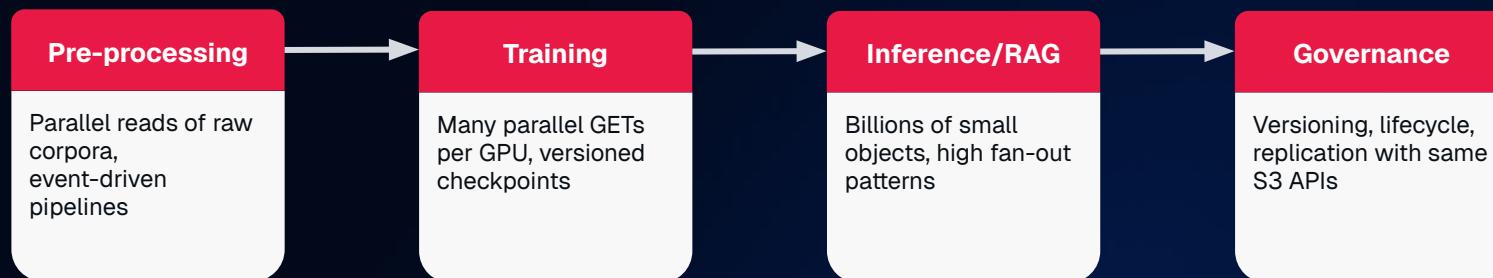


Object Storage Is the Backbone of AI


Murat Karslioglu

Head of Global Field Architects

murat@min.io

AI isn't just compute, it's a data movement, durability, and economics problem

Why Object-Native is Required at AI Scale

Single-Namespace Scalability

Store **10s to 1,000s of petabytes** of structured, semi- and unstructured analytical and AI data, all in a single global namespace.

Deep Ecosystem Support

All leading analytics/AI/ML tools such as **Hugging Face, PyTorch, TensorFlow, Ray, Kubeflow, Iceberg, Hudi, Hive, Spark, Presto, and Dremio** natively support S3/object storage APIs.

Performance for Unstructured Data

Efficiently transform, analyze, and train using thousands of CPUs and GPUs with **massive parallel throughput across both large and small files** such as txt, JSON, parquet, audio, image, video etc.

Versioning & Immutability

Easily **reproduce training runs and rollback models or data**, via safe, fine-grained continuous data protection powered by object immutability and versioning.

Cost Effectiveness

Object-native storage persists data more efficiently than file storage due to its **flat namespace and software-defined** use of non-proprietary hardware.

Operational Efficiency

Object-native storage has **no file system hierarchy or metadata bottlenecks** making it faster and easier to manage, automate, and monitor at AI scale.

The CSP Challenge: Cost & control barriers too high for most enterprises

AI Ecosystem on S3

RAG on Object Storage

Simple scale for ingest, retrieval, and provenance

Data Layout

- `raw/`: source docs (PDF, HTML, images)
- `chunks/`: normalized text, traceable to raw
- `embeddings/`: vectors as Parquet shards
- `policy/`: versioning, retention, tags

Event-Driven Build

- PUT on `raw/` triggers chunk→embed→write pipeline
- Batch into 64-256 MB shards for efficient retrieval
- Stamp lineage into object metadata

Retrieve & Serve

- Vector DB returns IDs → dereference chunks in S3
- Cache hot items locally, S3 stays golden copy

Training Patterns

Deterministic datasets, fat pipes, safe checkpoints

Data Layout

- 64-256 MB shards (WebDataset/Parquet)
- Balanced prefix sharding
- Manifest.json pins dataset version + hashes

Feeding GPUs

- 4-16 readers per GPU with async prefetch
- Multipart GET (8-64 MB parts)
- Local NVMe cache >80% hit rate

Checkpointing

- Atomic tarballs → single object PUT
- Versioning + Object Lock (WORM) for safety
- Resume via last_good.txt pointer

Hardware Trends

Dense NVMe

- E3.L/E3.S/U.2 QLC
(122.88-245.76+ TB) > multi-PB per rack
- Front-service, better thermals, fewer chassis

Network First

- 2×100-400 GbE per node standard
- Non-blocking leaf-spine, jumbo frames

Right-Sizing

- Spend on NICs/NVMe before extra CPUs
- EC 12:4/16:4 vs 3× replication
= 2× capacity

What to Measure

- \$/TiB-usable, watts/TiB, throughput per rack
- GPU util >90%, p99 GET latency

Design Playbook

Field-proven checklist for 30-min deployments

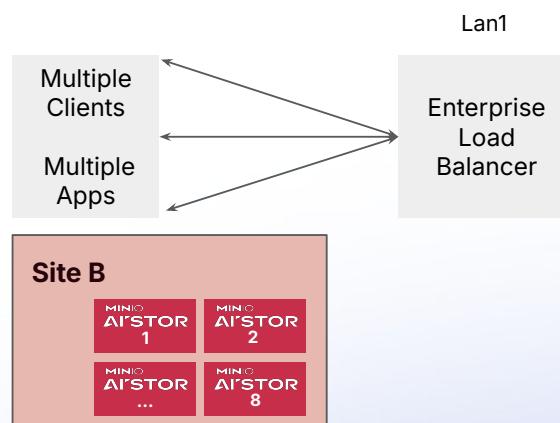
Network First

- 2x100-400 GbE per node, non-blocking fabric
- Jumbo frames, tuned RSS/multi-queue

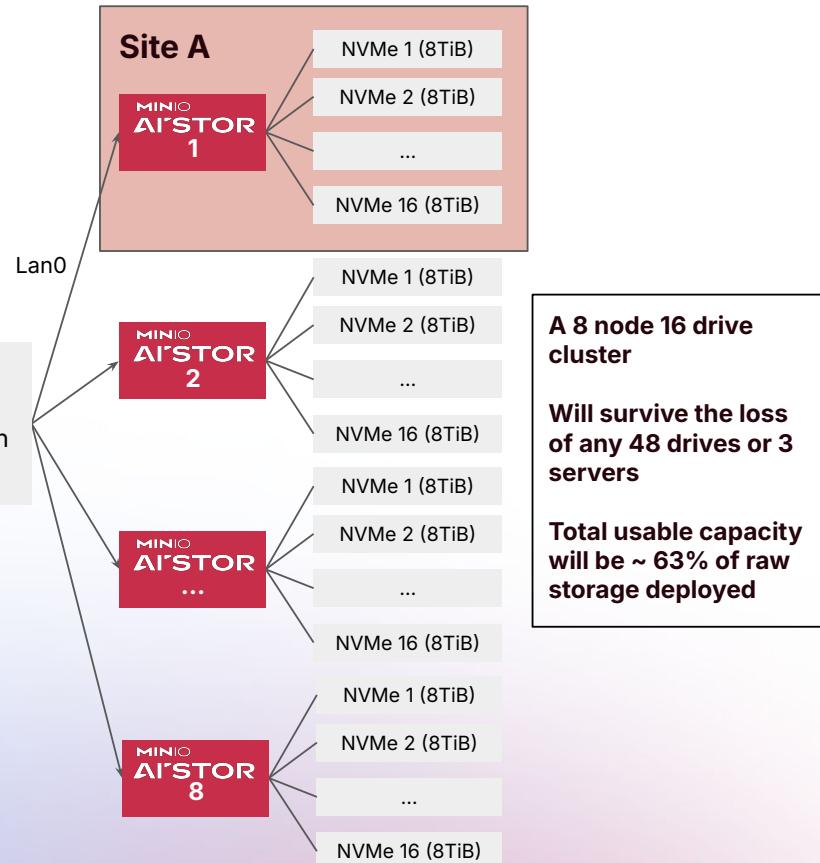
Feed GPUs

- 8 readers/GPU (tune 4-16), async prefetch
- Local NVMe cache >80% hit rate

Shape the Data


- 64-256 MB objects, balanced prefix sharding
- Layout:
`s3://lake/{domain}/{dataset}/{version}/dt=YYYY-MM-DD/`

Protect & Govern


- EC 12:4/16:4, versioning + Object Lock
- Lifecycle hot>warm>cold from day 0

Reference Architecture

One deployable pod: 8-16 NVMe nodes under one S3 namespace

minio server https://hostname{1...8}/mnt/disk{1...16}

Bare Metal Deployment

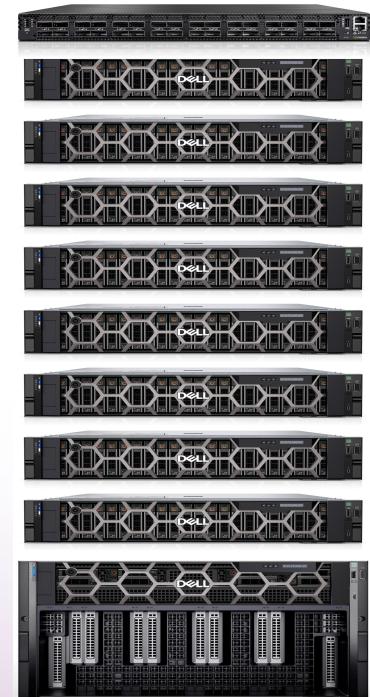
Recommendation

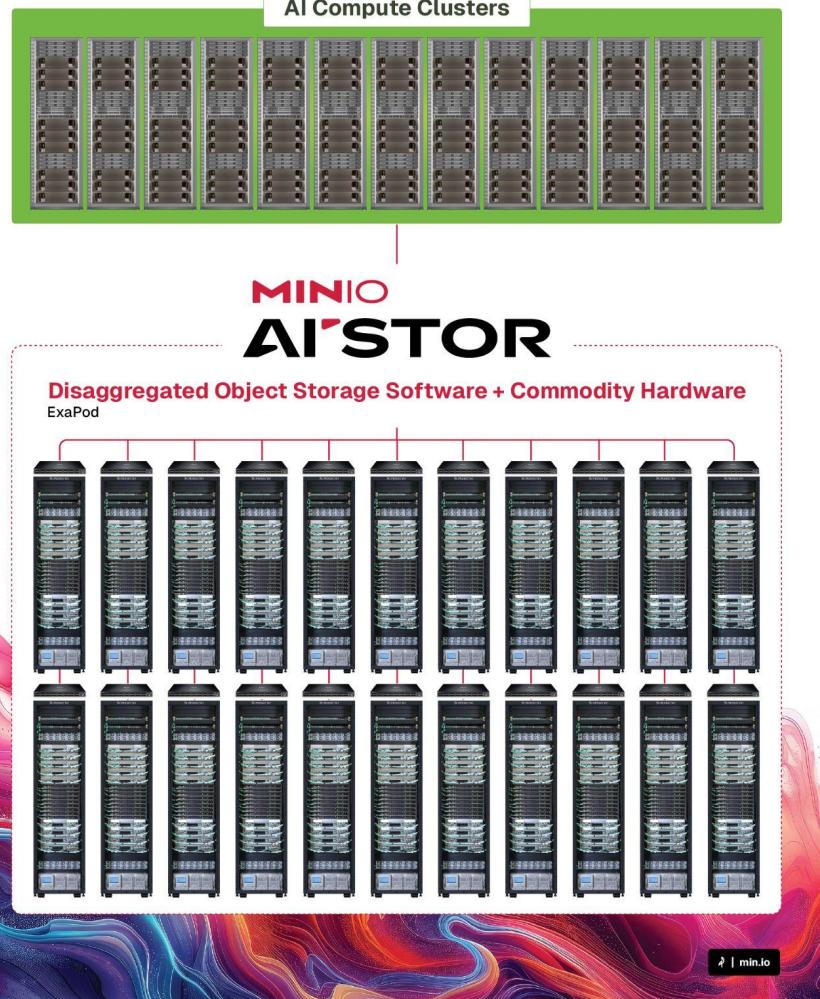
Performance		
	Dell	HPE
1U		
	PowerEdge R6715	ProLiant DL325
2U		
	PowerEdge R7715	ProLiant DL345
		ASG-1115S-NE316R
		ASG-2115S-NE332R

Single Node Configuration:

- **CPU** - Single AMD EPYC™ 9655P 96 cores or higher
- **RAM** - DDR5 RDIMM-6400
394GB or higher (12×32 GB) (1U Medium) or
786GB or higher (12×64 GB) (2U Large)
- **NIC** - 2×400GbE or 2×100GbE
- **STORAGE** - E3.S NVMe SSD
16x E3.S NVMe SSD 15.36TiB (1U Medium) or
32x E3.S NVMe SSD 61.44TiB (2U Large)

Example: 2U Large Config: (~9.6 PiB useable)


- 8×2U nodes (16U)
- Erasure Code Stripe Size (K+M) - 8
- Erasure Code Parity (M) - 3
 - Drive Failure Tolerance: 96
 - Server Failure(s) Tolerance: 3


NOTE: For sizing and throughput estimates, please see the MinIO [sizing calculator](#)

AI DataPOD Reference Design

- 8 x **PowerEdge R7715** (2U Chassis)
 - AMD EPYC™ 9755 (128 cores)
 - 32 x E3.S NVMe PCIe 5.0 drives (61.44 TB)
 - 400GbE **NVIDIA ConnectX-7** NIC (x16 PCIe Gen 5.0)
- 1 x **NVIDIA Spectrum 3** - 400GbE Ethernet
(or PowerSwitch Z Series)
- 1 x **PowerEdge XE9680** 6U Chassis /w 8 x **NVIDIA H200** GPUs
 - 2 x 400GbE **NVIDIA ConnectX-7** NICs for storage networking
- **Dell Rack and PDU**

AI DataPOD Rack Unit

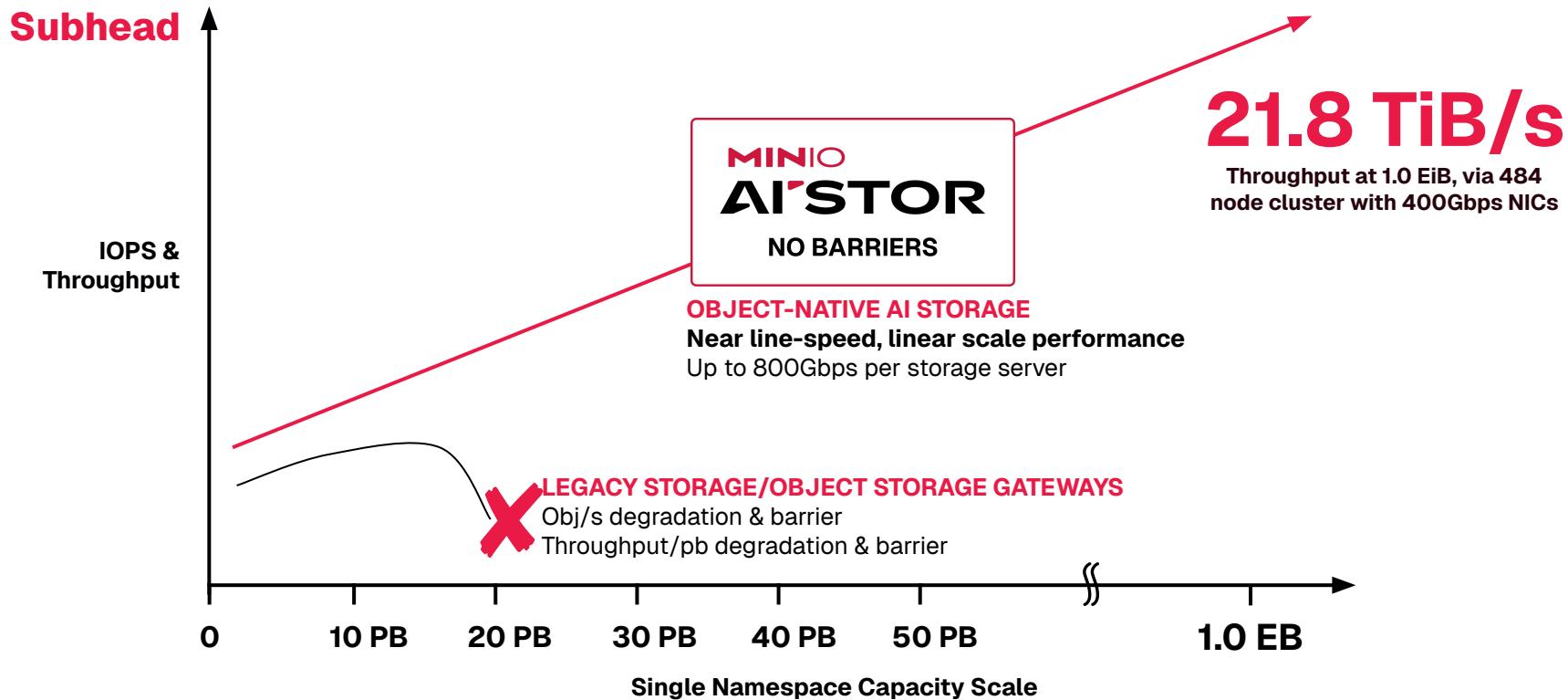
The Only Exabyte-Scale AI Storage

1.0 EiB

Single namespace capacity

484

Storage servers


21.8TiB/s

Read throughput

\$3.0/TiB

Per month, S/W & H/W, all
features included

Why Object Storage for AI: PERFORMANCE

Call to Action

Make GPUs happy. Make auditors happy. Cut racks.

Network First

- 2x100-400 GbE per node, non-blocking fabric
- Jumbo frames, RSS tuning, NUMA-aware IRQ pinning

Protect with Policy

- EC 12:4/16:4 over 3x replication (2x capacity gain)
- Versioning ON + Object Lock for checkpoints
- Lifecycle automation: hot > warm > cold from day 0

Shape Data for Scale

- 64-256 MB objects with balanced prefix sharding
- 4-16 readers/GPU with async prefetch
- Measure: GPU util >90%, p99 GET latency

Validate with Real Workloads

- Test with actual I/O patterns, not just synthetic
- Lock in SLOs: bytes/GPU-hour, cache hit %, time-to-resume

**Visit:
min.io**

Thank you

@minio

<https://github.com/minio/minio>

<https://slack.min.io>

<https://min.io>