e

© 2025 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an “AS IS” basis
without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality, or compatibility, are provided for informational
purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, the M logo, Intelligence Accelerated™, and other
Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

	Slide 1: Famfs: open source scale-out shared memory file system
	Slide 2: Background: CXL / Disaggregated memory usage models
	Slide 3: Famfs: The Core Insight
	Slide 4: The superpower of memory is low-latency random access
	Slide 5: Famfs: bigger data in shared memory
	Slide 6: Large datasets don’t just appear, they get “wrangled”
	Slide 7: What if data is [much] bigger than memory?
	Slide 8: Famfs organizes disaggregated memory as a scale-out file system
	Slide 9: Interleaving is critical for memory performance
	Slide 10: Famfs architecture (MVP)
	Slide 11: Famfs: Functional Blocks
	Slide 12: Famfs: Functional Blocks
	Slide 13: Famfs status: on track for Linux upstream in late 2025 / early 2026
	Slide 14: The superpower of memory is low-latency random access
	Slide 15: Summary
	Slide 16: File system layer
	Slide 17: Fuse (File System in User Space)
	Slide 18: Background: CXL Memory sharing topology
	Slide 19: CXL tagged capacity name space
	Slide 20: Conventional files as memory
	Slide 21: Conventional files as memory
	Slide 22: Famfs files as memory
	Slide 23: File system / VFS functionality
	Slide 24: File system / VFS functionality
	Slide 25: File system / VFS functionality
	Slide 26: File system / VFS functionality
	Slide 27: File system / VFS functionality
	Slide 28: How does Famfs work
	Slide 29

