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Background: CXL / Disaggregated memory usage models

Pooling (composable system-ram) Sharing / ‘not system ram’

• Memory is added as System RAM

(managed by Linux)

• Tiering and migration are viable

(migrate_pages(), TPP, DAMON, etc.)

• Incompatible with multi-host sharing

(memory gets zeroed when Linux “onlines” it)

• It’s possible to provision very large amounts of memory 

for jobs that can’t run in 3-4T

• The hardware supports this (CXL3, DCD, etc.)

• These cases include

– Both concurrent and sequential sharing

– Other use cases that use Linux memory-mgmt

• Software usage is too complicated

• Famfs is the missing link

– “All” apps can use data in files

– Files already map to memory

– Many apps use big data in files

– RAS “blast radius” is limited to apps that access the 

memory

System-RAM
(Owned/allocated by Linux)

DAX or Famfs mem
(not allocated by Linux)
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Famfs: The Core Insight

• Sharable memory needs a standard access method

–Linux has no concept of memory that isn’t wholly owned

• The file system is the natural abstraction for shared memory 

–No fundamental new abstractions required

–Software already understands files!!

–Posix permissions apply, etc.

• Prior proposals to enable of shared memory might be paraphrased as “It’s a new 

paradigm, requiring new abstractions!”

–See HP’s “The Machine”
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Access 

LatencyThe superpower 
of memory is 
low-latency 
random access

• Memory access latency is much 

lower than storage latency

• Compare disaggregated memory 

to storage, not system-ram

• Data that doesn’t fit in System-

RAM can be random-accessed in 

disaggregated memory 100x 

faster than storage

50us +

450ns +

100ns +

100X

4-5X

System RAM
(up to 3-4T)

Disaggregated Memory
(up to 100T this year,

Bigger later)

Storage
(unlimited)
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Famfs: bigger data in shared memory

• RocksDB read-only benchmark

• Famfs benchmarks (Green)

– RocksDB database stored in famfs

– RocksDB instances on multiple hosts can share the same 

files/memory 

– No modifications to RocksDB (famfs is just files)

• Control Group (Gray)

– RocksDB database stored in xfs backed by nvme

– Cached in DDR; Performance great when it fits in mem

• Benefits: 

– Data is de-duplicated

– Or sharding / shuffling is avoided

– Cache line access (less read amplification)
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Large datasets 
don’t just appear, 
they get 
“wrangled”

• Not all problems fit in memory

• The problems (data sets) get 

bigger, but the available 

techniques remain the same

–Scale up 

(bigger servers / mem / GPUs)

–Scale out 

(more servers / mem / GPUs)

• Wrangling tools aren’t necessarily 
memory-efficient: very large 

system-ram can be needed

Disaggregated 

memory pool 
or “JBOM”

48TiB

Data set

Server

32TiB

Memory 

expansion

VM

96TiB

Famfs file 

system

Server
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What if data is 
[much] bigger 
than memory?

• Some data can be reduced in 

size effectively

• Some data can be sharded 

(split across hosts) effectively

• Some data is accessed 
sequentially, and can

be staged via DMA / RDMA

• Random access in 

disaggregated memory is 

2 orders of magnitude lower 
latency than NVME

(100x Improvement)

Data is large

Can use 

data 

reduction

Yay
Yes

Can shard 

effectively
OK

Yes

No

Use disaggregated 

memory

Access is 

sequential

Use DMA / 

RDMA

Yes

No

No
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Famfs organizes disaggregated 
memory as a scale-out file system

• Memory is accessible as files

–Write/read become memcpy

–Mmap provides byte / cache-line access

• “All” apps can access data in files

• Famfs files are memory and not storage

–Move data into famfs for in-memory access

–Move data out of famfs to store persistently

• Posix permissions apply, along with strict partitioning 

of data from separate files

• Orchestration layers such as PNFS can use famfs as 
a tier – providing memory performance + scale-out 

sharing

Enabling shared JBOM for all apps that can use files

Famfs Client

Nodes

Famfs Master Node

/mnt/famfs
/mnt/famfs/set0
/mnt/famfs/set1

/mnt/famfs/set2
/mnt/famfs/set3
…

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>
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Interleaving is critical for memory performance

• CXL supports hardware interleaving but…

–The device physical address (DPA) range must be identical on all memory devices in an interleaved set

–But “memory devices” are virtual – based on DCD (dynamic capacity device) allocations

–The normal fragmentation of alloc / release will make it difficult or impossible to allocate the same DPA 

range on, say, 16 allocations from different CXL memories

• Each famfs file can be interleaved across many CXL memory devices

–Famfs has no constraints about DPA ranges
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Famfs architecture (MVP)

• All metadata is stored in an append-only log

• Log is written by Master and ”played” by Clients

• V1 handles clients with stale metadata by not supporting truncate or delete

• Metadata handled in user space (library, cli, currently no daemons)

• Read / write / mmap / vma faults handled in kernel

• Memory mapping from famfs == cache-line level access to shared mem

• Many of the limitations can be addressed in future versions

Famfs Client

Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>
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Famfs: 
Functional 
Blocks

• Metadata log is written and 

read by user space 

components

• File ”fmaps” are pushed into the 

kernel from user space

• Users see regular files

• Metadata distribution model 

could change 

(pnfs integration, anyone?)
Memory / 

daxdevs

User

Kernel

Famfs / VFS

Famfs 

Administration

Medadata 

Processing

File Users

F
ile

 I
/O

C
o

n
tr

o
l
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Famfs: 
Functional 
Blocks

• Metadata log is written and 

read by user space 

components

• File ”fmaps” are pushed into the 

kernel from user space

• Users see regular files

• PNFS could solve metadata 

consistency

• Probably need something in the 
file I/O path

Memory / 

daxdevs

User

Kernel

Famfs / VFS

Famfs 

Administration

Medadata 

Processing

File Users

L
O

C
A

L
IO

M
e
ta

d
a
ta

 
C
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M
e
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d
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ta

 

PNFS



13

Famfs status: on track for Linux 
upstream in late 2025 / early 2026

• Nov 2023 – Introduced famfs at the Linux Plumbers Conference

• Spring 2025 – Famfs Linux patch sets released (v1, v2)

• May 2024 – Famfs session at LSFMM 
(Linux Storage, File System and Memory Management summit)

– Conclusion: Famfs merging into fuse

• Aug 2024 – Famfs adds interleaved file support

• Nov 2024 – Famfs covered in Storage Newsletter piece on SC24

• 2024 – Famfs in pilot use at CERN, Alibaba, Intel, Universities, etc.

• Sep 2024 – Famfs session at Linux Plumbers Conference

• Feb 2025 – Famfs poster at Usenix FAST Conference

• Mar 2025 – Famfs session at LSFMM (LWN Article)

• Spring 2025 – Famfs fuse-based patch sets released (v1, v2)

• Famfs documentation: 
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md

Famfs Client

Nodes

Famfs Master Node

/mnt/famfs
/mnt/famfs/set0
/mnt/famfs/set1

/mnt/famfs/set2
/mnt/famfs/set3
…

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>

https://lpc.events/event/17/contributions/1455/
https://lore.kernel.org/linux-cxl/cover.1708709155.git.john@groves.net/
https://lore.kernel.org/linux-cxl/cover.1714409084.git.john@groves.net/
https://lwn.net/Articles/983105/
https://lpc.events/event/18/contributions/1827/
https://www.usenix.org/conference/fast25/poster-session
https://lwn.net/Articles/1020170/
https://lore.kernel.org/linux-fsdevel/20250421013346.32530-1-john@groves.net/T/#m16f1386e90a6b40ceb60ae7feca7bbff281956bc
https://lore.kernel.org/linux-fsdevel/20250703185032.46568-1-john@groves.net/
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
https://github.com/cxl-micron-reskit/famfs/blob/master/README.md
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The superpower 
of memory is 
low-latency 
random access

• Famfs with big memory breaks 

scaling barriers for 

–Graph analytics

–Rag pipelines

– In-memory databases and indexes

• Graph databases, RAG/LLM 

pipelines and indexes can scale to 

100T and beyond without sharding 

or demand-paging

Node/edges/embedding

 data in storage (PBs)

100GB

100TB

Graph analytics and neural networks 

RAG/LLM Pipeline 

Retrieved Info
Answer

Vector

DBs

Generation

Source 

Corpus
Chunks Embeddings

Indexing

User Query

Embeddings Retrieval

Similarity Search

Filter & Re-rank

GPU

LLM

Big Data Index 

Active 
Memtable

SST SST

Log

SST

Log

RocksDB Architecture with 100GB-1PB

Datasets using key-value store

Active 
Read-only 
Memtable
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Summary

• Disaggregated memory breaks scaling barriers for latency-

sensitive workloads

• Famfs provides a natural, scale-out access method for data 

in disaggregated, shared memory

• Software does not need to change to use shared memory! Famfs Client

Nodes

Shared Memory

Famfs Master Node

mkfs.famfs /dev/dax0.0
famfs mount /dev/dax0.0 /mnt/famfs
famfs cp [-r] <src> <dest>
famfs creat –s <size> <dest>
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File system layer
Technical details
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Fuse (File System in User Space)

• Fuse kernel component provides a 

file system mount

• Fuse server (AKA Fuse Daemon) is 

authoritative as to what files exist 

• Fuse server facilitates I/O

• Fuse server enforces any limitations 

(with help from fuse in the kernel)

• Famfs fits logically, in that it already 

handles metadata from user space

• But fuse has notoriously poor 
performance

User

Kernel

fuse

lo
o

k
u

p

fuse server

re
a

d

w
ri
te Etc…

re
a

d
d

ir

Apps

/path/to/files
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Background: CXL Memory sharing topology

• Think of a Dynamic Capacity Device (DCD) as a memory device with built-in allocator and access control

• The allocator is necessary for multi-host environments

• DCD (via fabric manager) can give additional hosts access to a sharable allocation, writable or read-only, etc.

CXL.mem
Direct-attached 

memory
/dev/dax System-RAM

Server Linux Sees:

/dev/dax System-RAM

CXL DCD
Linux Sees:

• Nothing, until memory is allocated (Init Dynamic Capacity Add fabric 

manager command - 7.6.7.6.5)

• A “tagged” dax device for each successful allocation

• This holds true for DCD in any topology:

• Direct attached, multi-headed (MHD)

• LD-FAM or G-FAM
CXL Switch

CXL DCD

CXL DCD

CXL DCD

CXL DCD

CXL DCD

CXL DCD

CXL MHD

Sysadmin can convert 
between dax and 

system-ram mode

Sysadmin can convert 
between dax and 

system-ram mode

DCD
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CXL tagged capacity name space

• DCD is not usable until memory is allocated

• Allocation (Init DC Add)(sharable allocations are 

”tagged”, and appear as “virtual” dax devices)

• Tagged dax memory can be “onlined” as 

system-ram (non-shared memory)

• Sharable memory can surface simultaneously 

or not

• A famfs instance lives on one or more tagged 

dax memory instances

• Famfs can also interleave files across an 

arbitrary number of Tags

• CXL interleave can be programmed across 

multiple tagged allocations*

/dev/dax/<tag0> Host A

/dev/dax/<tag1> Host A

/dev/dax/<tag2> Host A

/dev/dax/<tag0> Host  B

/dev/dax/<tag3> Host  B

/dev/dax/<tag0> Host  C

/dev/dax/<tag3> Host  C

/dev/dax/<tag4> Host  C

/dev/dax/<tag5> Host  C

CXL 

DCD
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Conventional 
files as memory

• Files [already] map to memory

…if the data is in memory

• When the data is in memory:

– Read/Write are just memcpy() 

variants

– Memory mapping assembles the 

pages into a virtual address 

range that is directly accessed as 

memory

• Many are aware of TLBs and page 

tables, which resolve a virtual 

address to memory

– A TLB + page-table miss results 

in a fault() call to the file 

system to resolve the file offset to 

a page

Page 0

Page 1

Page 2

Page 3

Page n-1

…

/data/set0
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Conventional 
files as memory

• Files [already] map to memory

…if the data is in memory

• When the data is in memory:

– Read/Write are just memcpy() 

variants

– Memory mapping assembles the 

pages into a virtual address 

range that is directly accessed as 

memory

• Many are aware of TLBs and page 

tables, which resolve a virtual 

address to memory

– A TLB + page-table miss results 

in a fault() call to the file 

system to resolve the file offset to 

a page

Page 0

Page 1

Page 2

Page 3

Page n-1

…

/data/set0
Block 

Storage 

(SSD, etc.)

• Conventional file systems sparsely cache pages from a files backing store

– Meaning a fault() call might have to allocate memory and retrieve 

data from backing storage

• Pages that are cached (green) are accessed as memory

• Pages that are not in cache (gray) must be faulted in from backing store 

if accessed
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Huge page 0

Huge page 1

Huge page n-1

Famfs files 
as memory

• Files [already] map to memory

…if the data is in memory

• When the data is in memory:

– Read/Write are just memcpy() 

variants

– Memory mapping assembles the 

pages into a virtual address 

range that is directly accessed as 

memory

• Many are aware of TLBs and page 

tables, which resolve a virtual 

address to memory

– A TLB + page-table miss results 

in a fault() call to the file 

system to resolve the file offset to 

a page

…

/data/set0

• Famfs is not sparse; files are always fully mapped to memory

• Famfs data lives in [sharable] dax memory devices

• Huge page mapping reduces virtual memory mapping overhead by 512x

• Since the backing memory is not sparse, there is no downside to huge 

page mapping
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File system / VFS functionality

Storage Memory caching Local memory 

allocation

Memory sharing

(Single host)

Direct/DAX memory 

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block 
device

• Storage is allocate-
on-write or delayed 

allocation

• Preallocation 

supported (fallocate, 

etc.)

• Free on last unlink 

(delete)

• Mutated pages 

written-back to 

storage

• Data is demand-
paged from storage 

into page cache

• Mmap accesses data 

in page cache

• Read/write copies 

to/from page cache

• O_DIRECT I/O 

bypasses the page 

cache 
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File system / VFS functionality

Storage Memory caching Local memory 

allocation

Memory sharing

(Single host)

Direct/DAX memory 

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block 
device

• Storage is allocate-
on-write or delayed 

allocation

• Preallocation 

supported (fallocate, 

etc.)

• Free on last unlink 

(delete)

• Mutated pages 

written-back to 

storage

• Data is demand-
paged from storage 

into page cache

• Mmap accesses data 

in page cache

• Read/write copies 

to/from page cache

• O_DIRECT I/O 

bypasses the page 

cache 

• Anonymous mmap is 
lazy allocation from 

page cache

Anon. mmap
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File system / VFS functionality

Storage Memory caching Local memory 

allocation

Memory sharing

(Single host)

Direct/DAX memory 

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block 
device

• Storage is allocate-
on-write or delayed 

allocation

• Preallocation 

supported (fallocate, 

etc.)

• Free on last unlink 

(delete)

• Mutated pages 

written-back to 

storage

• Data is demand-
paged from storage 

into page cache

• Mmap accesses data 

in page cache

• Read/write copies 

to/from page cache

• O_DIRECT I/O 

bypasses the page 

cache 

• Anonymous mmap is 
lazy allocation from 

page cache

Anon. mmap

• Allocation from the 
page cache – no 

backing store

• Ramfs and tmpfs do 

lazy allocation; 

Hugetlbfs does eager 

allocation

• Hugetlbfs allocates 

from pool of host-
managed huge pages

Ramfs, tmpfs, hugetlbfs
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File system / VFS functionality

Storage Memory caching Local memory 

allocation

Memory sharing

(Single host)

Direct/DAX memory 

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block 
device

• Storage is allocate-
on-write or delayed 

allocation

• Preallocation 

supported (fallocate, 

etc.)

• Free on last unlink 

(delete)

• Mutated pages 

written-back to 

storage

• Data is demand-
paged from storage 

into page cache

• Mmap accesses data 

in page cache

• Read/write copies 

to/from page cache

• O_DIRECT I/O 

bypasses the page 

cache 

• Anonymous mmap is 
lazy allocation from 

page cache

Anon. mmap

• Allocation from the 
page cache – no 

backing store

• Ramfs and tmpfs do 

lazy allocation; 

Hugetlbfs does eager 

allocation

• Hugetlbfs allocates 

from pool of host-
managed huge pages

Ramfs, tmpfs, hugetlbfs

• Allocation from 
local DAX/SPM

• Storage persistent if 
memory is persistent

• Pmem dev emulates 

block dev for 

metadata

• Metadata cached in 

non-dax memory – 

shared mounts from 

memory not supported

Fsdax (xfs, ext4, etc.)
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File system / VFS functionality

Storage Memory caching Local memory 

allocation

Memory sharing

(Single host)

Direct/DAX memory 

allocation

Memory sharing

(Multi-host FAM)

Conventional file systems

• Storage is block 
device

• Storage is allocate-
on-write or delayed 

allocation

• Preallocation 

supported (fallocate, 

etc.)

• Free on last unlink 

(delete)

• Mutated pages 

written-back to 

storage

• Data is demand-
paged from storage 

into page cache

• Mmap accesses data 

in page cache

• Read/write copies 

to/from page cache

• O_DIRECT I/O 

bypasses the page 

cache 

• Anonymous mmap is 
lazy allocation from 

page cache

Anon. mmap

• Allocation from the 
page cache – no 

backing store

• Ramfs and tmpfs do 

lazy allocation; 

Hugetlbfs does eager 

allocation

• Hugetlbfs allocates 

from pool of host-
managed huge pages

Ramfs, tmpfs, hugetlbfs

• Allocation from 
local DAX/SPM

• Storage persistent if 
memory is persistent

• Pmem dev emulates 

block dev for 

metadata

• Metadata cached in 

non-dax memory – 

shared mounts from 

memory not supported

Fsdax (xfs, ext4, etc.)

• Memory allocation 
from sharable 

DAX/SPM / Tagged 

Capacity

• Append-only log 

distributes files (path, 

allocation, 

permissions) from 
master to other hosts 

with access

Needed: fsdax famfs
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How does Famfs work
Backup
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