CMSBench: Open, Repeatable
Benchmarking of Far Memory

Grant Mackey
CTO Jackrabbit Labs

Take-aways

CMS Bench: Open, repeatable benchmarking of far memory technology

There isn’t an industry consensus on the utility of far memory today
“Show, don’t tell” benchmarks are useful

Make it easy, make it digestible

There isn’t a de-facto effort in the wild yet to tackle this challenge

The OCP Composable Memory Systems group is taking a crack it it
* https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks

© 2025 Jackrabbit Labs. All rights Reserved.

https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks

Take-aways

CMS Bench: Open, repeatable benchmarking of far memory technology

There isn’t an industry consensus on the utility of far memory today

* Not a lot of ecosystems work, still seen as fledgling or niche

“Show, don’t tell” benchmarks are useful

* Demonstrate utility with a suite of known end-user applications is high value

Make it easy, make it digestible

* Benchmarking is hard, hard means people don’t do it or don’t do it well

There isn’t a de-facto effort in the wild yet to tackle this challenge

 What’s important, what’s reasonable, etc. are unsettled questions

The OCP Composable Memory Systems group is taking a crack it it
 https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks

© 2025 Jackrabbit Labs. All rights Reserved.

https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks
https://github.com/opencomputeproject/OCP-SVR-CMS-Benchmarks

Introduction
What is the OCP' Composable Memory System group?

Kicked off in 2022, one of the few software-first subgroups in OCP
* Focused on architecture and systems, rather than hardware and devices

Workstreams
 Composable Workloads

Memory Fabric Orchestration
Al and Composable Memory

Computational Programming
Academic Research

Focus is on far memory technologies and their fabrics in general
e CXL, UALink, etc. etc.

1. ”wait, what’s OCP?” - click me © 2025 Jackrabbit Labs. All rights Reserved.

https://en.wikipedia.org/wiki/Open_Compute_Project

* What’s your definition of far memory?
e Let’s call it as “not a local DRAM NUMA domain, but still a NUMA node”

-

DRAM

DRAM

o

~

ﬂ_ocal to server

Memory

DRAM

Device

One fabric hop

DRAM

Memory
Device

~

Multiple hops

Memory

)

Near Memory

.

Device /

Far Memory

Introduction

What is far memory?

© 2025 Jackrabbit Labs. All rights Reserved.

Introduction
Why does CMS care about this, what's the utility?

CMS is composed of groups that either

* Make far memory devices and fabrics
* Work on the connectivity of these technologies
* Want to consume far memory technologies

There is a gap in getting from hardware to useful/valuable architectures

The multi-industry group has a large network to leverage to get from standards to practice

© 2025 Jackrabbit Labs. All rights Reserved.

The Problem

Benchmarking is hard

Many benchmarks do not have a good out of box experience.
* Installation
e Configuration
 Comparing Aand B

Value is subjective, what is ‘performance’
e Bandwidth/Latency?
* Power/Efficiency?
 TCO?

There are a ton of benchmarks, but are they doing the thing you care about?
* Are you exercising the right thing?
* Isthe workload right?
* |sthe scaleright?

© 2025 Jackrabbit Labs. All rights Reserved.

The Problem

Independent Replication of Results is Hard

“I did a thing, and it is better than all things before!” — pick 1 to 2

* There is a description of the software stack
* There is a description of the hardware used

* The code is open source
* There is a how-to guide on replication

Even good intentions are hard to replicate

 Library versions
* Kernel versions

* Compiler
 State of the system during testing, etc. etc.

Output is non-standard
* Why are you plain-text, you CSV, and you json-ish?

© 2025 Jackrabbit Labs. All rights Reserved.

The Problem

Independent Replication of Results is Hard

“I did a thing, and it is better than all things before!” — pick 1 to 2

* There is a description of the software stack
* There is a description of the hardware used
* The code is open source

* TFheretsahow-toguide-onrepheationr—— No there isn’t

Even good intentions are hard to replicate
 Library versions
* Kernel versions
* Compiler
 State of the system during testing, etc. etc.

Output is non-standard
* Why are you plain-text, you CSV, and you json-ish?

© 2025 Jackrabbit Labs. All rights Reserved.

Standardization means that you can easily mix
and match ISAs in a workload

 Arm/x86, GPUs, RISC-V, xaccelerator

Fabric topologies don’t tell you what they are,
just how ‘far’ something is

You can tune far memory QoS as a workload
IS running

You can dynamically add/subtract memory to
a workload

Maybe your OS does memory auto-tiering

The Problem

Far memory makes this even more convoluted

MOTHER OF GOD

© 2025 Jackrabbit Labs. All rights Reserved.

The value of far memory lies in the user, and the
workload

* That being said, CPU core counts keep going up and
memory channels don’t, all while serialized buses
like PCle continue doubling performance

There is a lot of work already that shows the
utility of far memory
e But we already talked about replication and bad out
of box experiences

Let’s showcase popular, valuable workloads for
far memory in an open, repeatable way

GB/s per physical Core

Goal

Demonstrate the value of far memory

x86 Core to Memory BW
ratio 2008 to 2024

08 0 12 13 "4 14 17 18 21 22 23 '24H1'24H2

© 2025 Jackrabbit Labs. All rights Reserved.

Make it simple

* | shouldn’t have to intimately know how the

benchmark runs

Make it digestible

* | should be able to run it after reading a brief

readme.

Make it clear

* When this finishes, the report is going to talk

aboutx, vy, z

"redis-default",
redis"”
connection_param
"collection_params

"search_params": [
{ “parallel”: 1, "config": { "EF": 64 } }, { "parallel”: 1, "config": { "EF": 128 } }, { "parallel’: 1
{ "parallel”: 100, "config": { "EF": 64 } }, { 'parallel”: 100, "config": { "EF": 128 } }, { "parallel

1.
"upload_params®: { "parallel®: 16, "batch _size': 1024 }

"name": 'redis-m-16-ef-128",
"engine": "redis"

"connection_params
"collection_params

“hnsw_config 16, "EF_CONSTRUCTION": 128 }

"search_params":
{ “parallel”: 1, "config": { "EF": 64 } }, { "parallel®: 1, "config": { "EF": 128 } }, { “parallel”
{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF': 128 } }, { "parallel”

1.
"upload_params®: { "parallel®: 16 }

"name": 'redis-m-32-ef-128",
"engine”: "redis",
"connection_params
"collection_params
"hnsw_config": { "M

"search_params®: [
{ "parallel”: 1, "config “parallel "config": { "EF": 128 } }, { "parallel’: 1,
{ "parallel”: 100, "config” { "parallel”: 100, "config": { "EF": 128 } }, { "parallel”

1.
"upload_params®: { "parallel®: 16 }

"name": "redis-m-32-ef-256",
"engine”: "redis",
"connection_params": (},
"collection_params
"hnsw_config”: { "M": 32, "EF_CONSTRUCTION": 256 }

"search_params®: [
{ "parallel”: 1, "config “parallel "config": { "EF": 128 } }, { "parallel’: 1,
{ "parallel”: 100, "config”: { : { "parallel®: 100, "config": { "EF": 128 } }, { "paralle

1.
"upload_params®: { "parallel®: 16 }

"engine”: "
"connection_params"
"collection params": {
"hnsw_config . "EF_CONSTRUCTION": 512 }

"search_params
{ "parallel”: 1, "config": { "EP": €4 } }, { "parallel®: 1, "config": { "EF": 128 } }, { "parallel’: 1
{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF": 128 } }, { "parallel

1.
"upload_params®: { "parallel®: 16 }

“redis-m-64-ef-256",
"engine”: "redis"
"eonnection_params”: (},
"collection params": {
“hnsw_config": { "M": 64, "EF_CONSTRUCTION": 256 }

"search_params": [
{ "parallel”: 1, "config": { "EP": 64 } }, { "parallel”: 1, "config": { "EF": 128 } }, { "parallel’: 1
{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF": 128 } }, { "parallel

1.
"upload_params®: { "parallel®: 16 }

"redis-m-64-ef-512",
"engine": "redis"
"connection_params
"collection_params

"hnsw_config . "EF_CONSTRUCTION': 512 }

"search_params":
{ "parallel” "eonfig": { "EP": 64 } }, { "parallel”: 1, "config": { "EF": 128 } }, { "parallel”
{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF": 128 } }, { "parallel”

1.
"upload_params®: { "parallel”: 16 }

Just *one* of the many example configs

Make it simple and consumable

Goal

"config": { "EF": 256 } }, { "parallel": 1, “config": { "EF'
100, "config": { "EF": 256 } }, { "parallel®: 100, "config’

"config": { "EF": 256 } }, { "parallel": 1, “config": { "EF'
100, "config": { "BP": 256 } }, { 100, "config'

"config": { "EF"
100, "config": {

"config": { "EF"

: 100, "config”: {

"config": { "BF": 256 } }, { "parallel": 1, “config
100, "config": { "EF": 256 } }, { "parallel®: 100,

"config": { "BF": 256 } }, { "parallel’: 1, "config': 512) },
100, "config": { "EF": 256 } }, { "parallel”: 100, ig": { "EF": 512 } }

"config": { "EP"
100, "config"

for a popular vectorDB

© 2025 Jackrabbit Labs. All rights Reserved.

Make it simple

* | shouldn’t have to intimately know how the

benchmark runs

Make it digestible

* | should be able to run it after reading a brief

readme.

Make it clear

* When this finishes, the report is going to talk

aboutx, vy, z

Goal

Make it simple and consumable

"redis-default",
"engine": "redis",
"connection_params"
"collection_params"

"search_params": [
{ "parallel”: 1, "config": { "EF": 64 } }, { "paralle. 1, "config": { "EF": 128 } }, { "parallel” "config": { "BF": 256 } }, { "parallel”: 1, “config": {
{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF': 128 } }, { "parallel”: 100, "config": { "EF": 256 } }, { "parallel®: 100, "confi

1.
"upload_params®: { "parallel®: 16, "batch

"redis-m-16-e£-128",
"redis”,
"eonnection_params”: {},
"collection_params"
“hnsw_config": { "M": 16, "EF_CONSTRUCTION': 128 }

"search_params®: [
{ "parallel”: 1, "config": { "EP": 64 } }, { "parallel®: 1, "config": { "EF": 128 } }, { "parallel’: 1, "config": { "EF": 256 } }, { "parallel”: 1, “config
{ "parallel”: 100, "config": { "EF": &4 } }, { "parallel”: 100, "config": { "EF": 128 } }, { "parallel®: 100, "config": { "EF": 256 } }, { "parallel”: 100, "confi

1.
"upload_params®: { "parallel®: 16 }

"redis-m-32-ef-128",
dis",

“"hnsw_config

"search_params
{ "parallel”
{ "parallel”: 100, "config

1.
"upload_params®: { "parallel”:

"redis-m-32-ef-256",
redis"

“hnsw_config": { "M"

"search_params
{ "parallel”: 1
{ "parallel”: 100,

1.
"upload_params": { "parallel®:

"engine”: "redi

"connection_params

"collection_params"
"hnsw_config

*redis-m-32-ef-512",
o

"search_params
{ "parallel”: 1, i "EF": 64 } }, { "parallel®: 1, "config": { "EF": 128 } }, { "parallel”: 1, "config": { 256 } }, { "parallel": 1, “config": {
{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF": 128 } }, { "parallel”: 100, "config": { "EF": 256 } }, { "parallel”: 100, "config

1.
"upload_params®: { "parallel®: 16 }

s-m-64-ef-256",
"

"eonnection_params”: (},
"collection params"
“hnsw_conf: { "M": 64, "EF_CONSTRUCTION": 256 }

"search_params": [
{ "parallel”: 1, "config": { "EP": 64 } }, { "parallel”: 1, "config": { "EF": 128 } }, { "parallel” "config": { "BF": 256 } }, { "parallel”: 1, "config": { "B
{ "parallel”: 100, "config": { "EF": &4 } }, { "parallel”: 100, "config": { "EF": 128 } }, { "parallel®: 100, "config": { "EF": 256 } }, { "parallel”: 100, "confi

1.
"upload_params®: { "parallel®: 16 }
"redis-m-64-ef-512",

"engine”: "redis”,
"connection_params®: {},
"collection_params"

"hnsw_config”: { "M": €4, "EF_CONSTRUCTION": 512 }
"search_params": [

{ "parallel”: 1, "config": { "EF": 64 } }, { "parallel®: 1, "config": { "EF": 128 } }, { "parallel’: 1, "config": { "EF": 256 } }, { "parallel”: 1, "config

{ "parallel”: 100, "config": { "EF": 64 } }, { "parallel”: 100, "config": { "EF': 128 } }, { "parallel”: 100, "config": { "EF": 256 } }, { "parallel®: 100, "confi

1.
"upload params”:

Just *one* of the many example configs for a popular vectorDB
© 2025 Jackrabbit Labs. All rights Reserved.

Goal

Make it repeatable and comparable-ish

Lock as much software stack variability as possible
* Maybe use containers?

Profile the SUT as much as possible
* Collect all the system info hardware and software
* Run basic speeds and feeds test to book end performance before running the benchmarks so you have
a yardstick
Settle on outputs that are transportable across applications, relate output to real world
utility
* Hard, this is the industry discussion. When are we comparing apples to chairs and how do we at least
compare fruit?

© 2025 Jackrabbit Labs. All rights Reserved.

Proposal

“Hermetically sealed containers”...what is that?

Hermetically sealed (adjective) /ha met.1.kal.i ‘si:ld/: separated and protected from very
different conditions outside. A container or space tightly closed that no air can leave or
enter it.

* Put as much of the software stack into containers as possible

Lock most of the configuration of runtimes into the containers
* Provide some configuration knobs for end users

Open-source and transparent runtime, but don’t mess with the internals, use the knobs we
provide.

© 2025 Jackrabbit Labs. All rights Reserved.

Proposal

“Hermetically sealed containers”...what is that?

Read and configure

- README.md
O User - Review and tweak/modify runtime.env

- inspects - ‘docker compose up’ (or the like)

- modifies

- runs
User Run on SUT
- Results in PR

- HW/SW profile
- HW speeds/feeds benchmarks
- SW benchmark(s) Re-Run on

- Output log comparison SUT

Review and post

y

U CC il T e - Feed outputs to analysis utils in repo
- Grok the results
- Decide you want to share and issue a PR to the repo

© 2025 Jackrabbit Labs. All rights Reserved.

Proposal

“Hermetically sealed containers”...what is that?

* Profile the system under test both out and User env runtime
in the container configuration file
 Numactl-H
Cat /proc/cpuinfo, /proc/meminfo
uname —a, Isb_release —a
Ishw, dmidecode, Ispci -vvv
[container runtime] --version

HW Benchmarks Software Benchmarks

Locked Container Runtime Stack

Container Runtime 1. Container Runtime
Host OS

Host Hardware CXL Device(s) Under Test

System Under Test

© 2025 Jackrabbit Labs. All rights Reserved.

Proposal

“Hermetically sealed containers”...what is that?

User .env runtime
configuration file

" Measure speeds and feeds of the device
under test |

HW Benchmarks Software Benchmarks

Locked Container Runtime Stack

Container Runtime 1. Container Runtime
Host OS

Host Hardware CXL Device(s) Under Test

System Under Test

© 2025 Jackrabbit Labs. All rights Reserved.

Proposal

“Hermetically sealed containers”...what is that?

User .env runtime
configuration file

= Run useful™ application
benchmarks i

Software Benchmarks

Locked Container Runtime Stack

Container Runtime 1. Container Runtime
Host OS

Host Hardware CXL Device(s) Under Test

System Under Test

© 2025 Jackrabbit Labs. All rights Reserved.

Proposal

“Hermetically sealed containers”...what is that?

User .env runtime
configuration file

= Return digestible, standardized, output that
facilitates replication of results

HW Benchmarks Software Benchmarks

Lovely, standard, Cool analysis
parse-able output tools

Locked Container Runtime Stack

Container Runtime 1. Container Runtime

Host OS

Actionable,
shareable data

Host Hardware CXL Device(s) Under Test

System Under Test

© 2025 Jackrabbit Labs. All rights Reserved.

Popular workloads

Hosting anonymous (or not) results data

Very interested in collaboration

e Send your PRs!

O opencomputeproject / OCP-SVR-CMS-Benchmarks Q Typ

> Code Issues 1 1 Pullrequests Actions [Projects [0 wiki () Security |~

Insights

@ ocP-SVR-CMS-Benchmarks pusic & EditPins -+ ©Unwaten & -

P oman - P2

() Grant-JRL ute 5 o {21 Commits
B Documentation

I Results

M src

[.gitignore nitial commit

[CONTRIBUTING.md nitial commit

[LiceNsE nitial commit

[README.md U RE

(7] README A% Contributing 45 GPL-3.0 license

OCP SRV CMS Benchmark Suite

Overview

OCP-SRV-CMS-Benchmarks is a comprehensive benchmarking suite designed to evaluate and analyze the
performance of Compute Express Link (CXL) technology. This repository provides a collection of teols,
benchmarks, and utilities to assess various aspects of CXL implementations, including latency, bandwidth, and
overall system performance.

This repository has several standard benchmarks that have been made to work with DRAM and CXL. Each
benchmark stands alone. Read the 'README.md' for each benchmark for instructions.

Purpose

Included Benchmarks

Proposal

Ecosystem Involvement

This table shows the list of benchmarks included in this suite:

Benchmark

cloudsuite3/graph-analytics

cloudsuite3/inmem-analytics

GPU/AMDfrocm_bandwidth_test

GPU/NVIDIA/nvbandwidth

GPU/NVIDIA/cuda_examples
About

IntelMLC

memcached

Qdrant-Synth

redis

redis-memtier

stream

Contributors 5
Nea®®

Languages

—
Python & @ Shell 40.0%
c 182 ® Other 1.0%

Description

The Graph Analytics benchmark relies on the Spark framework to
perform graph analytics on large-scale datasets

This benchmark uses Apache Spark and runs a collaborative filtering
algorithm (alternating least squares, ALS) provided by Spark MLIib in
memory on a dataset of user-movie ratings. The metric of interest is
the time in seconds for computing movie recommendations.

EA tool for bandwidth measurements on NVIDIA GPUs

EA tool for bandwidth measurements on NVIDIA GPUs

Evaluates the data transfer rates for NVidia GPUs

Runs the Intel Memory Latency Checker (MLC)

Memcached is a general-purpose distributed memory-caching system

Creates synthetic vectors and benchmarks a Qdrant Vector Database
running in a Docker Container

Redis is a source-available, in-memory storage, used as a distributed,
in-memory key—value database, cache and message broker

Run the memtier benchmark against a redis instance

The STREAM benchmark is a simple synthetic benchmark program
that measures sustainable memory bandwidth (in MB/s) and the
corresponding computation rate for simple vector kernels.

TPC-C (Transaction Processing Performance Council Benchmark C), is
a benchmark used to compare the performance of online transaction
processing systems.

© 2025 Jackrabbit Labs. All rights Reserved.

Take-aways

CMS Bench: Open, repeatable benchmarking of far memory technology

There isn’t an industry consensus on the
utility of far memory today

“Show, don’t tell” benchmarks are useful
Make it easy, make it digestible

There isn’t a de-facto effort in the wild yet
to tackle this challenge

The OCP Composable Memory Systems
group is taking a crack it it

L]
[X]

© 2025 Jackrabbit Labs. All rights Reserved.

JACKRABBIT LABS

jrlabs.io
blog.jrlabs.io
contact@jrlabs.io, grant@jrlabs.io

	Slide 1
	Slide 2: Take-aways
	Slide 3: Take-aways
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: The Problem
	Slide 8: The Problem
	Slide 9: The Problem
	Slide 10: The Problem
	Slide 11: Goal
	Slide 12: Goal
	Slide 13: Goal
	Slide 14: Goal
	Slide 15: Proposal
	Slide 16: Proposal
	Slide 17: Proposal
	Slide 18: Proposal
	Slide 19: Proposal
	Slide 20: Proposal
	Slide 21: Proposal
	Slide 22: Take-aways
	Slide 23

