
Object Storage Is the
Backbone of AI

Head of Global Field Architects

Murat Karslioglu

murat@min.io

mailto:murat@min.io

AI isn't just compute,
it's a data movement,
durability, and economics
problem

2

Pre-processing

Parallel reads of raw
corpora,
event-driven
pipelines

Training

Many parallel GETs
per GPU, versioned
checkpoints

Inference/RAG

Billions of small
objects, high fan-out
patterns

Governance

Versioning, lifecycle,
replication with same
S3 APIs

Why Object-Native is Required at AI Scale

3

Store 10s to 1,000s of petabytes
of structured, semi- and
unstructured analytical and AI data,
all in a single global namespace.

Single-Namespace
Scalability

Efficiently transform, analyze, and
train using thousands of CPUs and
GPUs with massive parallel
throughput across both large and
small files such as txt, JSON,
parquet, audio, image, video etc.

Performance for
Unstructured Data

Object-native storage persists data
more efficiently than file storage
due to its flat namespace and
software-defined use of
non-proprietary hardware.

Cost
Effectiveness

All leading analytics/AI/ML tools
such as Hugging Face, PyTorch,
TensorFlow, Ray, Kubeflow,
Iceberg, Hudi, Hive, Spark, Presto,
and Dremio natively support
S3/object storage APIs.

Deep Ecosystem
Support

Easily reproduce training runs and
rollback models or data, via safe,
fine-grained continuous data
protection powered by object
immutability and versioning.

Versioning &
Immutability

Object-native storage has no file
system hierarchy or metadata
bottlenecks making it faster and
easier to manage, automate, and
monitor at AI scale.

Operational
Efficiency

The CSP Challenge: Cost & control barriers too high for most enterprises

4

AI Ecosystem on S3
C

o
lu

m
n

a
r

Object Storage (S3)

 Staging Unstructured Raw Curated Optimized

Modern Data
Lakehouse Stack

Ta
b

le

Fo
rm

at
s

P
ro

c
e

ss
in

g
Q

u
e

ry

Data
Engineerin

g
Training Inference/

RAG MLOps

→ Read raw, write curated
lakehouse tables with ACID

guarantees

→ Stream from lakehouse
tables, checkpoint to
versioned S3 buckets

→ Models + embeddings in
S3, real-time queries via

Arrow/Parquet

→ Feature stores +
registries backed by
lakehouse metadata

Vector DBs

RAG on Object Storage

Simple scale for ingest, retrieval, and provenance

Data Layout

● raw/: source docs (PDF, HTML, images)
● chunks/: normalized text, traceable to raw
● embeddings/: vectors as Parquet shards
● policy/: versioning, retention, tags

Event-Driven Build

● PUT on raw/ triggers chunk→embed→write pipeline
● Batch into 64-256 MB shards for efficient retrieval
● Stamp lineage into object metadata

Retrieve & Serve

● Vector DB returns IDs → dereference chunks in S3

● Cache hot items locally, S3 stays golden copy

Training Patterns

Deterministic datasets, fat pipes, safe checkpoints

Data Layout

● 64-256 MB shards (WebDataset/Parquet)
● Balanced prefix sharding
● Manifest.json pins dataset version + hashes

Feeding GPUs

● 4-16 readers per GPU with async prefetch
● Multipart GET (8-64 MB parts)
● Local NVMe cache >80% hit rate

Checkpointing

● Atomic tarballs → single object PUT

● Versioning + Object Lock (WORM) for safety

● Resume via last_good.txt pointer

Hardware Trends

7

Dense NVMe Network First

● E3.L/E3.S/U.2 QLC
(122.88-245.76+ TB) > multi-PB per rack

● Front-service, better thermals, fewer
chassis

● 2×100-400 GbE per node standard

● Non-blocking leaf-spine, jumbo frames

Right-Sizing What to Measure

● $/TiB-usable, watts/TiB, throughput per
rack

● GPU util >90%, p99 GET latency

● Spend on NICs/NVMe before extra CPUs

● EC 12:4/16:4 vs 3× replication
= 2× capacity

Design Playbook

8

Field-proven checklist for 30-min
deployments

 Network First

● 2×100-400 GbE per node,
non-blocking fabric

● Jumbo frames, tuned
RSS/multi-queue

 Shape the Data

● 64-256 MB objects,
balanced prefix sharding

● Layout:
s3://lake/{domain}/{dataset}/{version}/
dt=YYYY-MM-DD/

 Feed GPUs

● 8 readers/GPU (tune 4-16),
async prefetch

● Local NVMe cache >80% hit
rate

 Protect & Govern

● EC 12:4/16:4, versioning +
Object Lock

● Lifecycle hot>warm>cold
from day 0

Reference Architecture

9

One deployable pod: 8-16 NVMe
nodes under one S3 namespace

Lan1 A 8 node 16 drive
cluster

Will survive the loss
of any 48 drives or 3
servers

Total usable capacity
will be ~ 63% of raw
storage deployed

Multiple
Clients

 Multiple
Apps

Enterprise
Load

Balancer

minio server https://hostname{1...8}/mnt/disk{1...16}

…

1

2

8

400 GbE
TOR switch

Lan0

NVMe 2 8TiB

…

NVMe 16 8TiB

NVMe 1 8TiB

1

NVMe 2 8TiB

…

NVMe 16 8TiB

NVMe 1 8TiB

2

NVMe 2 8TiB

…

NVMe 16 8TiB

NVMe 1 8TiB

…

NVMe 2 8TiB

…

NVMe 16 8TiB

NVMe 1 8TiB

8

Site A

Site B

…

 2

8

1

Bare Metal Deployment
Recommendation

Single Node Configuration:
■ CPU - Single AMD EPYC™ 9655P 96 cores or higher
■ RAM - DDR5 RDIMM6400

394GB or higher 1232 GB 1U Medium) or
786GB or higher 1264 GB 2U Large)

■ NIC - 2400GbE or 2100GbE
■ STORAGE - E3.S NVMe SSD

16x E3.S NVMe SSD 15.36TiB 1U Medium) or
32x E3.S NVMe SSD 61.44TiB 2U Large)

Example: 2U Large Config: 9.6 PiB useable)
■ 82U nodes 16U
■ Erasure Code Stripe Size KM - 8
■ Erasure Code Parity M - 3

■ Drive Failure Tolerance: 96
■ Server Failure(s) Tolerance: 3

NOTE For sizing and throughput estimates, please see the MinIO sizing calculator

PowerEdge R7715 ProLiant DL345 ASG2115SNE332R

Dell HPE Supermicro
Storage Server Reference

ProLiant DL325PowerEdge R6715 ASG1115SNE316R
1U

2U

https://min.io/product/erasure-code-calculator?ref=blog.min.io

AI DataPOD Reference Design

▪ 8 x PowerEdge R7715 (2U Chassis)

▫ AMD EPYC™ 9755 (128 cores)

▫ 32 x E3.S NVMe PCIe 5.0 drives (61.44 TB)

▫ 400GbE NVIDIA ConnectX-7 NIC (x16 PCIe Gen 5.0)

▪ 1 x NVIDIA Spectrum 3 - 400GbE Ethernet

(or PowerSwitch Z Series)

▪ 1 x PowerEdge XE9680 6U Chassis /w 8 x NVIDIA H200 GPUs

▫ 2 x 400GbE NVIDIA ConnectX-7 NICs for storage

networking

▪ Dell Rack and PDU

AI DataPOD Rack Unit

1212

21.8TiB/s
Read throughput

$3.0/TiB
Per month, S/W & H/W, all

features included

The Only
Exabyte-Scale

AI Storage

1.0 EiB
Single namespace capacity

484
Storage servers

Why Object Storage for AI: PERFORMANCE

13

Subhead

IOPS &
Throughput

LEGACY STORAGE/OBJECT STORAGE GATEWAYS
Obj/s degradation & barrier
Throughput/pb degradation & barrier

OBJECT-NATIVE AI STORAGE
Near line-speed, linear scale performance
Up to 800Gbps per storage server

✘

Single Namespace Capacity Scale

20 PB 1.0 EB10 PB 30 PB 40 PB 50 PB0

21.8 TiB/s
Throughput at 1.0 EiB, via 484

node cluster with 400Gbps NICs

Call to Action

Make GPUs happy. Make auditors happy. Cut racks.

 Network First

● 2×100-400 GbE per node,
non-blocking fabric

● Jumbo frames, RSS tuning,
NUMA-aware IRQ pinning

 Shape Data for Scale

● 64-256 MB objects with balanced
prefix sharding

● 4-16 readers/GPU with async
prefetch

● Measure: GPU util >90%, p99 GET
latency

 Protect with Policy

● EC 12:4/16:4 over 3× replication
(2× capacity gain)

● Versioning ON + Object Lock for
checkpoints

● Lifecycle automation:
hot > warm > cold from day 0

 Validate with Real Workloads

● Test with actual I/O patterns, not
just synthetic

● Lock in SLOs: bytes/GPU-hour,
cache hit %, time-to-resume

Visit:
min.io

Thank you
@minio
https://github.com/minio/minio
https://slack.min.io
https://min.io

https://github.com/minio/minio
https://slack.minio.io
https://minio.io

