
HDD Native Parallel Filesystem

Maximizing Throughput for Highest Capacity CMR & HM-SMR Drives

The International Conference on Massive Storage Systems and Technology
Santa Clara University
September 23, 2025

Piotr Modrzyk

Principal Architect at Leil Storage and SaunaFS

David Gerstein

CTO at Leil Storage and SaunaFS



HDDs Through Time: 5MB to 36TB

1956 - IBM 350 RAMAC: birth of the HDD, designed for 

random workloads (“R” in RAMAC = Random)

Today: most random I/O has shifted to flash, where IOPS 

are cheaper than on HDDs

HDD strength: best suited for sequential workloads → our 

HDD-native approach maximizes throughput by going 

sequential

Longevity: HDDs remain critical; HM-SMR drives have 

been widely adopted by hyperscalers for over a decade

Next: let’s dive into HM-SMR and its role today

Shifting Workloads: Random Access to Sequential for HDD Efficiency

2/28



HDDs Through Time: 5MB to 36TB

1956 - IBM 350 RAMAC: birth of the HDD, designed for 

random workloads (“R” in RAMAC = Random)

Today: most random I/O has shifted to flash, where IOPS 

are cheaper than on HDDs

HDD strength: best suited for sequential workloads → our 

HDD-native approach maximizes throughput by going 

sequential

Longevity: HDDs remain critical; HM-SMR drives have 

been widely adopted by hyperscalers for over a decade

Next: let’s dive into HM-SMR and its role today

Shifting Workloads: Random Access to Sequential for HDD Efficiency

3/28



HDDs Through Time: 5MB to 36TB
Shifting Workloads: Random Access to Sequential for HDD Efficiency

4/28



Outline

Brief intro to SaunaFS

Simplified SaunaFS architecture

Chunks

SMR restrictions

Problems for conventional Chunks

Solution

Divide the Chunks into Metadata and Data

Handle non-sequential writes: fragment the chunks & garbage collection

SMR libraries overview and why ZoneFS

Inspecting the content of zones with a graphical UI tool

Benchmarks & latest improvements

Hardware Specifics & ADR/RDP plans

5/28



SaunaFS - Great-grandson of GFS
Mostly open source & maintained by Leil Storage.

SaunaFS is a Distributed File System written mostly in 

C++ which implements concepts introduced by Google 

File System.

SaunaFS is divided into:

Metadata Servers (master, shadows and 

metaloggers)

Data Servers (chunkservers)

Clients (native Linux/Windows, NFS)

In the Chunkserver side:

Files are divided into Chunks (up to 64 MiB) 

Chunks are logically divided into Blocks of 64 KiB, 

which is the minimum block size.

For each block, 4 bytes of CRC are also stored in the 

Chunk metadata. 6/28



Host-Managed SMR Restrictions

Conventional

Zones

Sequential write

Zones

The client wants to create a file and to write data to this file:

The Sequential Zones can only be appended at the write head – you can NOT write randomly.

The IO operations must be aligned to the device IO block size (usually 4KiB).

7/28



Conventional Chunk

Header CRC Data

Header 1 KiB

Id, version, type.

CRC

Up to 512 Blocks of 4B.

Data

Up to 1024 Blocks of 64 KiB.

8/28



Conventional Chunk Problems

CRC must be updated with each Block write, which implies non-sequential writes to the Zone.

Header + CRC = 3 KiB, which is not aligned to the 4 KiB IO block size of many SMRs.

The Zone write head is always moved by 64 KiB, which only works for write block sizes multiple of 

64 KiB.

9/28



Solution
Divide Chunks into Metadata & Data

Split the Chunks into Metadata and Data.
The metadata is now in another (NVMe) disk 

(not a cache), which eliminates the problem of 

writing the CRC in Sequential Zones.

Data can be aligned now into the Zones with 64 

KiB Blocks.

The Zone Write Head is always moved by 64 

KiB, which only works for write block sizes 

multiple of 64 KiB.

10/28



Not Aligned Random Writes  

Example of non-sequential write into the Zones:

Create a file and write 32 KiB (50% of our block size).

A new Chunk is created with 1 Fragment containing 1 Block of 64 KiB, but only 32 KiB belongs to the file.

The next bytes to write will trigger a non-sequential write into the Zone.

The next bytes to write will trigger a non-sequential write into the Zone.

32 KiB

Zone

Wasted

Zone Write Head (of SMR zone)Chunk Write Head

Introduce Chunk Fragmentation

11/28



Not Aligned Random Writes  
Aligning Random Writes

If the Fragment contains 

more than one block, we 

need to create a new 

Fragment, preferably in 

the same Zone.

A hole of unreferenced 

written data is created.

The Zone is marked as 

Dirty. 

The Chunk is now 

considered fragmented.

    i 

    

 ra ment

                               

    i 

    i 

    

    i 

                      

               

                

Garbage

12/28



Aligned Random Writes
Handle Non-Sequential Writes

Random Write

fio --name=fiotest_rand_write_QD5 --directory=/mnt/saunafs --size=1G 

--rw=randwrite --numjobs=1 --ioengine=libaio --group_reporting --bs=64K

13/28



Aligned Random Writes
Handle Non-Sequential Writes

      

     
            

        

      

    
            

        

Random Write:

14/28



Aligned Random Writes
Handle Non-Sequential Writes

Random Write:

      

                 

        

      

            

        

      

    

             

      

            

        

            

        
Notice the incorrect order of 

the blocks in the zone. 

The order will be fixed 

during defragmentation.

15/28



Virtual Blocks
Handle Non-Sequential Writes

Random Write:

      

                 

        

      

            

        

      

    

      

            

        

            

        

      

            

        

      

            

        

Notice the incorrect order of 

the blocks in the zone. 

The order will be fixed 

during defragmentation.

Virtual Blocks

16/28



Virtual Blocks
Introduce Chunk Fragmentation = Virtual Blocks

The Header is modified to contain information about the Fragments:

Id, version, type, number of fragments, list of fragments. 

Metadata about the Fragments contain 12Bytes each:

Zone(4B), offsetInZone(4B), first block(2B), number of 

Blocks(2B).

New Fragments of same chunk are preferred to be stored in the same 

Zone if possible.

A Chunk with more than one Fragment is considered fragmented.

Header CRC Data

Since we have Virtual Blocks 

now, defragmentation should 

be fragment-based instead 

of the block-based. 

This way, we can avoid 

creating unnecessary Blocks 

full of zeros each time we 

would need to deal with 

virtual block (full of nulls). 

17/28



Garbage Collection
Chunks Defragmentation in chunk-scrub thread

Defragment the Chunks by extending our scrub-chunk thread, with defragmentation task.

The Zone X can be reset now –

which will reclaim space, because 

it does not contain any valid data.

      

      

      

                      

      

            

         

      

GC is divided into:

Defragmenting Chunks.

Resetting unreferenced 

Dirty Zones.

18/28



Single HM-SMR Drive Tools
We Are Standing On The Shoulders Of Giants

libzbc libzbd ZoneFS

Provides 

functions for 
manipulating 
ZBC and 

ZAC disks 
directly.

Provides functions 

for manipulating 
zoned block 
devices (uses the 

kernel-provided 
ZBD interface that 

is based on the 
ioctl() system calls).

Exposes the zones as files 

(from kernel 5.6.0). Uses mkzonefs to 
format the drive and then mount -t 
zonefs.

Provides aggregation for conventional 

zones, file ownership and file access 
permissions.

Contains an 

emulation 
mode
to mimic HM 

zoned 
devices.

No (but null_blk

can be used).

No (but null_blk can be used).

Graphical 

Interface: 
gzbc.

Graphical Interface: 

gzbd.

No (gzbc and gzbd works).
See more details on here: 

https://zonedstorage.io/docs/getting-started

19/28

https://zonedstorage.io/docs/getting-started
https://zonedstorage.io/docs/getting-started
https://zonedstorage.io/docs/getting-started


Why ZoneFS?

Built-in In Mainstream 

Kernels

No New Dependencies For 

The Project like ZBC or 

ZBD.

Allows Usage 

Of Familiar File I/O Model 

which means less 

modifications to the current 

Chunkserver code.

20/28



Graphical user interface (GUI)

The SaunaFS graphical tool 

displays each zone as a row.

Black represents holes.

Each unique color

corresponds to a chunk.

Free space within a zone 

is shown in bright green.

Garbage collection:

21/28



Graphical user interface (GUI)

All chunks in zones are 

defragmented.

All dirty (black) space is 

reclaimed.

MINIMUM ONE ZONE IS 

EMPTY.

Garbage collection:

22/28



SaunaFS 4.x SMR vs CMR (WDC)

The following graph displays the results for 60 FIO jobs using the 

following hardware: 

CMR Drives: Ultrastar HC560 (SAS) 

SMR Drives: Ultrastar HC650 (SATA) 

Platform: Ultrastar Data102 in a single IOM configuration was 

used for all tests

More information available in the Solution Brief:

Leil Storage Partners with Western Digital to Deliver a Distributed File System Enabling Host-Managed SMR at Petabyte Scale without Cloud

Lab results for the performance comparison

23/28

https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/solution-brief/solution-brief-ultrastar-data60-data102-leil-storage-file-sys-host-mngmt.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/solution-brief/solution-brief-ultrastar-data60-data102-leil-storage-file-sys-host-mngmt.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/solution-brief/solution-brief-ultrastar-data60-data102-leil-storage-file-sys-host-mngmt.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/collateral/solution-brief/solution-brief-ultrastar-data60-data102-leil-storage-file-sys-host-mngmt.pdf


* SMR benchmark performed with ZoneFS - direct I/O; CMR tests with XFS - buffered I/O

SaunaFS 5.x SMR vs CMR (STX)

24/28



SaunaFS 5.x Recent Improvements
Recent improvements

Status as of version 5.1.0:

The 3rd generation of HM-SMR support is 

stable with a room for further performance 

improvements.

Both Read and Write performance was 

improved (25-30% depending on the 

workload) with new write and zone 

assignment and read-scheduling 

algorithms.

SMR to CMR write performance gap has 

been significantly reduced.

25/28



Leil Reference Architecture
Leil Storage HM-SMR Hardware Blueprint 

AIC SB407-ZL 4U High-Density Server

Up to 1.9PB of raw storage in 4U

60x 32TB HM-SMR SATA HDD with PIN3

2x U.2 7.68TB U.2 NVMe metadata drives

1x AMD Siena 8224P (24 cores, 2.55GHz)

6x 96GB DDR5 ECC

2x 960GB U.2 NVMe OS drives

1x Dual-port 100GbE QSFP28 NIC

1x ATTO H240F 24Gb HBA

Data Scheme: EC6+2, 8 nodes up to 11.5 PB usable in a single rack

Best TCO for 60 drives node sizing

Fits in standard 1m depth rack

OEM Ready

Node Architecture: SaunaFS Architecture:

Up to 1.9PB of raw storage in 4U

8 server nodes, 60 high-capacity 

drives per node.

Erasure Coding with 6 data parts and 

2 parities, internally known as EC(6,2) 

or simply EC62.

Using 32 TB drives, a single rack 

could have about 11.5 PB of space.

Depending on the average file size, 

the number of metadata could 

represent a bottleneck for a single 

active Master.

26/28



WD Reference Architecture
Boosting Performance with Zoning Setup

HBA 

1x ATTO ESAH-12F0-GT0: 
16-port 12Gb HBA

Ports 1-2 (wide port) of ATTO HBA are connected to 

A1 & A2 (red zone)

Ports 3-4 (wide port) are connected to A5 & A6.

We do not use the second IOM because we are 

using SATA drives (same will be for new gen JBODs 
3000 Series with 24Gb HBAs).

HM-SMR Drives

Single-port 6 Gb/s SATA

To Host

2x Mini-SAS HD ports per zone
4x Mini-SAS HD ports total

27/28



ADR/RDP for HM-SMR vs CMRs

How it Works

Depopulates failing head (~5% capacity loss in 10-platter drive).

With HM-SMR: stop only zones of bad head → no reformat, no downtime.

Data stays in place; reconstruct via EC if needed (damaged zones only).

Benefits

Avoids 24h+ full reformat (data destructive).

Zero downtime and longer drive life.

5% surface loss reduces data-loss probability by 20× with EC (N+M) when M drives are lost.

Autonomous Drive Regeneration (ADR) / RDP (Repurposing Depopulation) for HM-SMRs

28/28



Thank you

Piotr Modrzyk

Principal Architect at Leil Storage and SaunaFS

David Gerstein

CTO at Leil Storage and SaunaFS


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

